RU2492279C2 - Неэлектролитическое осаждение барьерных слоев - Google Patents

Неэлектролитическое осаждение барьерных слоев Download PDF

Info

Publication number
RU2492279C2
RU2492279C2 RU2010134880/02A RU2010134880A RU2492279C2 RU 2492279 C2 RU2492279 C2 RU 2492279C2 RU 2010134880/02 A RU2010134880/02 A RU 2010134880/02A RU 2010134880 A RU2010134880 A RU 2010134880A RU 2492279 C2 RU2492279 C2 RU 2492279C2
Authority
RU
Russia
Prior art keywords
solution
mol
deposition
reducing agent
nickel
Prior art date
Application number
RU2010134880/02A
Other languages
English (en)
Other versions
RU2010134880A (ru
Inventor
Раймунд МЕЛЛИС
Original Assignee
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Се filed Critical Басф Се
Publication of RU2010134880A publication Critical patent/RU2010134880A/ru
Application granted granted Critical
Publication of RU2492279C2 publication Critical patent/RU2492279C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Изобретение относится к области химического нанесения покрытий на металлические поверхности. Раствор для осаждения барьерных слоев на металлические поверхности содержит соединение никеля и соединение молибдена, по крайней мере один первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов, по крайней мере один второй восстановитель, в частности фосфиновую кислоту или ее соль, и по крайней мере один комплексообразователь, при этом раствор имеет значение рН от 8,5 до 12. Способ получения барьерных слоев неэлектролитическим осаждением на металлические поверхности полупроводниковых субстратов включает: а) получение раствора, содержащего соединение никеля и соединение молибдена, первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов, и второй восстановитель, в частности фосфиновую кислоту или ее соль, б) установление в растворе значения рН от 8,5 до 12, в) установление температуры раствора от 50°С до 85°С, г) контактирование металлических поверхностей с раствором при температуре от 50°С до 85°С, приводящее к осаждению барьерного слоя на полупроводниковом субстрате. Технический результат: снижение рабочей температуры раствора без активации палладием. 2 н. и 8 з.п. ф-лы, 2 табл., 4 пр.

