RU2492453C2 - Способ и устройство для анализа и разделения зерна - Google Patents
Способ и устройство для анализа и разделения зерна Download PDFInfo
- Publication number
- RU2492453C2 RU2492453C2 RU2010123902/28A RU2010123902A RU2492453C2 RU 2492453 C2 RU2492453 C2 RU 2492453C2 RU 2010123902/28 A RU2010123902/28 A RU 2010123902/28A RU 2010123902 A RU2010123902 A RU 2010123902A RU 2492453 C2 RU2492453 C2 RU 2492453C2
- Authority
- RU
- Russia
- Prior art keywords
- grain
- value
- parameter
- volume
- light
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 21
- 238000000926 separation method Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 41
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 22
- 230000008859 change Effects 0.000 claims description 16
- 230000003595 spectral effect Effects 0.000 claims description 4
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 claims description 3
- 229920002498 Beta-glucan Polymers 0.000 claims description 3
- 231100000678 Mycotoxin Toxicity 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 108010019077 beta-Amylase Proteins 0.000 claims description 3
- 239000002636 mycotoxin Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 235000013339 cereals Nutrition 0.000 description 278
- 241000209219 Hordeum Species 0.000 description 11
- 235000007340 Hordeum vulgare Nutrition 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 238000003860 storage Methods 0.000 description 8
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004890 malting Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
- B07C5/3425—Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Изобретения относятся к области испытательно-измерительной техники и направлены на обеспечение анализа и разделения зерна для получения однородных партий зерна на основании его конкретного параметра, что обеспечивается за счет того, что для оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна непрерывно подают оптически плотный слой зерна через зону оперативных измерений, анализируют объем зерна путем излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений, и регистрируют свет, отраженный от объема зерна для обеспечения спектра объема зерна, преобразуют спектр в значение параметра зерна или значение каждого параметра зерна, и разделяют зерно на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна, при этом зерно оперативно, т.е. в процессе действия устройства, разделяют на основании значения параметра зерна или значения каждого параметра зерна. 2 н. и 29 з.п. ф-лы, 12 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу и устройству для оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна.
В описании изобретения термин "оперативный" относится к процедуре, которая может выполняться, пока устройство действует, и не требует остановки устройства в ходе процедуры.
Качество используемого зерна является важным аспектом всех типов обработки зерна. Например, при солодовании, качество ячменя оказывает значительное влияние на конечное качество солода. Двумя наиболее критическими факторами, определяющими качество ячменя, являются влажность зерна и содержание белков, и поэтому данные факторы требуют особого внимания до хранения и обработки.
Содержание влаги в зерне оказывает большое влияние на его здоровье и жизнеспособность во время хранения. Сжатый ячмень, например, с содержанием влаги свыше 14% от веса ячменя, нуждается в высушивании для снижения уровня влажности от 12% до 13% до хранения. Точный уровень зависит от предполагаемой длительности хранения до обработки и температуры хранения. Процесс сушки должен быть достаточно деликатным, и, таким образом, используются температуры воздуха, не превышающие 65°C-70°C в зависимости от начального содержания влаги в зерне. Окончательная температура зерна не должна превышать 40°C, иначе необратимое повреждение зародыша и других живых тканей ячменя повредит последующему процессу солодования.
Уровни белка в ячмене определяют окончательные уровни белка в солоде и, таким образом, качество солода. Обнаружено, что ячмень, имеющий содержание белков в диапазоне от 9,5% до 12% сухого вещества, будет давать солод, имеющий уровень белка в пределах от 9,2% до 11,7% сухого вещества. Содержание белков влияет на водопоглощение при пропитывании и степень и качество модификации эндосперма при прорастании, и, таким образом, неоднородное содержание белка в партии зерна приведет к неоднородному прорастанию партии. Это повлияет на цвет, аромат и вкус солода, а также последующую обработку солода.
В настоящее время доступно много методов измерения содержания белка и влаги в зерне. Содержание влаги можно измерять, взвешивая партии зерна до и после высушивания, однако основной недостаток этого способа состоит в том, что он требует много времени, причем анализ каждой партии занимает от 2 до 3 часов. На основании этого принципа были разработаны быстрые методы, например, метод Сарториуса, и, согласно этому методу, для анализа требуется, например, лишь 20-30 минут, включая подготовку, но, как выяснилось, он менее точен. Другой быстрый метод измерения содержание влаги называется "HOH-Express" (Heckmann company, Германия). Этот метод занимает лишь три-пять минут и обладает хорошей точностью, но требует предварительного автоматического или ручного взятия образцов, занимающего много времени. Предыдущие методы измерения содержания белков включают в себя метод Кьелдала, который предусматривает азотный анализ. Этот метод также требует много времени и нуждается во взятии образцов.
Согласно всем вышеупомянутым методам берется несколько образцов из партии, эти объемы анализируются согласно этим методам, и вычисляется средний результат для значений конкретного измеряемого параметра зерна, т.е. содержания белков, содержания влаги. Однако среднее значение для измеряемого значения параметра зерна зависит от типа зерна в каждом образце и, в общем случае, может не представлять всю партию зерна.
Усовершенствованное устройство для измерения параметров зерна раскрыто в патенте США № 5,406,084. В этом документе раскрыт способ и устройство измерения в NIR для оперативного измерения ингредиентов текучих продуктов питания. Однако, после получения измерений, они усредняются для обеспечения среднего значения для конкретного ингредиента для партии зерна. Поэтому предполагается, что эти способ и устройство приводят к неоднородности в партиях зерна.
Соответственно, необходим более эффективный способ и устройство для анализа и для разделения зерна для обеспечения более однородных партий зерна на основании конкретного параметра зерна.
Раскрытие изобретения
Согласно изобретению, предусмотрен способ оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна, причем способ содержит этапы, на которых:
подают оптически плотный слой зерна непрерывно через зону оперативных измерений;
анализируют объем зерна путем излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений, и обнаруживают свет, отраженный от объема зерна для обеспечения спектра объема зерна;
преобразуют спектр в значение параметра зерна или значение каждого параметра зерна; и
разделяют зерно на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна
отличающийся тем, что:
зерно оперативно разделяют на основании значения параметра зерна или значения каждого параметра зерна.
Преимущество этого способа состоит в более точном разделении зерна на основании указанного значения параметра зерна. Таким образом, после разделения, объемы зерна с аналогичными значениями для конкретного параметра зерна могут храниться совместно как однородные партии. Это устраняет любые недостатки, связанные с неоднородностью зерна. Например, в случае сжатого ячменя, партии ячменя с аналогичным содержанием влаги могут храниться, соответственно, для оптимизации производительности сушки, а также обеспечения требуемой жизнеспособности зерна после процесса сушки. Кроме того, ячмень с однородным содержанием белка, может храниться и обрабатываться для еще более однородной модификации.
Дополнительное преимущество изобретения состоит в том, что значения, измеренные для каждого из объемов или подлотов зерна, можно отслеживать. Таким образом, документация для каждого конкретного способа может быть доступна для клиентов, что важно с точки зрения Hazard Analysis Critical Control Point (HACCP) (признанной во всем мире системы, призванной гарантировать, что пищевые продукты безопасны и пригодны для еды) и политик безопасности пищи.
