RU2488445C1 - Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты) - Google Patents

Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты) Download PDF

Info

Publication number
RU2488445C1
RU2488445C1 RU2012116860/04A RU2012116860A RU2488445C1 RU 2488445 C1 RU2488445 C1 RU 2488445C1 RU 2012116860/04 A RU2012116860/04 A RU 2012116860/04A RU 2012116860 A RU2012116860 A RU 2012116860A RU 2488445 C1 RU2488445 C1 RU 2488445C1
Authority
RU
Russia
Prior art keywords
biomass
water
hydrogen peroxide
catalyst
mixture
Prior art date
Application number
RU2012116860/04A
Other languages
English (en)
Inventor
Ольга Тарасовна Касаикина
Леонид Михайлович Писаренко
Игорь Викторович Зиновьев
Original Assignee
Общество с ограниченной ответственностью "Целлокорм"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Целлокорм" filed Critical Общество с ограниченной ответственностью "Целлокорм"
Priority to RU2012116860/04A priority Critical patent/RU2488445C1/ru
Priority to PCT/RU2013/000328 priority patent/WO2013162421A1/ru
Application granted granted Critical
Publication of RU2488445C1 publication Critical patent/RU2488445C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used

Abstract

Изобретение относится к каталитическим процессам. Описан способ синтеза катализатора для окислительного крекинга органического сырья, в том числе биомассы, заключающийся в том, что воду, содержащую 1-10% низшего спирта, нагревают до 58-75°C, добавляют FeCl3×6H2O и соду при массовом соотношении хлорида железа и соды 1,5-80, выдерживают водный раствор при температуре 58-75°C не менее 10 минут при помешивании и оставляют водный раствор до полного осаждения Fe3+. Описано использование катализатора, полученного указанным выше способом для окислительного крекинга органического сырья. Технический результат - увеличение активности катализатора. 5 н. и 9 з.п. ф-лы, 8 пр.