Description

Настоящее изобретение относится к раствору для неэлектролитического осаждения барьерных слоев. Настоящее изобретение относится также к способу осаждения барьерных слоев. В частности, настоящее изобретение относится к раствору и к способу, с использованием которых можно осаждать барьерные слои без предварительной активации металлической поверхности.
Повышение плотности проводящих соединений и ужесточение требований к скорости для микроэлектронных компонент привели к изменению материала межкомпонентных соединений с переходом от обычного алюминия (его сплавов) к меди. Использование меди связано со стремлением к повышению общего сопротивления межкомпонентных соединений, связанного с плотностью проводящих соединений.
Однако применение меди в качестве материала проводящих соединений требует использования барьеров для диффузии в связи с тем, что медь отличается высокой диффузионной активностью по отношению к субстрату (кремнию) и к изолирующим материалам (например, к диоксиду кремния). Такие диффузионные барьеры используются под медными проводящими соединениями для защиты изолирующего материала и в качестве связующего средства между изолирующим слоем и проводящим слоем.
В то же время высокие циклические частоты при функционировании этих компонент требуют повышенных плотностей тока, что может приводить к разделению проводящего электрический ток материала в составе проводящего соединения. Этот феномен, который имеет отношение к электромиграции, приводит к росту числа сбоев в работе компонент, что значительно ухудшает их характеристики.
Стандартный способ получения компонент с медными проводящими соединениями представлен дамасской технологией. В этом случае такие структуры, как межкомпонентные соединения и переходы между слоями образуются в изолирующем слое литографическим способом с последующим процессом сухого травления и следующего за этим заполнения медью. Для выравнивания проводящих структур используется хемомеханическая полировка.
Металлические слои из кобальта и никеля или из сплавов кобальта и никеля, осаждаемые на медных межкомпонентных соединениях, выполняют функцию барьерных слоев для диффузии меди в прилегающие слои диоксида кремния. Известны два способа неэлектролитического осаждения меди:
а) металлизация медью активируется палладиевыми зародышами перед началом процесса осаждения, последующее неэлектролитическое осаждение никеля проводят обычно при температуре выше 50°С; в качестве восстановителя используют гипофосфит натрия;
б) осаждение металла проводят без предварительной активации поверхности меди, что достигается за счет использования аминоборанов в качестве восстановителей; температуры в этом случае составляют от 80 до 90°С, что значительно превышает температуры при использовании палладиевой активации.
Последний способ обеспечивает более высокое качество барьерных слоев, поскольку палладий оказывает отрицательный эффект на электрические свойства полупроводниковых компонент, однако у этого способа есть определенные технологические недостатки.
Температурные флюктуации оказывают непосредственное влияние на скорость осаждения и начальные характеристики процесса осаждения. Вследствие этого равномерная толщина слоя по всей подложке может быть достигнута только при точном поддержании постоянства температуры. При повышенной температуре в производственной установке это оказывается достаточно трудно реализуемым и может быть осуществлено только с большими затратами. В частности, в случае емкостных установок, в которых камера для обработки должна открываться для загрузки подложками, температура в течение нескольких секунд снижается примерно на 10°С, если процесс идет при начальной температуре в пределах от 85°С до 90°С. Создание равномерной температуры оказывается тем более важной и труднодостижимой задачей, чем больше размеры обрабатываемой подложки.
В патенте США №4002778 описано осаждение слоев, включающих никель и бор, с помощью диметиламиноборана.
В заявке на патент США №2003/0113576 А1 описано неэлектролитическое осаждение бинарных, трехкомпонентных или четырехкомпонентных слоев, включающих никель или кобальт, например, состава NiB, NiBP, NiCrB, NiCrBP, NiMoB, NiMoBP, NiWP, NiWBP, NiMNB, NiMnBP, NiTcB, NiTcBP, NiReB или NiReBP. Растворы для неэлектролитического осаждения содержат диметиламиноборан в качестве первого восстановителя с диэтиламинобораном и морфолинобораном, которые могут быть использованы в альтернативном случае, и с таким другим восстановителем, как гипофосфит.
Международная заявка на патент №2004/099466 А2 относится к способу образования трехкомпонентных слоев, в частности, из кобальта, вольфрама и фосфора, без предварительной активации. В этом случае медную поверхность перед отложением слоя обрабатывают при повышенной температуре таким восстановителем, как гипофосфит или аминоборан, в предпочтительном случае используют гипофосфит.
Исходя из вышеизложенного, целью настоящего изобретения является разработка раствора и способа для образования барьерных слоев, которые могут быть использованы при пониженных температурах без активации палладием. Еще одним объектом настоящего изобретения является исключение отдельной стадии восстановления перед соответствующим нанесением слоя.
Поставленная цель достигается путем использования раствора для образования барьерных слоев на металлических поверхностях, в состав которого входят
- соединения элементов никеля и молибдена,
- по крайней мере один первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов, и
- по крайней мере один комплексообразователь, при этом раствор имеет значение рН от 8,5 до 12.
При использовании соответствующего изобретению раствора неэлектролитическое осаждение барьерных слоев можно проводить при заметно более низких температурах. Такие температуры легче контролируются, их поддержание требует не столь высоких затрат и это оказывает положительный эффект на время работы ванн, в которых проводится осаждение.
В качестве первого восстановителя используют вторичный или третичный циклический аминоборан, при этом предпочтение отдается вторичным аминоборанам. Циклические аминобораны могут быть насыщенными, ненасыщенными или ароматическими, при этом предпочтение отдается насыщенным аминоборанам. Циклические аминобораны могут быть изоциклическими или гетероциклическими, при этом предпочтение отдается гетероциклическим аминоборанам. В рамках настоящего изобретение понятие «изоциклический» означает, что в цикле кроме связанного с атомом бора атома азота нет никаких других гетероатомов. В рамках настоящего изобретения понятие «гетероциклический» означает, что в цикле в дополнение к связанному с атомом бора атому азота присутствует по крайней мере еще один другой гетероатом. Предпочтительными гетероатомами являются, например, атомы азота, кислорода или серы, но их выбор этим не ограничивается.