В одном варианте осуществления изобретения, оперативное разделение зерна содержит этапы, на которых:
сохраняют одно или более пороговых значений зерна;
сравнивают значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна;
генерируют сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна;
используют сигнал для осуществления автоматической подачи объема зерна в заранее определенное место на основании значения параметра зерна.
В другом варианте осуществления изобретения, оптически плотный слой зерна подают на скорости от 0,5 до 2,5 м/с. В дополнительном варианте осуществления изобретения, оптически плотный слой зерна подают на скорости от 1 до 2 м/с. Преимущество этих скоростей состоит в том, что они позволяют быстро анализировать и разделять зерно. Поэтому способ требует меньше времени и меньших затрат.
Предпочтительно, чтобы свет излучался непрерывно на оптически плотный слой зерна.
В одном варианте осуществления изобретения, свет излучают на длине волны от 200 до 2000 нм.
В другом варианте осуществления изобретения, свет излучают в ближнем инфракрасном (NIR) спектральном диапазоне от 780 нм до 2000 нм и обеспечивают NIR спектр.
В дополнительном варианте осуществления изобретения, свет излучают на длине волны от 900 до 1500 нм.
В одном варианте осуществления изобретения, свет обнаруживают из объема зерна в течение времени от 15 до 70 миллисекунд.
В другом варианте осуществления изобретения, свет обнаруживают из объема зерна в течение времени от 30 до 50 миллисекунд. Таким образом, благодаря быстрому обнаружению света, это также ускоряет способ анализа и разделения зерна.
Согласно изобретению, также предусмотрено устройство для оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна, устройство содержит:
средство для непрерывной подачи оптически плотного слоя зерна через зону оперативных измерений;
источник света для излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений;
сенсорный блок для регистрации света, отраженного от объема зерна для обеспечения спектра объема зерна;
средство для преобразования спектра в значение параметра зерна или значение каждого параметра зерна; и
средство для разделения зерна на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна;
отличающееся тем, что:
устройство дополнительно содержит оперативное средство для разделения зерна на основании значения параметра зерна или значения каждого параметра зерна.
В одном варианте осуществления изобретения, средство оперативного разделения зерна содержит:
контроллер, содержащий одно или несколько сохраненных пороговых значений зерна;
передатчик для передачи значения параметра зерна или значения каждого параметра зерна на контроллер; в котором
контроллер сравнивает значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна;
контроллер генерирует сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна; и
контроллер передает сигнал на, по меньшей мере, одно средство выпуска, благодаря чему сигнал используется для осуществления автоматической подачи объема зерна через средство выпуска в заранее определенное место на основании значения параметра зерна.
В другом варианте осуществления изобретения, средство выпуска содержит:
управляемый скат, имеющий открытую позицию и закрытую позицию и соединенный с первым бункером; и
концевой скат, соединенный со вторым бункером; в котором
контроллер сообщается с управляемым скатом и управляет позицией управляемого ската, чтобы способствовать или препятствовать выходу объема зерна через этот скат; благодаря чему
когда управляемый скат находится в закрытой позиции, объем зерна будет покидать устройство через концевой скат.
В дополнительном варианте осуществления изобретения, управляемый скат способен шарнирно поворачиваться между открытой позицией и закрытой позицией.
В одном варианте осуществления изобретения, управляемый скат остается в одной и той же позиции во время определения значений параметра зерна, которые неизменно ниже или выше, чем пороговое значение зерна.
В другом варианте осуществления изобретения, контроллер передает сигнал на управляемый скат для подготовки к смене позиции и начинает отсчет заранее определенного времени запаздывания tlag после обнаружения достаточного изменения значения параметра зерна, чтобы значение параметра зерна переходило через пороговое значение зерна.
В дополнительном варианте осуществления изобретения, контроллер передает сигнал на управляемый скат для смены позиции после обнаружения последовательности достаточно измененных значений параметра зерна в течение времени запаздывания tlag.
В этом варианте осуществления изобретения, позиция управляемого ската изменяется в момент времени, равный tlag+tn; в котором tn равно периоду времени, в течение которого окончательный объем зерна, проанализированный в течение времени запаздывания tlag, может пройти от сенсорного блока к управляемому скату. Преимущество этих конкретных вариантов осуществления в том, что они допускают быстрое оперативное разделение зерна, в то же время, преодолевая возможные ограничения, которые могут быть обусловлены механической природой устройства. Таким образом, поскольку скат меняет позицию только после обнаружения последовательности достаточно измененных значений параметра зерна, это препятствует постоянному колебанию ската или другого пригодного средства открывания.
В одном варианте осуществления изобретения, контроллер является программируемым логическим контроллером.
В другом варианте осуществления изобретения, средство подачи подает оптически плотный слой зерна на скорости от 0,5 до 2,5 м/с.
В дополнительном варианте осуществления изобретения, средство подачи подает оптически плотный слой зерна на скорости от 1 до 2 м/с.
В одном варианте осуществления изобретения, средство подачи содержит дозирующий скат, который можно регулировать путем скольжения в средстве подачи для обеспечения оптически плотного слоя зерна. Преимущество дозирующего ската состоит в том, что он управляет потоком и постоянной скоростью зерна, таким образом, позволяя сенсорному блоку обнаруживать свет из достаточно плотного слоя зерна, когда он проходит через зону оперативных измерений.
В другом варианте осуществления изобретения, средство подачи содержит один или более желобов для подачи зерна и транспортера.
В этом варианте осуществления изобретения, желоб для подачи зерна располагается под углом от 45° до 90° относительно транспортера.
В другом варианте осуществления изобретения, желоб для подачи зерна дополнительно содержит делитель объема зерна, имеющий множество желобов, обеспечивающих каналы для потока отдельных объемов зерна.
В одном варианте осуществления изобретения, источник света непрерывно излучает свет на оптически плотный слой зерна.
В другом варианте осуществления изобретения, источник света излучает свет в диапазоне длин волны от 200 до 2000 нм.
В дополнительном варианте осуществления изобретения, источник света излучает свет в ближнем инфракрасном (NIR) спектральном диапазоне от 780 нм до 2000 нм, и обеспечивается спектр NIR.
В еще одном дополнительном варианте осуществления изобретения, источник света излучает свет в диапазоне длин волны от 900 до 1500 нм.
В одном варианте осуществления изобретения, сенсорный блок установлен под углом около 90° к средству подачи.
В одном варианте осуществления изобретения, параметры зерна выбраны из группы, содержащей одно или более из содержания белков в зерне, содержания влаги в зерне, содержания экстракта крахмала, содержания β-глюкана, содержания бета-амилазы и содержания микотоксина.
Краткое описание чертежей
Изобретение явствует из нижеследующего описания некоторых вариантов осуществления, приведенных в порядке примера, со ссылками на прилагаемые чертежи, в которых:
фиг. 1 - схема устройства по изобретению;
фиг. 2 - вид воронки для загрузки зерна и желоба для подачи зерна согласно одному варианту осуществления изобретения;
фиг. 3 - вид желоба для подачи зерна согласно другому варианту осуществления изобретения;
фиг. 4 - вид одного варианта осуществления нижестоящего устройства по изобретению;
фиг. 5 - вид другого варианта осуществления нижестоящего устройства по изобретению;
фиг. 6 - вид дополнительного варианта осуществления нижестоящего устройства по изобретению;
фиг. 7 - вид еще одного варианта осуществления нижестоящего устройства по изобретению;
фиг. 8 - вид дополнительного варианта осуществления нижестоящего устройства по изобретению;
фиг. 9 - вид еще одного дополнительного варианта осуществления нижестоящего устройства по изобретению;
фиг. 10 - вид воронки лабораторного масштаба для загрузки зерна и желоба для подачи зерна с применением измерительной головки;
фиг. 11 - другая схема устройства по изобретению; и
фиг. 12 - дополнительная схема устройства с каждым из параметров, необходимых для программирования контроллера устройства.