Description

Изобретение относится к области переработки биомассы с использованием биологически безопасных катализатора и окислителя, а именно к способу получения катализаторов на основе соединений железа для процессов окислительного крекинга органических соединений, лигнин-целлюлозной биомассы и других источников природных материалов.
Органические кислородсодержащие соединения являются ценными продуктами и интермедиатами органического синтеза. До недавнего времени основными способами их промышленного получения являлись процессы, осуществляемые с использованием таких реагентов, как двуокись марганца, перманганат и бихромат калия, азотная и серная кислота, щелочь и др. При стехиометрическом окислении используются большие количества дорогих и токсичных окислительных агентов и неизбежно возникают проблемы, связанные с утилизацией токсичных отходов.
Наиболее перспективными являются каталитические способы получения кислородсодержащих соединений, основанные на использовании в качестве окислителя молекулярного кислорода и пероксида водорода, поскольку оба эти окислителя являются экологически чистыми и недорогими. Хотя стоимость пероксида водорода выше, чем стоимость кислорода, в малотоннажных процессах тонкого органического синтеза использование этого окислителя часто оказывается предпочтительней, поскольку стоимость технологического оборудования для окисления Н2О2 в целом ниже, чем для окисления кислородом, которое, как правило, ведут при повышенных температурах и давлениях [R.A.Sheldon, J.Dakka. Heterogeneous catalytic oxidations in the manufacture of fine chemicals. Catalysis Today 19 (1994) 215].
Известен синтез многофункционального самонастраивающегося катализатора окислительного крекинга органического сырья и его применение (патент №2425715). Способ приготовления известного катализатора включает растворение соли железа в воде, содержащей низший спирт, в концентрациях, необходимых для формирования способной к пептизации коллоидной массы, нагревают смесь до температуры, не превышающей 100°С, и постоянном перемешивании (прототип).
Недостатком известного способа синтеза катализатора жидкофазного окисления органических соединений является зависимость его каталитической активности от соотношения воды, спирта и температуры. При несоблюдении оптимального соотношения активность катализатора резко снижается.
Недостатком является также то, что качество катализатора и его способность к пептизации зависит от качества воды и резко падает при снижении ее жесткости и содержания органических компонентов.
Недостатком является потребление большого количества воды (при известном синтезе на 1 г катализатора требуется около 20 л воды).
Задачей настоящего изобретения является синтез многофункционального самонастраивающегося катализатора окислительного крекинга органического сырья, в том числе биомассы разной природы, сопряжение его с окислительной переработкой биомассы (совмещение синтеза катализатора и переработки биомассы), а также сокращение потребления воды при синтезе катализатора и крекинге биомассы.
В предлагаемом способе на 1 г катализатора требуется 1-5 л воды, т.е. примерно на порядок сокращается ее расход. Указанное количество воды не представляет безвозвратные потери, как в альтернативных способах, и может быть на 90-80% использовано повторно.
Изобретение относится к области переработки биомассы с использованием биологически безопасных катализатора и окислителя, а именно к способу получения катализаторов на основе соединений железа для процессов окислительного крекинга органических соединений, лигнин-целлюлозной биомассы и других источников природных материалов.
Согласно настоящему изобретению предлагается способ синтеза многофункционального самонастраивающегося катализатора для жидкофазного низкотемпературного окислительного крекинга органического сырья, в том числе природной биомассы, заключающийся в том, что воду, содержащую 1-10% низшего спирта, нагревают до 58-75°C, добавляют FeCl3×6Н2О и соду при массовом соотношении хлорида железа и соды 1,5-80, выдерживают водный раствор при температуре 58-75°C не менее 10 минут при непрерывном помешивании и оставляют водный раствор до полного осаждения Fe3+.
Показателем окончания формирования катализатора является отсутствие ионов Fe3+, т.е. осуществляется контроль данного показателя. Контроль данного параметра необходим для исключения бесполезного для крекинга каталитического распада пероксида водорода в объеме водной фазы.
В результате получают коллоидный катализатор, основу которого составляют оксиды железа (3), содержащие органические примеси.
Катализатор проявляет:
- способность изменять свою активность в зависимости от типа органического сырья и окислителя
- свойства окислительных ферментов при крекинге природной биомассы, содержащей лигнин.
рН 6.0-7.0 воды создается добавкой соды (Na2CO3), способствующей образованию коллоидного катализатора…, хорошо связывающегося с поверхностью биомассы, подлежащей переработке. Количество добавляемой соды определяется количеством биомассы и соли железа. Массовое отношение хлорида железа (3) и соды находится в пределах 1,5-80, в зависимости от жесткости воды. Добавка соды позволяет сократить количество воды, необходимой для проведения синтеза и крекинга.