Примерами изоциклических аминоборанов служат пиперидиноборан или пирролидиноборан. Примерами насыщенных гетероциклических аминоборанов служат пиперазиноборан C4H10N2BH3, имидазолиноборан C3H4N2BH3 и морфолиноборан C4H9NOBH3. Примерами ненасыщенных гетероциклических аминоборанов служат пиридиноборан C5H5NBH3 и 2-пиколиноборан С6Н8КВН3.
Предпочтительными аминоборанами являются насыщенные гетероциклические аминобораны. Особое предпочтение отдается морфолиноборану, поскольку он достаточно стабилен и имеет невысокую токсичность, кроме того, он образует особенно однородное отложение.
В предпочтительном варианте в состав раствора входит по крайней мере один второй восстановитель. В качестве второго восстановителя можно использовать другие восстановители с атомами бора или другие восстановители без атомов бора. Примерами вторых восстановителей служат другие аминобораны, восстановители с атомами фосфора и гидразины, но их выбор этим не ограничивается.
Примерами аминоборанов служат диметиламиноборан, диэтиламиноборан или другие диалкиламинобораны. Другие примеры представлены этилендиаминобораном H2NCH2CH2NH2BH3, этилендиамино-бисбораном H2NCH2CH2NH2(BH3)2, трет-бутил-аминобораном (СН3)3CNH2BH3 и метоксиэтиламинобораном H3CON(С2Н5)2ВН3.
Примерами содержащих атом фосфора восстановителей служит фосфиновая кислота или ее соли. Солями фосфиновой кислоты являются, например, гипофосфиты аммония, такие гипофосфиты щелочных или щелочноземельных металлов, как гипофосфиты натрия, лития, калия, магния или кальция, или же такие гипофосфиты переходных металлов, как гипофосфит никеля, и их смеси.
Примерами гидразиновых соединений служат гидразин, гидразингидрат, гидразинсульфат, гидразинхлорид, гадразинбромид, гидразиндигидрохлорид, гидразиндигидробромид, гидразинтартрат. Другими производными гидразина являются 2-гидразинопиридин, гидразобензол, фенилгидразин, гадразин-N,N-диуксусная кислота, 1,2-диэтилгидразин, монометилгидразин, 1,1- и 1,2-диметилгидразин, 4-гидразинобензолсульфокислота, гидразинкарбоновая кислота, 2-гидразиноэтанол, семикарбазид, карбогидразид, гидрохлорид аминогуанидина, моногидрохлорид 1,3-диаминогуанидина и гидрохлорид триаминогуанидина. Из последнего гидразин образуется в качестве продукта реакции.
Другими вторьми восстановителями могут служить сульфиты, бисульфиты, гидросульфиты, метабисульфиты и подобные им. Дополнительными вторыми восстановителями являются дитионаты и тетратионаты. Еще можно назвать тиосульфаты, тиомочевины, гадроксиламины, альдегиды, глиоксалевую кислоту и восстанавливающие сахара. В альтернативном случае можно также использовать такие металлорганические соединения, как диизобутилалюминийгидрид или бис(2-метокси-этокси)алюмогидрид натрия.
Соединения с атомом фосфора представляют собой предпочтительные вторые восстановители, вместе с этим они могут также служить источником фосфора в образующемся барьерном слое. Особое предпочтение отдается фосфиновой кислоте и ее солям.
Второй восстановитель, если он используется, присутствует обычно в концентрациях от 0 до 0,5 моль/л, в предпочтительном случае от 0,01 до 0,3 моль/л, в особо предпочтительном случае от 0,05 до 0,15 моль/л.
В состав соответствующего изобретению раствора входит соединение никеля, которое служит источником ионов никеля. Соединения никеля прибавляют к раствору в виде таких неорганических соединений никеля, как гидроксиды, хлориды, сульфаты или другие неорганические соли, которые растворимы в растворителе. В альтернативном случае можно использовать соединения никеля с органическими карбоновыми кислотами, например, ацетаты, цитраты, лактаты, сукцинаты, пропионаты, гидроксиацетаты, этилендиаминтетрацетаты и другие, а также их смеси. Гидроксид никеля Ni(OH)2 может быть использован в тех случаях, когда надо исключить присутствие сравнительно высоких концентраций ионов хлора или других анионов. В предпочтительном варианте никель используют в концентрации от 0,001 до 0,5 моль/л, в более предпочтительном случае от 0,005 моль/л до 0,3 моль/л, в еще более предпочтительном случае от 0,01 до 0,2 моль/л и в особо предпочтительном случае от 0,05 моль/л до 0,1 моль/л.
Еще одной составляющей соответствующего изобретению раствора является соединение молибдена в качестве источника ионов молибдена и в качестве жаростойкого металла. Примерами соединений молибдена служат оксид молибдена МоО3 молибденовая кислота и ее соли, в частности, соли аммония, тетраалкиламмония, и соли со щелочными металлами или их смеси, но их выбор этим не ограничивается.
В предпочтительном варианте молибден используют в концентрации от 10-4 до 1 моль/л, в предпочтительном случае от 0,0005 моль/л до 0,1 моль/л, в более предпочтительном случае от 0,001 моль/л до 0,01 моль/л, в особо предпочтительном случае от 0,003 моль/л до 0,006 моль/л.
Кроме этих металлов никеля и молибдена, в состав раствора можно включать другие металлы, однако в предпочтительном случае никакие другие ионы металлов в дополнение к никелю и молибдену не присутствуют в растворе, то есть раствор в предпочтительном случае содержит ионы металлов, представленные никелем и молибденом.
Раствор содержит один или несколько комплексообразователей для того, чтобы поддерживать ионы никеля в растворенном состоянии. Раствор имеет основное значение рН и вследствие этого ионы никеля имеют склонность к образованию гидроксидов, которые осаждаются из раствора. Подходящими комплексообразователями являются, например, лимонная кислота, малеиновая кислота, глицин, пропионовая кислота, янтарная кислота, молочная кислота, диэтаноламин, триэтаноламин и такие аммонийные соли, как хлорид аммония, сульфат аммония, гидроксид аммония, пирофосфат и их смеси. Предпочтительными комплексообразователями являются гидроксикарбоновые кислоты.
Комплексообразователи используют обычно в концентрации от 0,001 моль/л до 1 моль/л, в предпочтительном случае от 0,005 моль/л до 0,5 моль/л, в более предпочтительном случае от 0,01 до 0,3 моль/л, в еще более предпочтительном случае от 0,1 до 0,25 моль/л, в особо предпочтительном случае от 0,15 моль/л до 0,2 моль/л.
Кроме того, можно использовать также такие другие комплексообразователи, как этилендиаминтетрауксусная кислота, гидроксиэтилендиаминтриуксусная кислота, нитрилотриуксусная кислота. Обычно их прибавляют в количестве от 0 до 0,05 г/л, в предпочтительном случае от 0,001 до 0,02 г/л, в особо предпочтительном случае от 0,005 до 0,01 г/л.