Осуществление изобретения
На фиг. 1 показана схема устройства по изобретению, обозначенного как целое позицией 1. Устройство содержит воронку 2 для загрузки зерна и желоб 3 для подачи зерна для непрерывной подачи зерна в устройство 1. Устройство 1 также содержит транспортер 4 для непрерывной подачи зерна через устройство 1. Дозирующий скат 5, который обеспечивает постоянный и равномерный поток зерна через устройство 1, снабжен желобом 3 для подачи зерна, как показано, или в любой пригодной позиции в транспортере 4. Дозирующий скат 5 можно регулировать вручную для управления потоком зерна через устройство 1 и, таким образом, обеспечения постоянного потока зерна с фиксированной скоростью и оптически плотного слоя зерна для анализа. В описании изобретения термин "оптически плотный слой зерна" означает плотный слой зерна, по меньшей мере, 10 мм без каких-либо зазоров между зерном.
Устройство 1 дополнительно содержит источник света 6 для излучения света на слой зерна и сенсорный блок 7 для обнаружения света, отраженного от объема слоя зерна и обеспечения спектра из объема зерна. Источник света 6 может, в опционально, располагаться в сенсорном блоке 7. Сенсорный блок 7 также может содержать измерительную головку (не показан) и систему привязки к черному/белому (не показана). Дополнительно предусмотрен спектрометр 8 для преобразования спектра в электрический сигнал, который затем преобразуется в соответствующее значение параметра зерна для этого объема с использованием специализированного программного обеспечения. Значения параметра зерна, генерируемые спектрометром 8, передаются на контроллер 9, в общем случае, посредством передатчиком (не показан).
Устройство 1 дополнительно содержит один или несколько скатов 10a, 10b, через которые объемы зерна могут покидать устройство 1. Управляемый скат 10a регулируется контроллером 9 и открывается или закрывается в зависимости от значения параметра зерна для этого конкретного объема. Когда управляемый скат 10a открыт, объем зерна, проходящий через управляемый скат 10a, в это время будет выходить через управляемый скат 10a в бункер хранения (не показан).
Контроллер 9 также регулирует, когда управляемый скат 10a должен открываться, и как долго управляемый скат 10a должен оставаться открытым, и дополнительные детали этого управления будут рассмотрены со ссылкой на фиг. 12. Любые объемы зерна, которые не находятся в диапазоне указанного параметра, поступают через транспортер 4 на концевой скат 10b, где они будут покидать устройство через концевой скат 10b в другой бункер хранения (не показан), что позволяет оперативно разделять зерно на основании конкретного параметра.
На фиг. 2 показан более подробный вид зерна, подаваемого в желоб 3 для подачи зерна через воронку 2 для загрузки зерна. Источник света 6 располагается в сенсорном блоке 7. Сенсорный блок 7 располагается вне желоба для подачи зерна для излучения света на область желоба для подачи зерна, именуемую зоной измерений. Сенсорный блок 7 также должен располагаться под углом к потоку зерна таким образом, чтобы излучаемый свет точно отражался от проходящего слоя зерна. Как выяснилось, наиболее пригоден угол от 45° до 90° желоба для подачи зерна. Дозирующий скат 5 располагается после сенсорного блока 7 и допускает регулирование путем скольжения в желобе для подачи зерна, чтобы гарантировать обеспечение оптически плотного слоя зерна для измерения сенсорным блоком 7.
На фиг. 3 показан альтернативный вариант осуществления желоба 3 для подачи зерна. В этом варианте осуществления в желобе 3 для подачи зерна предусмотрен делитель 20 объема зерна. Делитель 20 объема зерна содержит совокупность желобов 21, через которые объем зерна может течь, прежде чем однородно смешаться до прохождения сенсорного блока 7. Делитель 20 объема зерна гарантирует, что качество зерна в массовом дифференциале зерна, проходящего через сенсорный блок 7, будет однородным по диаметру соответствующего желоба 21. Делитель 20 объема, в частности, пригоден для более высоких расходов зерна и, в частности, расходов зерна свыше около 400 т/ч. Дозирующий скат 5 также может быть предусмотрен для управления потоком зерна.
На фиг. 4-9 показан вид разных вариантов осуществления нижестоящего устройства 1. Согласно фиг. 4, желоб 3 для подачи зерна располагается под углом около 45° к транспортеру 4. Сенсорный блок 7 располагается вне желоба 3 для подачи зерна, будучи установленным под углом 90° к потоку зерна. На фиг. 4 также показан управляемый скат 10a и концевой скат 10b, ведущие в отдельные бункеры хранения 30a и 30b, соответственно.
На фиг. 5 показан альтернативный вариант осуществления устройства 1. В этом варианте осуществления, сенсорный блок 7 располагается вне транспортера 4 после желоба для подачи зерна 3. В этом варианте осуществления изобретения, дозирующий скат 5 может располагаться в желобе 3 для подачи зерна перед сенсорным блоком 7 или в транспортере 4 после сенсорного блока 7 для обеспечения оптически плотного слоя зерна для анализа.
На фиг. 6 показан дополнительный альтернативный вариант осуществления устройства 1. В этом варианте осуществления, сенсорный блок 7 также расположен вне транспортера 4, однако на противоположной стороне транспортера 4 и, поэтому, не показан.
Фиг. 7, 8 и 9 соответствуют фиг. 4, 5 и 6, за исключением того, что желоб 3 для подачи зерна располагается под углом 90° к транспортеру 4. В этом варианте осуществления изобретения, также предпочтительно использовать делитель 20 объема зерна, и дозирующий скат снабжен вышеописанным желобом 3 для подачи зерна. Таким образом, устройство можно применять к любому промышленному приложению, где угол желоба для подачи зерна может варьироваться от 90° (вертикаль) до 45°. Угол желоба 3 для подачи зерна зависит от определенных типичных критериев потока. Такие критерии включают в себя тип анализируемого и разделяемого зерна, материал желоба подачи, коэффициенты трения, свободное место для установки в бункерных приспособлениях и другие соответствующие факторы.
На фиг. 10 показана воронка 2 лабораторного масштаба для загрузки зерна и желоб 3 для подачи зерна с измерительной головкой 40, применяемой в целях калибровки. Измерительная головка 40 содержит источник света и оптику и идентична измерительной головке, расположенной в сенсорном блоке 7 устройстве 1. Таким образом, обеспечиваются такие же физические оптические условия, что и в промышленных условия устройства 1. Прежде, чем использовать устройство 1, нужно проводить проверку и привязку устройства 1 для конкретного типа зерна и измеряемого значения параметра зерна. Образец типа зерна для измерения подается в модель лабораторного масштаба, и спектр зерна получается с использованием измерительной головки 40. Спектрометр подключен к измерительной головке 40 посредством оптического волокна (не показано), и спектрометр соединен с ПК (не показан), на котором установлено необходимое программное обеспечение для преобразования полученных спектров в соответствующие аналитические значения. Затем образец зерна анализируется с использованием других методов анализа, например, химического анализа, и, можно получить калибровочную кривую на основании аналитических значений параметра и полученного спектра. Калибровочная кривая и соответствующие проверенные калибровочные данные используются для преобразования спектров в аналитические значения в приложении промышленного масштаба.