Изобретение также относится к способу жидкофазного низкотемпературного окислительного крекинга органического сырья, в том числе природной биомассы в присутствии катализатора при атмосферном давлении.
Отличием предлагаемого способа от известного является то, что в качестве катализатора используют вышеуказанный многофункциональный самонастраивающийся катализатор, полученный в условиях, как указано выше, - вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5-0,5, перемешивают смесь до полного израсходования пероксида водорода;
- вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 часов, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5:0.5, перемешивают смесь до полного израсходования пероксида водорода;
- вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5-0,5, перемешивают смесь при температуре 25-70°C;
- вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 часов, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5:0.5, перемешивают смесь при температуре 25-70°C до полного израсходования пероксида водорода;
- нагревают морскую воду или океаническую воду, или речную воду или их смесь;
- добавку пероксида водорода осуществляют дозированно в n-приемов, где n≥1.
В качестве органического сырья могут быть использованы пакля (лубяные культуры), природная биомасса в том числе солома (овсяная, маковая, рисовая, камыш, тростниковая и т.п.)., торф, побочные продукты производства растительных масел - оливкового, пальмового, льняного др. (жом, жмых), древесные отходы (например, опилки сосновые, эвкалиптовые и других пород деревьев), технический лигнин, костра (лен, хлопок и др.) При этом используемый катализатор при крекинге в отношении лигнина, содержащегося в биомассе, проявляет свойства окислительного фермента.
Преимуществом предложения является возможность сочетать в одном процессе с замкнутым водооборотом синтез катализатора и окислительную переработку биомассы. При этом сокращается потребление воды (примерно на порядок), энергии и компонентов катализатора. В зависимости от соотношения катализатора и биомассы возможно регулировать выход водорастворимых продуктов и твердого осадка. Водорастворимые продукты представляют собой ценный продукт для сельского хозяйства. Они содержат органические кислоты и полифенолы, что может найти применение в качестве консервантов и биодобавок в производстве кормов в сельском хозяйстве.
Т.к. в качестве окислителя используется пероксид водорода, то полученные продукты стерильны, т.е. безопасны с точки зрения бактериального заражения. Процесс практически безотходный, т.к. полученный твердый осадок представляет собой целлюлозу.
Окисление лигнина в лигнин-целлюлозной биомассе с использованием пероксида водорода и предложенного катализатора приводит к получению целлюлозы и ценных органических, легко утилизируемых продуктов и является более предпочтительным процессом, чем ныне используемые процессы с использованием кислоты и щелочи, приводящие к огромным количествам трудно утилизируемых опасных отходов. При этом в механизм каталитического окислительного расщепления вовлекаются пероксид водорода и кислород воздуха. Таким образом, катализатор настоящего изобретения имитирует природные ферментативные процессы деструкции органических природных материалов.
Синтез катализатора настоящего изобретения осуществляют по следующей методике.
Воду, содержащую 1-10% низшего спирта, нагревают до 58-75°C, добавляют FeCl3×6Н2О и соду при массовом соотношении хлорида железа и соды 1,5-80, выдерживают водный раствор при температуре 58-75°C не менее 10 минут при помешивании и оставляют водный раствор до полного осаждения Fe3+. Затем полученную суспензию используют в качестве катализатора. Показателем окончания формирования катализатора является отсутствие ионов Fe3+, которое, например, определяют по отсутствию розовой окраски при добавлении к воде тиоцианата калия (KSCN).
Способ окислительного крекинга органического сырья осуществляют по следующей методике (два варианта).
В катализатор по п.1, вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5-0,5, перемешивают смесь до полного израсходования пероксида водорода.
В катализатор по п.1, вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 часов, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5:0.5, перемешивают смесь до полного израсходования пероксида водорода.
В катализатор по п.1 вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5-0,5, перемешивают смесь при температуре 25-70°C.
В катализатор по п.1 вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 часов, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3.5:0.5, перемешивают смесь при температуре 25-70°C до полного израсходования пероксида водорода.
Нагревают морскую воду или океаническую воду, или речную воду, или их смесь.
Для процесса используют любую воду - водопроводную, дистиллированную, морскую воду или океаническую воду, или речную воду, их смесь и т.п.