Раствор может также содержать поверхностноактивные вещества. Предпочтительными поверхностноактивными веществами являются анионные поверхностноактивные вещества или неионогенные поверхностноактивные вещества. Примерами анионных поверхностноактивных веществ служат алкилфосфонаты, фосфаты простых алкиловых эфиров, алкилсульфаты, сульфаты простых алкиловых эфиров, алкилсульфонаты, сульфонаты простых алкиловых эфиров, карбоксилатные простые эфиры, карбоксилатные сложные эфиры, алкиларилсульфонаты и сульфосукцинаты. Примерами неионогенных поверхностноактивных веществ служат алкоксилированные спирты, этиленоксид-пропиленоксидные блоксополимеры, алкоксилированные эфиры жирных кислот, простые гликолевые эфиры и простые глицериновые эфиры полиэтиленгликолей и полипропиленгликолей. Предпочтительными поверхностноактивными веществами являются монолаураты полиоксиэтилен-сорбитолов. Поверхностноактивное вещество используют обычно в концентрации от 1 мг/л до 1000 мг/л, в предпочтительном случае от 10 мг/л до 200 мг/л.
Во время процесса осаждения значение рН в растворе следует поддерживать как можно более постоянным. Для этого подходят обычные буферные растворы. Они могут включать, например, такие органические амины, как пиридин или пирролидин, метиламины, диметиламины, триметиламины, этиламины, диэтиламины, триэтиламины, гидроксид тетраметиламмония, гидроксид тетраэтиламмония, гидроксид тетрапропиламмония, гидроксид тетрабутиламмония, анилин или толуидин.
В альтернативном случае можно использовать соли сильного основания и слабой кислоты, например ацетаты, пропионаты, карбонаты щелочных металлов или щелочноземельных металлов и подобные им. В предпочтительном случае буферы используют в концентрации от 0 до 1 г/л, в частности, от 0,01 до 0,5 г/л, в особо предпочтительном случае от 0,005 до 0,15 г/л.
Значение рН раствора лежит в пределах от 8,5 до 12. Ниже значения рН 8,5 получаются грубые поверхности со структурой, похожей на цветную капусту. Выше рН 12 наблюдается усиленное выделение водорода и осаждение гидроксидов никеля. В предпочтительном случае поддерживают рН от 9 до 11,5, в особо предпочтительном случае от 10,5 до 11,5.
Кроме названных выше компонент могут быть добавлены такие другие обычные добавки, как стабилизаторы, ускорители или блескообразователи или же выравнивающие средства. Эти добавки используют обычно в концентрациях от 0 до 1 г/л, в предпочтительном случае от 0,01 до 0,5 г/л, в особо предпочтительном случае от 0,05 до 0,15 г/л. В роли стабилизаторов могут выступать свинец, олово, мышьяк, сурьма, селен, сера и кадмий в небольших концентрациях.
Предпочтительной добавкой, которая может быть также использована для других растворов для осаждения барьерных слоев, является N,N-диметилдитиокарбамоилпропилсульфокислота. Это вещество подходит также, например, для осаждения других барьерных слоев, содержащих кобальт или никель. Использование N,N-диметил-дитиокарбамоилпропилсульфокислоты позволяет получать особенно тонкие барьерные слои.
В состав раствора, которому отдается особое предпочтение, входят
- соединение никеля в количестве от 0,01 до 0,2 моль/л,
- соединение молибдена в количестве от 0,001 до 0,01 моль/л,
- комплексообразователь в количестве от 0,01 до 0,3 моль/л,
- первый восстановитель в количестве от 0,005 до 0,05 моль/л,
- второй восстановитель в количестве от 0,1 до 0,3 моль/л.
Кроме того, молярное отношение соединения никеля к не менее чем одному комплексообразователю в растворе в предпочтительном случае лежит в пределах от 1:1 до 1:2.
Еще одним аспектом настоящего изобретения является способ получения барьерных слоев неэлектролитическим осаждением на металлической поверхности полупроводниковых субстратов, который включает
а) получение раствора, содержащего соединение элемента, выбираемого из никеля и кобальта, соединение элемента, выбираемого из молибдена, вольфрама и рения, и содержащего первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов,
б) установление значения рН в растворе от 8,5 до 12,
в) установление температуры в растворе от 50°С до 85°С,
г) контактирование металлической поверхности с раствором при температуре от 50°С до 85°С, приводящее к осаждению на полупроводниковом субстрате слоя, включающего элемент, выбираемый из никеля и кобальта, и элемент, выбираемый из молибдена, вольфрама и рения.
В частности, способ подходит для неэлектролитического осаждения содержащего никель или кобальт барьерного слоя на металлических поверхностях интегрированных проводящих схем, включающих медь. В качестве термостойких металлов можно использовать молибден, вольфрам или рений. Способ неэлектролитического осаждения подходит для осаждения барьерных слоев на металлических субстратах, в частности, на содержащих медь субстратах, при этом способ не требует каталитической активации металлической поверхности перед стадией осаждения.
Подходящие соединения никеля и кобальта были представлены выше или они известны по цитированным выше источникам или по международной заявке на патент №2006/044990. В частности, соответствующим изобретению способом на металлических поверхностях могут быть образованы слои состава NiWB, NiWPB, NiMoB, NiMoPB, NiReB, NiRePB, CoWB, CoWPB, CoMoB, CoMoPB, CoReB и CoRePB, но способ не ограничивается этим перечислением. Названные выше соединения никеля могут быть с успехом заменены соответствующими соединениями кобальта. То же самое относится и к соединениям молибдена, которые могут быть заменены соответствующими соединениями вольфрама и рения в качестве используемых в предпочтительном случае источников вольфрама и рения. В качестве других вариантов могут также рассматриваться сочетания никеля и кобальта, а также сочетания жаростойких металлов молибдена, вольфрама и рения.
В данном случае барьерный слой наносят в результате контактирования раствора со структурированным субстратом, который имеет сквозные отверстия и бороздки, заполненные металлом, например, медью. В данном случае контактирование можно проводить, например, с помощью окунания, разбрызгивания или с помощью других обычных технологий.
Ванны для неэлектролитического осаждения могут быть использованы для процесса нанесения слоя в непрерывном режиме, при этом ванна используется для обработки множества субстратов. Израсходованные реагенты можно при этом дополнять, а накапливающиеся (побочные) продукты надо удалять, что требует регулярной замены ванны. Возможность осаждения при сравнительно низких температурах обеспечивает значительное увеличение времени продуктивной работы ванн, вследствие чего они могут быть использованы в течение значительно более продолжительного времени, чем это было возможно при использовании обычных ванн.
В альтернативном случае раствор для осаждения может быть использован по принципу «пользуйся и ликвидируй». В этом варианте ванну после обработки субстрата разгружают.