Согласно фиг. 11, в ходе использования, зерно подается в желоб 3 для подачи зерна устройства 1 через воронку 2 для загрузки зерна. Показан сенсорный блок 7, расположенный вне желоба 3 для подачи зерна и транспортера 4. Исходя из того, что сенсорный блок 7, расположенный рядом с желобом 3 для подачи зерна, активен, свет непрерывно излучается источником света 6 этого сенсорного блока 7 в течение заранее определенного периода времени на зону измерений желоба для подачи зерна для излучения света на объем зерна, проходящий через зону измерений. Оптически плотный слой зерна обеспечивается в зоне измерений дозирующим скатом 5, расположенным после желоба 3 для подачи зерна.
Свет отражается объемом зерна в зоне измерений и определяется как интенсивность света сенсорным блоком 7 для обеспечения спектра объема зерна. Сенсорный блок 7 собирает отраженный свет и передает его по оптическому волокну на спектрометр 8. Спектрометр 8 измеряет спектр отраженного света на соответствующих длинах волны в отношении типа зерна и аналитического параметра и преобразует его в электрический сигнал. Этот электрический сигнал поступает через соединение Ethernet и PC Interface (PCI) на ПК со специализированным программным обеспечением.
Программное обеспечение преобразует этот электрический сигнал в соответствующее значение параметра зерна посредством калибровочных данных, описанных выше в отношении фиг. 10. Значения параметра зерна записываются в течение времени и затем преобразуются в аналоговые и/или цифровые сигналы. Эти сигналы поступают на контроллер 9 через пригодные интерфейсы, например, платы ввода/вывода.
Контроллер 9 заранее запрограммирован соответствующими пороговыми значениями зерна. Получив от спектрометра 8 значение параметра зерна для конкретного объема, контроллер 9 сравнивает значение параметра зерна с пороговым значением зерна и управляет управляемым скатом 10a посредством заранее запрограммированных настроек (tn, tlag), которые будут дополнительно рассмотрены в связи с фиг. 12.
На фиг. 12 показан дополнительный схематический вид устройства 1, где указан каждый из параметров измерения. Контроллер 9 заранее запрограммирован соответствующими пороговыми значениями зерна, а также другими предварительными настройками в отношении конкретных настроек и размеров устройства 1. Таким образом, как только контроллер 9 принимает значение параметра зерна от спектрометра 8 через ПК, он сравнивает его с соответствующим сохраненным пороговым значением зерна и программируется для передачи сигнала на управляемый скат 10a, чтобы либо открыть, либо оставить закрытым его на основании этого сравнения.
Помимо управления, открывать управляемый скат 10a, или же оставлять его закрытым, контроллер 9 также может вычислять и определять, когда управляемый скат 10a должен открываться, и как долго управляемый скат 10a должен оставаться открытым, в соответствии с фактической последовательностью сигналов, принятых от контроллера 9, на основании сохраненных значений.
При наличии достаточного изменения значения параметра зерна выше или ниже порогового значения зерна, в результате чего оно переходит через пороговое значение зерна и значение параметра зерна остается на этом значении, или другого достаточного изменения значения в течение определенного периода времени, позиция управляемого ската (10a) будет изменяться. Если позиция управляемого ската (10a) должна измениться, время (tn) смены позиции ската [S] вычисляется в качестве заранее заданного параметра, запрограммированного в контроллер 9, согласно следующей формуле:
где:
L1=длина от сенсорного блока до точки y на транспортере
Ln=длина от точки y на транспортере до управляемого открывающегося ската
v1=скорость зерна [м/с], когда оно проходит сенсорный блок
v2=скорость зерна вдоль транспортера.
n=количество скатов, через которые зерно будет поступать в соответствующий бункер согласно анализу зерна, например, в случае 2 скатов, n=2.
tn=время, необходимое конкретному объему зерна для прохождения от сенсорного блока к этому скату.
tlag="время запаздывания", которое должно пройти, пока не будет уверенности в наличии постоянного сигнала над/под пороговым значением зерна, во избежание колебания скатов или другого средства открывания. Это время запаздывания зависит также от скорости транспортировки, размеров транспортера, массового расхода зерна и расстояния каждого ската от сенсорного блока. Время запаздывания программируется в контроллер как одна или более предварительных настроек (например, для каждого отдельного ската) согласно конкретным размерам и техническим условиям установленного устройства.
Если сенсорный блок установлен в транспортере, то L1/V1=0, поскольку tn будет рассчитываться из расстояния сенсорного блока до скатов/бункеров (L1...n) и скорости зерна V2 в транспортере.
Разрешение системы разделения зависит от конкретных условий и потока зерна для каждой отдельной установки. Поток зерна через устройство в общем случае осуществляется со скоростью от 0,5 до 2,5 м/с и, предпочтительно, от 1 до 2 м/с.
t1=L1/V1 это время, в течение которого определенный массовый расход (например, в кг/с) зерна определенного качества обнаруживается сенсорным блоком, измерительная головка которого осуществляет одну измерительную операцию, в общем случае, от 15 до 70 миллисекунд и, предпочтительно, от 30 до 50 миллисекунд.
Массовый расход зерна (m) через желоб 3 для подачи зерна или через транспортер 4 регулируется с помощью дозирующего ската 5. Поскольку массовый расход через желоб 3 для подачи зерна равен массовому расходу через транспортер 4 (исходя из того, что не должно быть никакой утечки), можно вычислить время t1. Это значение определяется на основании скорости v1=скорость зерна [м/с], с которой оно проходит через сенсорный блок 7, и L1=длина от сенсорного блока 7 до точки y на транспортере 4. Применяется геометрия слоя зерна, проходящего через сенсорный блок 7, гарантируя, что все проходящие массовые дифференциалы будут полностью заняты зерном в постоянном потоке. Это обеспечивается дозирующим скатом 5.
Используя вышеприведенные уравнения, можно вычислить tn и tlag и ввести их в контроллер 9.
Например, предположим, что содержание влаги подлежит анализу, и что зерно подлежит разделению на основании содержания влаги в нем. Пороговое значение влажности можно задать равным 12%. Управляемый скат 10a можно настроить так, чтобы он подавал зерно, имеющее "низкое" содержание влаги, например (менее 12%), в бункер 30a, и тогда концевой скат 10b будет подавать зерно, имеющее "высокое" содержание влаги (например, большее или равное 12%) в другой бункер 30b.
Устройство 1 можно настроить так, чтобы управляемый скат 10a первоначально находился в открытой или закрытой позиции. Предположим, что управляемый скат 10a первоначально находится в открытой позиции, и что сенсорный блок 7 располагается вне желоба 3 для подачи зерна. Зерно непрерывно подается через устройство 1, и объемы зерна непрерывно анализируются при прохождении зоны измерений рядом с сенсорным блоком 7. Исходя из того, что зерно непрерывно подается с низким содержанием влаги и, таким образом, имеются постоянные значения параметра зерна, управляемый скат 10a будет непрерывно оставаться открытым, и это зерно будет поступать в бункер 30a.