Добавку пероксида водорода осуществляют как в один прием, так и дозированно в несколько приемов (п≥1). Количество добавок и размер дозы зависит от качества и вида используемого органического сырья, в том числе биомассы.
Примеры синтеза катализатора окислительной переработки биомассы
Пример 1.
Синтез катализатора: К смеси 620 мл воды (рН=7,1) и 8 мл этанола, нагретой до 70°C, добавили при перемешивании 0,149 г FeCl3·6H2O и 0,01 г соды (Na2CO3) выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 7.0; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 14,9).
Окисление древесных опилок: В стеклянный реактор поместили 9,1 г древесных опилок сосны, при перемешивании добавили суспензию катализатора и пероксид водорода (34 г); окисление проводили при 70°С в течение 18 ч. Выход твердого продукта - 1 г (9%), водорастворимых продуктов - 2,5 г (26%).
Пример 2. (85)
Синтез катализатора: К смеси 800 мл воды (рН=7,0) и 8 мл этанола, нагретой до 60°С, добавили при перемешивании 0,75 г FeCl3·6H2O и 0, 05 г соды (Na2CO3), выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 7,1; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания), (хлорид/сода = 15).
Окисление древесных опилок: В реактор поместили 61 г древесных опилок сосны, при перемешивании добавили суспензию катализатора и пероксид водорода (95 г); окисление проводили при 70°С в течение 20 ч. Выход твердого продукта - 18 г (30%), водорастворимых продуктов - 13 г (22%).
Пример 3. (84)
Синтез катализатора: К смеси 800 мл воды (рН=7,2) и 8 мл этанола, нагретой до 70°С, добавили при перемешивании 0,77 г FeCl3·6H2O и 0,02 г соды (Na2CO3), выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 7,1; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 38,5).
Окисление овсяной соломы: В реактор поместили 55 г овсяной соломы, при перемешивании добавили суспензию катализатора и пероксид водорода (94 г); окисление проводили при 70°С в течение 28 ч. Выход твердого продукта - 11 г (20%), водорастворимых продуктов - 9,5 г (17%).
Пример 4. (80)
Синтез катализатора: К смеси 600 мл воды и 6 мл этанола, нагретой до 72°С, добавили при перемешивании 0,146 г FeCl3·6H2O и 0,014 г соды (Na2CO3), выдержали при этой температуре 15 мин и оставили до полного осаждения осадка (рН 7,1; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 10,4).
Окисление овсяной соломы: В реактор поместили 20 г овсяной соломы, при перемешивании добавили суспензию катализатора и пероксид водорода (36 г); окисление проводили при 60°С в течение 28 ч. Выход твердого продукта - 7 г (35%), водорастворимых продуктов - 5,5 г (27%).
Пример 5. (81)
Синтез катализатора: К смеси 750 мл воды (7,0) и 8 мл этанола, нагретой до 68°С, добавили при перемешивании 0,14 г FeCl3·6H2O и 0,011 г соды (Na2CO3), выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 7,0; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 12,7).
Окисление стеблей овсяной соломы (нарезанные куски 15-20 мм)). В реактор поместили 5,1 г овсяной соломы, при перемешивании добавили суспензию катализатора и пероксид водорода (12 г); окисление проводили при 60°С в течение 35 ч. Выход твердого продукта - 1,2 г (24%), водорастворимых продуктов - 0,85 г (17%).
Пример 6 (86)
Синтез катализатора: К 200 мл дистиллированной воды добавили 0,12 г соды (Na2CO3), 7 мл спирта, нагрели до 65°С, добавили 0,188 г FeCl3·6H2O, выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 7,1; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 1,56).
Окисление древесных остатков эвкалипта (тонкие ветки с корой) (нарезанные ножницами куски 4-8 мм)). В реакционный сосуд поместили 10,5 г сухих эвкалиптовых опилок (кусочков), добавили суспензию катализатора и пероксид водорода (9,5 г), перемешали и подняли температуру до 70°С. Окисление проводили в течение 25 часов.
Выход твердого остатка - 4,1 г (39%), водорастворимых продуктов - 2,1 г (22%).
Пример 7 (87)
Синтез катализатора: К 200 мл водопроводной воды (рН=6,3) добавили 0,11 г соды (Na2CO3), 7 мл спирта, нагрели до 65°С, добавили 0,19 г FeCl3·6H2O, выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 8; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 1,72).
Окисление костры (из льна). В реакционный сосуд поместили 11,35 г сухих фрагментов костры (разных размеров), добавили катализатор, пероксид водорода (14,5 г), перемешали и подняли температуру до 70°С. Окисление проводили в течение 25 часов.
Выход твердого продукта - 6,55 г (57,4%), водорастворимых продуктов - 1,88 г (16,5%).
Пример 8.
Синтез катализатора: К 200 мл водопроводной воды (рН=6,5) добавили 0,08 г соды (Na2CO3), 6 мл спирта, нагрели до 70°С, добавили 0,144 г FeCl3·6H2O, выдержали при этой температуре 10 мин и оставили до полного осаждения осадка (рН 8; при добавлении к 1 мл водной фазы тиоцианата калия нет окрашивания) (хлорид/сода = 1,8).
Окисление рисовой соломы: В реакционный сосуд поместили 3,5 г резаной соломы, предварительно замоченной в 30 мл воды, добавили катализатор, пероксид водорода (4,6 г). Окисление проводили в течение 25 часов при перемешивании (без дополнительного нагревания).
Выход твердого продукта - 1,36 г (39.4%), водорастворимых продуктов - 0.63 г (18%).