Осаждение проводят при температурах от 50°С до 85°С. Ниже 50°С из-за низкой скорости реакции осаждение не удается провести так, чтобы это было экономически оправдано. Выше 85°С начинается очень быстрая реакция, осаждение протекает слишком быстро и начинается усиленное осаждение на диэлектриках, следствием чего становится возможность возникновения коротких замыканий в субстрате. Предпочтение отдается осаждению при температурах от 50°С до 75°С, в более предпочтительном случае от 52°С до 70°С, в особо предпочтительном случае от 55°С до 65°С.
Свойства раствора для неэлектролитического осаждения в начальной стадии процесса имеют важное значение, поскольку они определяют промежуток времени между погружением и началом осаждения. Стартовый период должен быть очень коротким (менее 10 секунд). Только в таком случае можно получить слой одинаковой толщины на всем субстрате. Равномерность слоя исключительно важна для нового поколения подложек с диаметром 300 мм.
Еще одно обоснование необходимости быстрого начала осаждения состоит в том, что при большой его отсрочке становятся возможными вторичные реакции в растворе для осаждения никеля с металлизацией меди, на которую наносится покрытие, и это может серьезно повредить медную поверхность, например, в результате травления.
Проведенные опыты показали, что только циклические вторичные или третичные аминобораны могут обеспечивать очень хорошие результаты при осаждении при низких температурах, в частности, при температурах от 60 до 65°С.
Скорость осаждения барьерного слоя на субстрате в предпочтительном случае регулируют так, чтобы она составляла более 10 нм/мин. В особо предпочтительном случае скорость осаждения составляет от 10 до 50 нм/мин.
Все цитированные документы включены в настоящую заявку на патент в качестве ссылок. Все количества (проценты, части на миллион и т.д.) относятся к массам, отнесенным к общей массе смеси, если не указано иное.
Следующие далее примеры иллюстрируют настоящее изобретение, не ограничивая объем его притязаний.
Примеры
Следующие далее примеры демонстрируют, что использование морфолиноборана в качестве восстановителя в растворе для осаждения состава NiMoP связано со значительным снижением температуры в процессе осаждения по сравнению с диметиламинобораном.
Пример 1
Готовят раствор приведенного далее состава:
Компонента Содержание (моль/л)
Лимонная кислота 0,1
Малеиновая кислота 0,025
Борная кислота 0,25
Гидроксиэтилендиамин-триуксусная кислота 0,007
Сульфат никеля 0,06
МоО3 (в виде молибдата) 0,001
Фосфиновая кислота 0,1
Морфолиноборан 0,02
Tween 20 100 мг/л
Гидроксид натрия около 0,8
Вода Расчетное количество
Значение рН в растворе устанавливают с помощью гидроксида натрия в пределах от 10 до 10,5.
Начальные характеристики процесса осаждения состава NiMoP при различных температурах исследовались с помощью электрохимических измерений. Для этой цели подложку погружали в раствор для осаждения и измеряли зависимость потенциала разомкнутой цепи от времени. Начало осаждения проявляется как резкое увеличение этого потенциала.
Результаты представлены в таблице 1.
Осаждение протекало особенно быстро при 65°С. В этом случае оно начиналось непосредственно после погружения. Осаждение протекало также при 50 и при 55°С. Сканирующая электронная микрография показывает однородность и равномерность осаждения.
Пример 2
Готовят раствор приведенного далее состава:
Компонента Содержание (моль/л)
Лимонная кислота 0,1
Малеиновая кислота 0,025
Борная кислота 0,25
Гидроксиэтилендиамин-триуксусная кислота 0,007
Сульфат никеля 0,06
МоО3 (в виде молибдата) 0,001
Фосфиновая кислота 0,1
Морфолиноборан 0,01
Диметиламиноборан 0,01
Tween 20 100 мг/л
Гидроксид натрия около 0,8
Вода Расчетное количество
Значение рН в растворе устанавливают с помощью гидроксида натрия в пределах от 10 до 10,5.
Начальные характеристики процесса отложения состава NiMoP снова проверялись при различных температурах. Результаты исследования зависимости времени до начала отложения от соответствующей температуры представлены в таблице 1.
Эти данные показывают, что начальная скорость оказывается значительно ниже, чем в случае использования раствора, содержащего только морфолиноборан. Даже при температуре 65°С отложение начинается только по истечении нежелательно длинной стартовой фазы продолжительностью более 10 секунд.
Пример 3. (пример сравнения)
Готовят раствор приведенного далее состава:
Компонента Содержание (моль/л)
Лимонная кислота 0,1
Малеиновая кислота 0,025
Борная кислота 0,25
Гидроксиэтилендиамин-триуксусная кислота 0,007
Сульфат никеля 0,06
МоО3 (в виде молибдата) 0,001
Фосфиновая кислота 0,1
Диметиламиноборан 0,02
Tween 20 100 мг/л
Гидроксид натрия около 0,8
Вода Расчетное количество
Значение рН в растворе устанавливают с помощью гидроксида натрия в пределах от 10 до 10,5.
Начальные характеристики процесса отложения состава NiMoP снова проверялись при различных температурах. Результаты представлены в таблице 1.
Данные опытов показывают, что начальная скорость оказывается значительно ниже, чем в случае использования раствора, содержащего морфолиноборан. При температуре 65°С отложение начинается только по истечении нежелательно длинной стартовой фазы продолжительностью значительно более 10 секунд. При 60°С стартовая фаза занимает несколько минут, а при 50 и 55°С образование отложения вообще не наблюдается.
Таблица 1
Температура Пример 1 Пример 2 Пример сравнения 3
50°С 85,4 секунды 159,1 секунды >240 секунд
55°С 44,4 секунды 94,6 секунды >240 секунд
60°С 11,1 секунды 52,2 секунды 176,5 секунды
65°С <1 секунды 14,1 секунды 22,4 секунды
Пример 4
Готовят три раствора P1, P2 и Р3 приведенного далее состава
Компонента Содержание (моль/л) (Р1) Содержание (моль/л) (P2) Содержание (моль/л) (Р2)
Лимонная кислота 0,18 0,1 0,1
Малеиновая кислота 0,025 0,03 0,03
Борная кислота 0,25 0,3 0,3
Гидроксиэтилендиамин-триуксусная кислота 0,007 0,007 0,007
Сульфат никеля 0,06 0,07 0,07
МоО3 (в виде молибдата) 0,01 0,008 0,004
Фосфиновая кислота 0,1 0,1 0,1
Морфолиноборан 0,02 0,02
Диметиламиноборан 0,01
Tween 20 100 мг/л 100 мг/л 100 мг/л
Основание около 0,9 (ТМАГ) около 0,8 (NaOH) около 0,8 (NaOH)
Вода По расчету По расчету По расчету
рН 11 10,5 10,5
ТМАГ - гидроксид тетраметиламмония
Значение рН раствора устанавливают с помощью гидроксида натрия или гидроксида тетраметиламмония. Барьерные слои откладывались по аналогии с примером 1, а их состав последовательно определялся с помощью спектрометрии XPS. Результаты опытов представлены в таблице 2. Полученные данные показывают, что, несмотря на значительное снижение температуры, соответствующим изобретению способом можно осаждать барьерные слои требуемого состава.
Таблица 2
Температура Концентрация молибдата (моль/л) Отношение P/Ni Отношение Mo/Ni
90°С (Р1) 0,01 0,1 0,15
60°С (Р2) 0,008 0,1 0,3
60°С (Р3) 0,004 0,3 0,2