Как только контроллер 9 обнаруживает объем, имеющий высокое содержание влаги, это регистрируется как достаточное изменение значения параметра зерна, при котором значение параметра зерна переходит через пороговое значение зерна, в результате чего оно оказывается выше порогового значения зерна, и контроллер начинает отсчитывать время запаздывания tlag. Дополнительно объемы зерна непрерывно измеряются до окончания tlag. Если в конце tlag оказывается, что последующие анализируемые объемы зерна имеют низкое содержание влаги, и, таким образом, регистрируется дополнительное достаточное изменение, в результате чего значение параметра зерна снова переходит через пороговое значение зерна, управляемый скат 10a остается открытым, чтобы эти объемы зерна с низким содержанием влаги могли выходить через этот управляемый скат 10a в бункер 30a. Время запаздывания не будет отсчитываться вновь, пока не будет зарегистрирован объем с высоким содержанием влаги, т.е. дополнительное достаточное изменение значения параметра зерна.
Однако, если измеряется последовательность объемов зерна с повышенным содержанием влаги, отсчет tlag снова начинается, и управляемый скат 10a принимает от контроллера 9 сигнал оставаться в "состоянии готовности" к закрытию и, таким образом, готовится к смене позиции. По истечении tlag и в случае измерения объемов зерна с высоким содержанием влаги, контроллер посылает на управляемый скат 10a сигнал закрытия, и это будет гарантировать, что зерно будет выходить через скат 10b в бункер 30b для хранения зерна с высоким содержанием влаги.
Время, в течение которого 10a закрыт, равно tlag+tn, т.е. время запаздывания плюс время, необходимое объему для прохождения от сенсорного блока 7 к управляемому скату 10a. Скат 10a непрерывно остается закрытым, пока контроллер 9 не зарегистрирует объем, имеющий низкое содержание влаги, т.е. дополнительное достаточное изменение. На этой стадии начинается отсчет tlag, и скат 10a откроется, если в конце tlag все еще будут регистрироваться объемы с низким содержанием влаги.
Способ продолжается, пока все зерно не будет проанализировано и разделено.
Способ и устройство позволяют производить быстрый анализ и оперативное разделение зерна. Потенциальные механические проблемы, которые могут быть вызваны непрерывным колебанием ската 10a, устраняются за счет включения этого времени запаздывания. Это позволяет увеличить расход зерна через устройство. Хотя возможно, что, из-за включения этого времени запаздывания небольшие объемы зерна могут направляться не в тот бункер, общая однородность разделенных партий зерна будет соответствовать техническим регламентам и стандартам.
Подача
Воронка для загрузки зерна и желоб для подачи зерна были описаны для непрерывной подачи зерна в устройство, однако предполагается, что можно использовать и другие устройства с такой же функцией. Нижестоящее средство подачи было описано выше как транспортер, и предполагается, что можно использовать любой пригодный тип зернового транспортера, например, цепной транспортер, ковшовый элеватор или ленточный транспортер.
Измерение и анализ
Способ и устройство были описаны в отношении измерения содержания белка и влаги в зерне. Пороговые значения белка в общем случае, будут в диапазоне от 10% до 12,5% сухого вещества зерна, и пороговые значения влажности, в общем случае, будут в диапазоне от 12% и 18% веса зерна. Фактическое пороговое значение выбирает пользователь. Однако предполагается, что другие параметры зерна, например, содержание экстракта крахмала, содержание β-глюкана, содержание бета-амилазы и содержание микотоксина, также можно измерять с использованием этих способа и устройства. Способ и устройство также пригодны для измерения всех типов зерна, например, ячменя, пшеницы, кукурузы, рапса, риса, солода, сорго и пилюль.
Обнаружено, что для наиболее точных результатов, сенсорный блок следует устанавливать под углом в пределах 90° к плотному слою зерна, подлежащему измерению.
Источник света, сенсорный блок и спектрометр могут быть либо объединены, либо являться отдельными компонентами, расположенными удаленно друг от друга. Кроме того, источник света и детектор света могут быть совмещены в одном компоненте (измерительной головке) в составе сенсорного блока.
Измерительная головка в сенсорном блоке регистрирует свет, отраженный источником света. Частота, с которой спектрометр выдает электрический сигнал, зависит от качества системы привязки к черному и белому. ПК также управляет автоматической привязкой к черному и белому. Эта система привязки к черному/белому должна выполняться ежедневно до эксплуатации устройства. Шаговый двигатель располагает измерительную головку сенсорного блока перед белым диском и измеряет полное относительное количество отраженных фотонов на всех длинах волны ("белый"=в идеале 100% отражение).
Между измерительной головкой и белым диском можно обеспечить сапфировое стекло, идентичное сапфировому стеклу, установленному между измерительной головкой и образцом зерна, проходящим через зону измерений. Когда белый диск заменяет образец зерна во время привязки к белому, все расстояния между измерительной головкой и сапфировым стеклом, сапфировым стеклом и белым диском и/или измерительной головкой и белым диском должны быть идентичны расстояниям, установленным в позиции измерения. Эта настройка гарантирует, что все соответствующие оптические факторы, например, точка фокуса, коэффициент трения и т.д. будут учтены в ходе осуществления привязки к белому.
Затем измерительная головка перемещается перед черной трубкой, и измеряется полное поглощение всех излученных фотонов ("черный"=в идеале 100% поглощение). ПК проверяет правильность завершения привязки прежде, чем сигнализировать, что устройство готово к работе.
Пригодной комбинацией сенсорного блока и спектрометра для излучения света, обнаружения отраженного света и преобразования значения свет в значение параметра зерна является система Zeiss Corona NIR™, содержащая измерительную головку OMK 500 (излучатель и детектор света без автоматической привязки к черному/белому в составе устройства датчика, и спектрометр например, дистанционная система Corona™, которая может осуществлять все эти функции. Однако любое другое устройство, которое также осуществляет эти функции также может быть пригодно и должно быть откалибровано до использования.
Датчик можно устанавливать либо в желобе для подачи зерна, либо в транспортере в любой позиции, где плотный слой зерна будет проходить сенсорный блок при управляемой, постоянной скорости зерна. Это достигается за счет размещения дозирующего ската после сенсорного блока. Спектрометр должен быть пригоден для измерения длин волны от 200 до 2000 нм.
Зона измерений будет зависеть от размера источника света и сенсорного блока и может варьироваться по выбору пользователя.
Устройство также будет содержать центральный процессор и соответствующее программное обеспечение для оценивания и преобразования, сохранения и отображения данных.
Разделение
Хотя устройство, в целом, описано выше как имеющий два выхода для разделения зерна согласно тому, оказывается ли каждый объем зерна выше или ниже определенного порога, предполагается, что способ и устройство по изобретению, также будут пригодны для разделения объемов зерна на основании конкретных диапазонов параметра, и в этом случае устройство может иметь более двух выходов. В этом варианте осуществления предполагается, что более чем один скат будет управляемым скатом.
Кроме того, дополнительно предполагается, что способ и устройство, отвечающие изобретению, будут пригодны для разделения объемов зерна на основании двух или более параметров. Таким образом, например, зерно можно разделять на основании содержания белков и содержания влаги в одно и то же время. В этом варианте осуществления изобретения, устройство будет иметь четыре выхода, один для высокого белка, высокой влажности, один для высокого белка, низкой влажности, один для низкого белка, высокой влажности и один для низкого белка, низкой влажности.