Claims (14)

1. Способ синтеза катализатора для окислительного крекинга органического сырья, в том числе биомассы, заключающийся в том, что воду, содержащую 1-10% низшего спирта, нагревают до 58-75°C, добавляют FeCl3×6H2O и соду при массовом соотношении хлорида железа и соды 1,5-80, выдерживают водный раствор при температуре 58-75°C не менее 10 мин при помешивании и оставляют водный раствор до полного осаждения Fe3+.
2. Способ по п.1, отличающийся тем, что нагревают морскую воду, или океаническую воду, или речную воду или их смесь.
3. Способ окислительного крекинга органического сырья, в том числе природной биомассы, в присутствии катализатора при атмосферном давлении, отличающийся тем, что в катализатор, полученный согласно способу по п.1, вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3,5-0,5, перемешивают смесь до полного израсходования пероксида водорода.
4. Способ по п.3, отличающийся тем, что нагревают морскую воду, или океаническую воду, или речную воду или их смесь.
5. Способ по п.3, отличающийся тем, что добавку пероксида водорода осуществляют дозированно в n-приемов, где n≥1.
6. Способ окислительного крекинга органического сырья, в том числе природной биомассы, в присутствии катализатора при атмосферном давлении, отличающийся тем, что в катализатор, полученный согласно способу по п.1, вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 часов, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3,5:0,5, перемешивают смесь до полного израсходования пероксида водорода.
7. Способ по п.6, отличающийся тем, что нагревают морскую воду, или океаническую воду, или речную воду или их смесь.
8. Способ по п.6, отличающийся тем, что добавку пероксида водорода осуществляют дозированно в n-приемов, где n≥1.
9. Способ окислительного крекинга органического сырья, в том числе природной биомассы, в присутствии катализатора при атмосферном давлении, отличающийся тем, что в катализатор, полученный согласно способу по п.1, вносят биомассу при соотношении воды к биомассе 10-20, добавляют пероксид водорода при соотношении нероксида водорода к биомассе 3,5-0,5, перемешивают смесь при температуре 25-70°C.
10. Способ по п.9, отличающийся тем, что нагревают морскую воду, или океаническую воду, или речную воду или их смесь.
11. Способ по п.9, отличающийся тем, что добавку пероксида водорода осуществляют дозированно в n-приемов, где n≥1.
12. Способ окислительного крекинга органического сырья, в том числе природной биомассы, в присутствии катализатора при атмосферном давлении, отличающийся тем, что в катализатор, полученный согласно способу по п.1, вносят биомассу при соотношении воды к биомассе 10-20, перемешивают смесь и выдерживают не более 10 ч, добавляют пероксид водорода при соотношении пероксида водорода к биомассе 3,5:0,5, перемешивают смесь при температуре 25-70°C до полного израсходования пероксида водорода.
13. Способ по п.12, отличающийся тем, что нагревают морскую воду, или океаническую воду, или речную воду или их смесь.
14. Способ по п.12, отличающийся тем, что добавку пероксида водорода осуществляют дозированно в n-приемов, где n≥1.
RU2012116860/04A 2012-04-26 2012-04-26 Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты) RU2488445C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012116860/04A RU2488445C1 (ru) 2012-04-26 2012-04-26 Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты)
PCT/RU2013/000328 WO2013162421A1 (ru) 2012-04-26 2013-04-17 Синтез многофункционального катализатора и способ жидкофазного низкотемпературного окислительного крекинга органического сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012116860/04A RU2488445C1 (ru) 2012-04-26 2012-04-26 Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты)

Publications (1)

Publication Number Publication Date
RU2488445C1 true RU2488445C1 (ru) 2013-07-27

Family

ID=49155592

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012116860/04A RU2488445C1 (ru) 2012-04-26 2012-04-26 Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты)

Country Status (2)

Country Link
RU (1) RU2488445C1 (ru)
WO (1) WO2013162421A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000074A1 (en) 2011-06-30 2013-01-03 Nano-Green Biorefineries Inc. Catalytic biomass conversion
AU2017210775B2 (en) 2016-01-28 2021-08-05 Nano-Green Biorefineries Inc. Production of crystalline cellulose