Claims (10)

1. Раствор для осаждения барьерных слоев на металлические поверхности, содержащий соединение никеля и соединение молибдена, по крайней мере один первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов, по крайней мере один второй восстановитель, в частности фосфиновую кислоту или ее соль и по крайней мере один комплексообразователь, при этом раствор имеет значение рН от 8,5 до 12.
2. Раствор по п.1, содержащий в качестве первого восстановителя гетероциклический аминоборан, в частности морфолиноборан.
3. Раствор по п.1, в котором по крайней мере один комплексообразователь представляет собой гидроксикарбоновую кислоту.
4. Раствор по п.1, содержащий соединение никеля в количестве от 0,01 до 0,2 моль/л, соединение молибдена в количестве от 0,001 до 0,01 моль/л, комплексообразователь в количестве от 0,01 до 0,3 моль/л, первый восстановитель в количестве от 0,005 до 0,05 моль/л и второй восстановитель в количестве от 0,1 до 0,3 моль/л.
5. Раствор по одному из пп.1-4, в котором молярное отношение соединения никеля к не менее чем одному комплексообразователю составляет от 1:1 до 1:2.
6. Способ получения барьерных слоев неэлектролитическим осаждением на металлические поверхности полупроводниковых субстратов, включающий:
а) получение раствора, содержащего соединение никеля и соединение молибдена, первый восстановитель, выбираемый из вторичных и третичных циклических аминоборанов, и второй восстановитель, в частности фосфиновую кислоту или ее соль,
б) установление в растворе значения рН от 8,5 до 12,
в) установление температуры раствора от 50°С до 85°С,
г) контактирование металлических поверхностей с раствором при температуре от 50°С до 85°С, приводящее к осаждению барьерного слоя на полупроводниковом субстрате.
7. Способ по п.6, в котором температура составляет от 55°С до 65°С.
8. Способ по п.6, в котором скорость осаждения превышает 10 нм/мин, в частности составляет от 10 до 50 нм/мин.
9. Способ по п.6, в котором перед введением металлической поверхности в контакт с раствором металлическая поверхность не подвергается каталитической активации.
10. Способ по п.6, в котором металлическая поверхность содержит медь, в частности когда она состоит из меди.
RU2010134880/02A 2008-01-24 2009-01-20 Неэлектролитическое осаждение барьерных слоев RU2492279C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08150612.3 2008-01-24
EP08150612 2008-01-24
PCT/EP2009/050589 WO2009092706A2 (en) 2008-01-24 2009-01-20 Electroless deposition of barrier layers