Во избежание дополнительного времени запаздывания для открывания и закрывания ската, его следует устанавливать таким образом, чтобы скат открывался в направлении потока против потока зерна.
Обнаружено, что заклинивание системы можно предотвращать посредством стандартного автоматического обследования и контроля. Один вариант предотвращения заклинивания состоит в том, чтобы оставлять концевой скат все время открытым. Это обеспечивает защиту от повреждения зерна и/или оборудования, в особенности, когда нужно перезапустить транспортер при полной загрузке в экстренной ситуации. Кроме того, концевой скат будет позволять транспортеру двигаться на 100% пустым на протяжении всей его длины в конце операции транспортировки.
В порядке альтернативы быстро открывающимся скатам, между транспортером и скатами можно устанавливать любые пригодные отпускные двери средства открывания также, действующие под управлением контроллера.
В описании изобретения термины "содержат, содержит, содержащийся и содержащий" или любые их вариации и термины "включают в себя, включает в себя, включенный и включающий в себя" или любые их вариации считаются полностью взаимозаменяемыми, и допускают самую широкую возможную интерпретацию и наоборот.
Изобретение не ограничивается вышеописанным вариантом осуществления, но допускает вариации в отношении конструкции и деталей в пределах объема формулы изобретения.
Claims (31)
1. Способ оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна, причем способ содержит этапы, на которых:
непрерывно подают оптически плотный слой зерна через зону оперативных измерений;
анализируют объем зерна путем излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений, и регистрируют свет, отраженный от объема зерна для обеспечения спектра объема зерна;
преобразуют спектр в значение параметра зерна или значение каждого параметра зерна; и
разделяют зерно на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна;
отличающийся тем, что:
зерно оперативно разделяют на основании значения параметра зерна или значения каждого параметра зерна.
непрерывно подают оптически плотный слой зерна через зону оперативных измерений;
анализируют объем зерна путем излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений, и регистрируют свет, отраженный от объема зерна для обеспечения спектра объема зерна;
преобразуют спектр в значение параметра зерна или значение каждого параметра зерна; и
разделяют зерно на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна;
отличающийся тем, что:
зерно оперативно разделяют на основании значения параметра зерна или значения каждого параметра зерна.
2. Способ по п.1, в котором оперативное разделение зерна содержит
этапы, на которых:
сохраняют одно или более пороговых значений зерна;
сравнивают значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна;
генерируют сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна;
используют сигнал для осуществления автоматической подачи объема зерна в заранее определенное место на основании значения параметра зерна.
этапы, на которых:
сохраняют одно или более пороговых значений зерна;
сравнивают значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна;
генерируют сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна;
используют сигнал для осуществления автоматической подачи объема зерна в заранее определенное место на основании значения параметра зерна.
3. Способ по п.1, в котором оптически плотный слой зерна подают на скорости от 0,5 до 2,5 м/с.
4. Способ по п.1, в котором оптически плотный слой зерна подают на скорости от 1 до 2 м/с.
5. Способ по п.1, в котором свет излучают непрерывно на оптически плотный слой зерна.
6. Способ по п.1, в котором свет излучают на длине волны от 200 до 2000 нм.
7. Способ по п.1, в котором свет излучают в ближнем инфракрасном (NIR) спектральном диапазоне от 780 нм до 2000 нм и обеспечивают NIR спектр.
8. Способ по п.1, в котором свет излучают на длине волны от 900 до 1500 нм.
9. Способ по п.1, в котором свет обнаруживают из объема зерна в течение времени от 15 до 70 мс.
10. Способ по п.1, в котором свет обнаруживают из объема зерна в течение времени от 30 до 50 мс.
11. Устройство (1) для оперативного анализа объемов зерна и разделения зерна на партии на основании одного или более значений параметра зерна, причем устройство (1) содержит:
средство для непрерывной подачи оптически плотного слоя зерна через зону оперативных измерений,
источник света (6) для излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений,
сенсорный блок (7) для обнаружения света, отраженного от объема зерна для обеспечения спектра объема зерна,
средство для преобразования спектра в значение параметра зерна или значение каждого параметра зерна, и
средство для разделения зерна на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна,
отличающееся тем, что:
устройство дополнительно содержит оперативное средство для разделения зерна на основании значения параметра зерна или значения каждого параметра.
средство для непрерывной подачи оптически плотного слоя зерна через зону оперативных измерений,
источник света (6) для излучения света на слой зерна, причем свет отражается от объема зерна, проходящего через зону оперативных измерений,
сенсорный блок (7) для обнаружения света, отраженного от объема зерна для обеспечения спектра объема зерна,
средство для преобразования спектра в значение параметра зерна или значение каждого параметра зерна, и
средство для разделения зерна на партии путем сортировки объема зерна на основании значения параметра зерна или значения каждого параметра зерна,
отличающееся тем, что:
устройство дополнительно содержит оперативное средство для разделения зерна на основании значения параметра зерна или значения каждого параметра.
12. Устройство (1) по п.11, в котором средство оперативного разделения зерна содержит:
контроллер (9), содержащий одно или несколько сохраненных пороговых значений зерна,
передатчик для передачи значения параметра зерна или значения каждого параметра зерна на контроллер (9), в котором
контроллер (9) сравнивает значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна,
контроллер (9) генерирует сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна, и
контроллер (9) передает сигнал на, по меньшей мере, одно средство выпуска (10а, 10b), так что сигнал используется для осуществления автоматической подачи объема зерна через средство выпуска (10а, 10b) в заранее определенное место на основании значения параметра зерна.
контроллер (9), содержащий одно или несколько сохраненных пороговых значений зерна,
передатчик для передачи значения параметра зерна или значения каждого параметра зерна на контроллер (9), в котором
контроллер (9) сравнивает значение параметра зерна или значение каждого параметра зерна с соответствующим сохраненным пороговым значением зерна,
контроллер (9) генерирует сигнал на основании сравнения между значением параметра зерна или значением каждого параметра зерна и соответствующим пороговым значением зерна, и
контроллер (9) передает сигнал на, по меньшей мере, одно средство выпуска (10а, 10b), так что сигнал используется для осуществления автоматической подачи объема зерна через средство выпуска (10а, 10b) в заранее определенное место на основании значения параметра зерна.
13. Устройство (1) по п.12 в котором средство выпуска (10a, 10b) содержит:
управляемый скат (10a), имеющий открытую позицию и закрытую позицию и соединенный с первым бункером (30a); и
концевой скат (10b), соединенный со вторым бункером (30b), в котором контроллер (9) сообщается с управляемым скатом (10a) и управляет позицией управляемого ската (10a), чтобы способствовать или препятствовать выходу объема зерна через этот скат (10a), так, что
когда управляемый скат (10a) находится в закрытой позиции, объем зерна будет покидать устройство через концевой скат (10b).
управляемый скат (10a), имеющий открытую позицию и закрытую позицию и соединенный с первым бункером (30a); и
концевой скат (10b), соединенный со вторым бункером (30b), в котором контроллер (9) сообщается с управляемым скатом (10a) и управляет позицией управляемого ската (10a), чтобы способствовать или препятствовать выходу объема зерна через этот скат (10a), так, что
когда управляемый скат (10a) находится в закрытой позиции, объем зерна будет покидать устройство через концевой скат (10b).