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020857A1 (de) * 1991-05-17 1992-11-26 Call Hans Peter Verfahren zur delignifizierung von lignocellulosehaltigem material. bleiche und behandlung von abwässern mittels laccasen mit erweiterter wirksamkeit
RU2277119C1 (ru) * 2005-03-15 2006-05-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Способ и солнечная установка для получения искусственного жидкого топлива из углеродсодержащих материалов
US7932065B2 (en) * 2006-10-26 2011-04-26 Xyleco, Inc. Processing biomass
RU2425715C1 (ru) * 2010-02-19 2011-08-10 Виктор Иванович Лесин Синтез многофункционального самонастраивающегося катализатора окислительного крекинга органического сырья и его применение
RU2427607C2 (ru) * 2006-05-05 2011-08-27 Кайор Инк. Способ конверсии биомассы в жидкое топливо и специальные химикаты
EP2190949B1 (en) * 2007-08-14 2012-04-18 Bergen Teknologioverføring AS One-step conversion of solid lignin to liquid products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020857A1 (de) * 1991-05-17 1992-11-26 Call Hans Peter Verfahren zur delignifizierung von lignocellulosehaltigem material. bleiche und behandlung von abwässern mittels laccasen mit erweiterter wirksamkeit
RU2277119C1 (ru) * 2005-03-15 2006-05-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Способ и солнечная установка для получения искусственного жидкого топлива из углеродсодержащих материалов
RU2427607C2 (ru) * 2006-05-05 2011-08-27 Кайор Инк. Способ конверсии биомассы в жидкое топливо и специальные химикаты
US7932065B2 (en) * 2006-10-26 2011-04-26 Xyleco, Inc. Processing biomass
EP2190949B1 (en) * 2007-08-14 2012-04-18 Bergen Teknologioverføring AS One-step conversion of solid lignin to liquid products
RU2425715C1 (ru) * 2010-02-19 2011-08-10 Виктор Иванович Лесин Синтез многофункционального самонастраивающегося катализатора окислительного крекинга органического сырья и его применение

Also Published As

Publication number Publication date
WO2013162421A1 (ru) 2013-10-31

Similar Documents

Publication Publication Date Title
Nasrollahzadeh et al. Recent progresses in the application of lignin derived (nano) catalysts in oxidation reactions
CA2468714C (fr) Procede de stabilisation et conditionnement de boues d'epuration municipales et industrielles
RU2205166C1 (ru) Способ получения солей гуминовых кислот
JP2006129735A (ja) 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法
JP2006149343A (ja) 木質系バイオマスからのグルコース生成物とグルコース生成物製造方法
JPH02500990A (ja) リグニン含有原料からセルロースを製造する方法
Lou et al. Degradation of sulfonamides in aquaculture wastewater by laccase–syringaldehyde mediator system: Response surface optimization, degradation kinetics, and degradation pathway
Cheng et al. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production
CN106110562A (zh) 一种用于去除生物医药废渣中灰黄霉素的方法
RU2488445C1 (ru) Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты)
Fregolente et al. New proposal for sugarcane vinasse treatment by hydrothermal carbonization: an evaluation of solid and liquid products
Nayak et al. Transformation of agro-biomass into vanillin through novel membrane integrated value-addition process: a state-of-art review
RU2515319C2 (ru) Способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты)
Xu et al. Review on the oxidative catalysis methods of converting lignin into vanillin
JP4501028B2 (ja) 酢酸の製造方法
Chaudhary et al. Assessment of pretreatment strategies for valorization of lignocellulosic biomass: path forwarding towards lignocellulosic biorefinery
RU2425715C1 (ru) Синтез многофункционального самонастраивающегося катализатора окислительного крекинга органического сырья и его применение
CN106753504B (zh) 一种生物质液化生产液体燃料的方法
KR20150144128A (ko) 알릴 알콜로부터 아크릴산 제조용 불균일계 촉매, 이를 이용한 알릴 알콜로부터 아크릴산을 제조하는 방법
Ghobadi Nejad et al. Effect of polyethylene glycol and triton x-100 on the enzymatic treatment of bisphenol a
Sharma et al. Wheat straw waste utilization for nanoparticles synthesis and their various applications
RU2370478C2 (ru) Способ получения оксигуматов из торфа
Jose et al. Structure, Properties, and functions of manganese peroxidase for enzymatic pretreatment of waste Biomass
RU2281930C2 (ru) Способ получения гуминовых кислот и их солей
JP2000103759A (ja) ソルビン酸又はその塩の製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140427