Publications (2)

Publication Number Publication Date
RU2010134880A RU2010134880A (ru) 2012-02-27
RU2492279C2 true RU2492279C2 (ru) 2013-09-10

Family

ID=40901477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010134880/02A RU2492279C2 (ru) 2008-01-24 2009-01-20 Неэлектролитическое осаждение барьерных слоев

Country Status (9)

Country Link
US (1) US20110059611A1 (ru)
EP (1) EP2255024A2 (ru)
JP (1) JP2011510177A (ru)
KR (1) KR20100102738A (ru)
CN (1) CN101925691A (ru)
IL (1) IL206719A (ru)
RU (1) RU2492279C2 (ru)
TW (1) TW200949010A (ru)
WO (1) WO2009092706A2 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2449076B1 (en) 2009-06-30 2016-09-21 Basf Se Aqueous alkaline cleaning compositions and methods of their use
US20110192316A1 (en) * 2010-02-05 2011-08-11 E-Chem Enterprise Corp. Electroless plating solution for providing solar cell electrode
US8895441B2 (en) * 2012-02-24 2014-11-25 Lam Research Corporation Methods and materials for anchoring gapfill metals
US9551074B2 (en) * 2014-06-05 2017-01-24 Lam Research Corporation Electroless plating solution with at least two borane containing reducing agents
ES2826441T3 (es) * 2017-06-02 2021-05-18 Atotech Deutschland Gmbh Baños de metalizado no electrolítico de aleación de níquel, un método de deposición de aleaciones de níquel, depósitos de aleación de níquel y usos de dichos depósitos de aleación de níquel formados
WO2019145336A1 (en) * 2018-01-25 2019-08-01 Université de Mons Nickel alloy plating
US20210371985A1 (en) 2018-11-06 2021-12-02 Atotech Deutschland Gmbh Electroless nickel plating solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU291992A1 (ru) * Е. А. Соболев, А. В. Измайлов , Г. Шилова Раствор для химического осаждения сплава никель-олово
RU2005138133A (ru) * 2003-05-09 2006-06-27 БАСФ Акциенгезельшафт (DE) Составы для обесточенного осаждения тройных материалов для промышленности и полупроводников