14. Устройство (1) по п.13, в котором управляемый скат (10a) способен поворачиваться на шарнирах между открытой позицией и закрытой позицией.
15. Устройство по любому из пп.13 или 14, в котором управляемый скат остается в одной и той же позиции во время определения значений параметра зерна, которые неизменно ниже или выше, чем пороговое значение зерна.
16. Устройство (1) по п.13, в котором контроллер (9) передает сигнал на управляемый скат (10a) для подготовки к смене позиции и начинает отсчет заранее определенного времени запаздывания tlag после обнаружения достаточного изменения значения параметра зерна, чтобы значение параметра зерна переходило через пороговое значение зерна.
17. Устройство (1) по п.16, в котором контроллер (9) передает сигнал на управляемый скат (10a) для смены позиции после обнаружения последовательности достаточно измененных значений параметра зерна в течение времени запаздывания tlag.
18. Устройство (1) по п.17, в котором позицией управляемого ската (10a) в момент времени, равный tlag+tn, в котором tn равно периоду времени, в течение которого окончательный объем зерна, проанализированный в течение времени запаздывания tlag, может пройти от сенсорного блока (7) на управляемый скат (10a).
19. Устройство (1) по п.12, в котором контроллер (9) является программируемым логическим контроллером.
20. Устройство (1) по п.11, в котором средство подачи подает оптически плотный слой зерна на скорости от 0,5 до 2,5 м/с.
21. Устройство (1) по п.11, в котором средство подачи подает оптически плотный слой зерна на скорости от 1 до 2 м/с.
22. Устройство по п.11, в котором средство подачи содержит дозирующий скат (5), который можно регулировать путем скольжения в средстве подачи для обеспечения оптически плотного слоя зерна.
23. Устройство (1) по п.11, в котором средство подачи содержит один или более желобов для подачи зерна (3) и транспортера (4).
24. Устройство (1) по п.23, в котором желоб для подачи зерна (3) располагается под углом от 45° до 90° относительно транспортера (4).
25. Устройство (1) по любому из пп.23 или 24, в котором желоб для подачи зерна (3) дополнительно содержит делитель объема зерна (20), имеющий множество желобов (21), обеспечивающих каналы для потока отдельных объемов зерна.
26. Устройство (1) по п.11 в котором источник света (6) непрерывно излучает свет на оптически плотный слой зерна.
27. Устройство (1) по п.11, в котором источник света (6) излучает свет в диапазоне длин волны от 200 до 2000 нм.
28. Устройство по п.11, в котором источник света (6) излучает свет в ближнем инфракрасном (NIR) спектральном диапазоне от 780 нм до 2000 нм, и обеспечивается спектр NIR.
29. Устройство (1) по п.11, в котором источник света (6) излучает свет в диапазоне длин волны от 900 до 1500 нм.
30. Устройство (1) по п.11, в котором сенсорный блок (7) установлен под углом около 90° к средству подачи.
31. Устройство по п.11, в котором параметры зерна выбраны из группы, содержащей одно или более из содержания белков в зерне, содержания влаги в зерне, содержания экстракта крахмала, содержания β-глюкана, содержания бета-амилазы и содержания микотоксина.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IES2007/0825 | 2007-11-13 | ||
IES20070825 | 2007-11-13 | ||
PCT/EP2008/065504 WO2009063023A1 (en) | 2007-11-13 | 2008-11-13 | A process and apparatus for analysing and separating grain |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010123902A RU2010123902A (ru) | 2011-12-20 |
RU2492453C2 true RU2492453C2 (ru) | 2013-09-10 |
Family
ID=40280786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010123902/28A RU2492453C2 (ru) | 2007-11-13 | 2008-11-13 | Способ и устройство для анализа и разделения зерна |
Country Status (9)
Country | Link |
---|---|
US (1) | US8569644B2 (ru) |
EP (1) | EP2153213A1 (ru) |
AU (1) | AU2008322904A1 (ru) |
BR (1) | BRPI0820561A2 (ru) |
CA (1) | CA2672822C (ru) |
IE (2) | IE20080908A1 (ru) |
RU (1) | RU2492453C2 (ru) |
UA (1) | UA98017C2 (ru) |
WO (1) | WO2009063023A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2726389C1 (ru) * | 2019-01-17 | 2020-07-13 | Общество с ограниченной ответственностью "Агро-Матик" | Способ разделения зерна белого люпина по содержанию алкалоидов |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1018793A3 (nl) | 2009-06-17 | 2011-09-06 | Best 2 N V | Werkwijze voor het onderscheiden en sorteren van producten waarbij de concentratie van een bestanddeel van deze producten wordt bepaald. |
RU2495728C1 (ru) * | 2012-05-22 | 2013-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" | Устройство для сортировки зерна |
WO2014178828A1 (en) * | 2013-04-30 | 2014-11-06 | Micro Motion, Inc. | Volume flow sensor system comprising a mass flowmeter and a density meter |
WO2015195479A1 (en) * | 2014-06-16 | 2015-12-23 | Murphy Brown, Llc | Method and system for in-line analysis of products |
US20170333951A1 (en) * | 2016-05-18 | 2017-11-23 | Lost Dutchman Mines LLC. | Operating controls for a vertical separator |
WO2018188704A1 (en) * | 2017-04-13 | 2018-10-18 | Thoegersen Kurt Stensgaard | Method and apparatus for managing residual content in food product |
CN107876423A (zh) * | 2017-10-26 | 2018-04-06 | 滁州广洋湖米业有限公司 | 一种稻谷加工用进料料斗 |
CN107931155B (zh) * | 2017-11-16 | 2019-11-12 | 铭板精密科技(中山)有限公司 | 一种全自动螺丝检测分类装置 |
DE102018133387B4 (de) | 2018-12-21 | 2024-04-11 | Leibniz-Institut für Photonische Technologien e. V. | Spezifischer nanopartikelsortierer und verfahren zur sortierung von nanopartikeln |
CN110376197B (zh) * | 2019-07-18 | 2020-08-11 | 浙江大学 | 一种籽粒抽样与成像装置 |
EP4081783A1 (en) * | 2019-12-29 | 2022-11-02 | Surenut Pty Ltd. | A method for classification of an edible seed and a scanning device therefor |
CN111632880A (zh) * | 2020-06-03 | 2020-09-08 | 安徽省福宁米业有限公司 | 一种大米色选机 |
GB2595864A (en) * | 2020-06-08 | 2021-12-15 | Minch Malt Ltd | Grain sorting process |
CN113351527B (zh) * | 2021-05-18 | 2022-05-24 | 中国检验检疫科学研究院 | 一种滑槽式检测花生的红外分选设备 |
CN113695260B (zh) * | 2021-10-26 | 2021-12-31 | 张家港市沃尔特精密机械有限公司 | 一种能检测粉料干燥率的分选出料机 |
JP2023082934A (ja) * | 2021-12-03 | 2023-06-15 | ヤンマーホールディングス株式会社 | 自動走行方法、作業車両及び自動走行システム |
JP7136375B1 (ja) | 2022-03-17 | 2022-09-13 | 株式会社ダルトン | 粉粒体の連続判別装置、連続造粒システム、及び、粉粒体の連続判別方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406084A (en) * | 1991-04-23 | 1995-04-11 | Buhler Ag Maschinenfabrik | Process and device for the in-line NIR measurement of pourable foodstuffs |
JP2000146847A (ja) * | 1998-11-16 | 2000-05-26 | Kett Electric Laboratory | クラスタリング及びボロノイ分割を利用したニューラル ネットワークを用いた穀類粒判別装置 |
WO2001035076A1 (en) * | 1999-11-08 | 2001-05-17 | Ndsu Research Foundation | Optical analysis of grain stream |
RU2288461C2 (ru) * | 2000-10-30 | 2006-11-27 | Монсанто Технолоджи Ллс | Способы и устройства для анализа образцов сельскохозяйственной продукции |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2933613A (en) * | 1952-11-24 | 1960-04-19 | Univ California | Method and apparatus for sorting objects according to color |
DE3024794A1 (de) | 1980-06-30 | 1982-01-28 | Gebrüder Bühler AG, 9240 Uzwil | Verfahren und vorrichtung zur bestimmung von kenngroessen, insbesondere von getreide |
JPS6311841A (ja) | 1986-03-20 | 1988-01-19 | Satake Eng Co Ltd | 米の食味評価装置 |
FR2632879B1 (fr) * | 1988-06-17 | 1991-06-21 | Guerin Sarl Ets Gaby | Dispositif de tri optique d'objets selon leur couleur, en particulier de morceaux de verre |
US5245188A (en) * | 1988-08-11 | 1993-09-14 | Satake Engineering Co., Ltd. | Apparatus for evaluating the grade of rice grains |
GB2273154B (en) | 1992-12-02 | 1996-12-11 | Buehler Ag | Method for cleaning and sorting bulk material |
JP3079932B2 (ja) * | 1994-12-28 | 2000-08-21 | 株式会社佐竹製作所 | 穀粒色彩選別装置 |
US5865990A (en) | 1996-09-13 | 1999-02-02 | Uncle Ben's, Inc. | Method and apparatus for sorting grain |
US6483583B1 (en) | 1997-02-27 | 2002-11-19 | Textron Systems Corporation | Near infrared spectrometry for real time analysis of substances |
US6512577B1 (en) * | 2000-03-13 | 2003-01-28 | Richard M. Ozanich | Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum |
US20100089804A1 (en) * | 2002-10-29 | 2010-04-15 | Claude Lambert | Method for identifying a substance or object using a plurality of excitation vectors |
JP4918771B2 (ja) * | 2005-09-26 | 2012-04-18 | 住友電気工業株式会社 | 粒子分級装置およびその装置により分級された粒子を含有する接着剤 |
BE1017422A3 (nl) * | 2006-12-08 | 2008-09-02 | Visys Nv | Werkwijze en inrichting voor het inspecteren en sorteren van een productstroom. |
-
2008
- 2008-11-13 WO PCT/EP2008/065504 patent/WO2009063023A1/en active Application Filing
- 2008-11-13 UA UAA201007055A patent/UA98017C2/ru unknown
- 2008-11-13 EP EP08843335A patent/EP2153213A1/en not_active Withdrawn
- 2008-11-13 BR BRPI0820561-2A patent/BRPI0820561A2/pt active IP Right Grant
- 2008-11-13 IE IE20080908A patent/IE20080908A1/en not_active IP Right Cessation
- 2008-11-13 CA CA2672822A patent/CA2672822C/en active Active
- 2008-11-13 IE IE20080911A patent/IES20080911A2/en not_active IP Right Cessation
- 2008-11-13 US US12/513,207 patent/US8569644B2/en active Active
- 2008-11-13 RU RU2010123902/28A patent/RU2492453C2/ru active
- 2008-11-13 AU AU2008322904A patent/AU2008322904A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406084A (en) * | 1991-04-23 | 1995-04-11 | Buhler Ag Maschinenfabrik | Process and device for the in-line NIR measurement of pourable foodstuffs |
JP2000146847A (ja) * | 1998-11-16 | 2000-05-26 | Kett Electric Laboratory | クラスタリング及びボロノイ分割を利用したニューラル ネットワークを用いた穀類粒判別装置 |
WO2001035076A1 (en) * | 1999-11-08 | 2001-05-17 | Ndsu Research Foundation | Optical analysis of grain stream |
RU2288461C2 (ru) * | 2000-10-30 | 2006-11-27 | Монсанто Технолоджи Ллс | Способы и устройства для анализа образцов сельскохозяйственной продукции |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2726389C1 (ru) * | 2019-01-17 | 2020-07-13 | Общество с ограниченной ответственностью "Агро-Матик" | Способ разделения зерна белого люпина по содержанию алкалоидов |
Also Published As
Publication number | Publication date |
---|---|
BRPI0820561A2 (pt) | 2015-06-16 |
EP2153213A1 (en) | 2010-02-17 |
AU2008322904A1 (en) | 2009-05-22 |
CA2672822C (en) | 2016-08-16 |
IES20080911A2 (en) | 2009-07-08 |
IE20080908A1 (en) | 2009-07-08 |
US8569644B2 (en) | 2013-10-29 |
RU2010123902A (ru) | 2011-12-20 |
UA98017C2 (ru) | 2012-04-10 |
US20110089090A1 (en) | 2011-04-21 |
CA2672822A1 (en) | 2009-05-22 |
WO2009063023A1 (en) | 2009-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2492453C2 (ru) | Способ и устройство для анализа и разделения зерна | |
US5991025A (en) | Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis | |
US7265831B2 (en) | Spectrometric measuring head for harvesting machines and other equipment used in agriculture | |
US6836325B2 (en) | Optical probes and methods for spectral analysis | |
EP1264170B1 (en) | Optical probes and methods for spectral analysis | |
AU2002319986C1 (en) | A method of sorting objects comprising organic material | |
AU2001240121A1 (en) | Optical probes and methods for spectral analysis | |
EP1894461A1 (en) | System for real-time analysis of silage ingredients | |
US11371930B2 (en) | Method, apparatus and system for examination of a free-flowing sample | |
KR20110081668A (ko) | 과일 비파괴 선별장치 | |
EP1063878B1 (en) | Near infrared spectrometer used in combination with a combine for real time grain analysis | |
EP0808451B1 (en) | Apparatus for investigating flowable material and device for conveying samples | |
Miyamoto et al. | Classification of high acid fruits by partial least squares using the near infrared transmittance spectra of intact satsuma mandarins | |
CN100444782C (zh) | 利用近红外光谱对溶液和分散液进行定量分析的方法和装置 | |
JPH08285763A (ja) | 近赤外線分光分析装置 | |
EP1484600A2 (en) | Optical probes and methods for spectral analysis | |
RU2751572C2 (ru) | Спектрометрический зонд для отбора образцов сыпучего материала и автоматическое устройство для отбора образцов, содержащее указанный зонд | |
IES85419Y1 (en) | A process and apparatus for analysing and separating grain | |
RU2817884C1 (ru) | Оптическая система управления процессом приготовления и раздачи кормовой смеси | |
BRPI0820561B1 (pt) | Método e aparelho para analisar e separar grão | |
CA2618209C (en) | Optical probes and methods for spectral analysis | |
IE20080911U1 (en) | A process and apparatus for analysing and separating grain | |
JPH04132939A (ja) | 光学式穀粒分析装置 | |
KR20180071913A (ko) | 입상물 품위 판정 장치 | |
NZ603406B (en) | Moisture content analysis system |