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002778A (en) * 1973-08-15 1977-01-11 E. I. Du Pont De Nemours And Company Chemical plating process
US6645567B2 (en) * 2001-12-19 2003-11-11 Intel Corporation Electroless plating bath composition and method of using
US6605874B2 (en) * 2001-12-19 2003-08-12 Intel Corporation Method of making semiconductor device using an interconnect
US6902605B2 (en) * 2003-03-06 2005-06-07 Blue29, Llc Activation-free electroless solution for deposition of cobalt and method for deposition of cobalt capping/passivation layer on copper
US6924232B2 (en) * 2003-08-27 2005-08-02 Freescale Semiconductor, Inc. Semiconductor process and composition for forming a barrier material overlying copper
US7531463B2 (en) * 2003-10-20 2009-05-12 Novellus Systems, Inc. Fabrication of semiconductor interconnect structure
US7268074B2 (en) * 2004-06-14 2007-09-11 Enthone, Inc. Capping of metal interconnects in integrated circuit electronic devices
US7332193B2 (en) * 2004-10-18 2008-02-19 Enthone, Inc. Cobalt and nickel electroless plating in microelectronic devices
US7176133B2 (en) * 2004-11-22 2007-02-13 Freescale Semiconductor, Inc. Controlled electroless plating
US7476616B2 (en) * 2004-12-13 2009-01-13 Fsi International, Inc. Reagent activator for electroless plating
US20060188659A1 (en) * 2005-02-23 2006-08-24 Enthone Inc. Cobalt self-initiated electroless via fill for stacked memory cells
US7410899B2 (en) * 2005-09-20 2008-08-12 Enthone, Inc. Defectivity and process control of electroless deposition in microelectronics applications
US7658790B1 (en) * 2007-07-03 2010-02-09 Intermolecular, Inc. Concentrated electroless solution for selective deposition of cobalt-based capping/barrier layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU291992A1 (ru) * Е. А. Соболев, А. В. Измайлов , Г. Шилова Раствор для химического осаждения сплава никель-олово
RU2005138133A (ru) * 2003-05-09 2006-06-27 БАСФ Акциенгезельшафт (DE) Составы для обесточенного осаждения тройных материалов для промышленности и полупроводников

Also Published As

Publication number Publication date
JP2011510177A (ja) 2011-03-31
WO2009092706A3 (en) 2010-01-07
WO2009092706A2 (en) 2009-07-30
EP2255024A2 (en) 2010-12-01
TW200949010A (en) 2009-12-01
IL206719A (en) 2014-06-30
CN101925691A (zh) 2010-12-22
RU2010134880A (ru) 2012-02-27
IL206719A0 (en) 2010-12-30
US20110059611A1 (en) 2011-03-10
KR20100102738A (ko) 2010-09-24

Similar Documents

Publication Publication Date Title
RU2492279C2 (ru) Неэлектролитическое осаждение барьерных слоев
JP6903061B2 (ja) Si貫通電極のメッキのプロセス及び化学作用
KR102245104B1 (ko) 웨트 웨이퍼 백 콘택을 사용하여 실리콘 관통 비아들을 구리 도금하기 위한 방법
US7332193B2 (en) Cobalt and nickel electroless plating in microelectronic devices
WO2008128102A1 (en) Self-initiated alkaline metal ion free electroless deposition composition for thin co-based and ni-based alloys
WO2006033957A1 (en) Method to fabricate copper-cobalt interconnects
RU2374359C2 (ru) Составы для обесточенного осаждения тройных материалов для промышленности полупроводников
KR20070113243A (ko) 적층 메모리 셀의 코발트 자기 개시적 무전해 비아 충진
JP6099678B2 (ja) コバルト合金無電解めっき用アルカリ性めっき浴
CA2591411C (en) Improved stabilization and performance of autocatalytic electroless processes
KR100996189B1 (ko) 자기 촉매형 무전해 니켈-인-코발트 도금액 및 그의제조방법
KR101224208B1 (ko) 음이온 계면활성제를 포함하는 배선용 무전해 동도금액 및 이에 의해 제조된 동 피막
KR101375291B1 (ko) 미량의 디메틸아민 보란이 첨가된 자기 촉매형 무전해니켈-인-코발트 도금액 및 그의 제조방법
KR101261563B1 (ko) 자기 촉매형 코발트-인 도금액, 이를 이용한 무전해 도금 공정 및 이에 의해 제조된 코발트-인 합금 피막
KR101224207B1 (ko) 양이온 계면활성제를 포함하는 배선용 무전해 동도금액 및 이에 의해 제조된 동 피막
KR101224205B1 (ko) 반도체 배선용 무전해 은 도금액, 이를 이용한 무전해 도금 공정 및 이에 의해 제조된 은 피막
KR101224204B1 (ko) 히드라진을 포함하는 무전해 은 도금액, 이를 이용한 무전해 도금 공정 및 이에 의해 제조된 은 피막
KR20060067454A (ko) 무전해 도금을 이용한 패턴 내 금속배선 형성방법
KR101224206B1 (ko) 고안정성 무전해 은 도금액, 이를 이용한 무전해 도금 공정 및 이에 의해 제조된 은 피막

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170121