RU2483490C2 - Скремблирование восходящей линии связи во время произвольного доступа - Google Patents

Скремблирование восходящей линии связи во время произвольного доступа Download PDF

Info

Publication number
RU2483490C2
RU2483490C2 RU2010108231/07A RU2010108231A RU2483490C2 RU 2483490 C2 RU2483490 C2 RU 2483490C2 RU 2010108231/07 A RU2010108231/07 A RU 2010108231/07A RU 2010108231 A RU2010108231 A RU 2010108231A RU 2483490 C2 RU2483490 C2 RU 2483490C2
Authority
RU
Russia
Prior art keywords
user terminal
random access
base station
message
uplink
Prior art date
Application number
RU2010108231/07A
Other languages
English (en)
Other versions
RU2010108231A (ru
Inventor
Стефан ПАРКВАЛЛЬ
Тобиас ТИНДЕРФЕЛЬДТ
Эрик ДАЛЬМАН
Original Assignee
Телефонактиеболагет Лм Эрикссон (Пабл)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40341531&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2483490(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Телефонактиеболагет Лм Эрикссон (Пабл) filed Critical Телефонактиеболагет Лм Эрикссон (Пабл)
Publication of RU2010108231A publication Critical patent/RU2010108231A/ru
Application granted granted Critical
Publication of RU2483490C2 publication Critical patent/RU2483490C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Abstract

Изобретение относится к технике связи. Технический результат заключается в снижении помех. Технология, описанная в данном случае, обеспечивает произвольный доступ к базовой радиостанции с помощью пользовательского терминала. Пользовательский терминал определяет одну из скремблирующих последовательностей восходящей линии связи первого типа и генерирует сообщение произвольного доступа, используя определенную одну из скремблирующих последовательностей восходящей линии связи первого типа. Сообщение произвольного доступа передают к базовой станции. Пользовательский терминал принимает от базовой станции вторую скремблирующую последовательность восходящей линии связи отличающегося типа и использует ее для последующего осуществления связи с базовой радиостанцией. Например, первая из скремблирующих последовательностей восходящей линии связи может быть связана с конкретной областью ячейки базовой радиостанции или с конкретным радиоканалом произвольного доступа, связанным с базовой радиостанцией, но их конкретно не назначают ни одному из пользовательских терминалов, а вторую скремблирующую последовательность восходящей линии связи можно выбирать из второго набора скремблирующих последовательностей восходящей линии связи, назначенных отдельным конкретным пользовательским терминалам. 4 н. и 12 з.п. ф-лы, 10 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Область техники относится к мобильной радиосвязи, в частности к осуществлению связи по восходящей линии связи, в которой участвуют мобильные радиотерминалы в системе мобильной радиосвязи.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Универсальная система мобильной связи (UMTS) является асинхронной системой мобильной связи 3-го поколения (3G), работающей с помощью широкополосного множественного доступа с кодовым разделением (WCDMA), основанной на европейских системах, глобальной системе связи с подвижными объектами (GSM) и пакетной радиосвязи общего назначения (GPRS). Система долгосрочного развития (LTE) UMTS разрабатывается Проектом партнерства 3-го поколения (3GPP), который стандартизировал UMTS. Существует множество технических спецификаций, которые находятся на вебсайте 3GPP, относящихся к эволюционному универсальному наземному радиодоступу (E-UTRA) и к сети эволюционного универсального наземного радиодоступа (E-UTRAN), например 3GPP TS 36.300. Цель работы LTE состоит в разработке структуры для развития технологии радио-доступа 3GPP в направлении высокоскоростной передачи данных, с низким временем ожидания и оптимизированной для пакетов технологии радио-доступа. В частности, LTE нацеливается на поддержку услуг, обеспечиваемых в области связи с коммутацией пакетов (PS). Главной целью технологии LTE 3GPP является обеспечение высокоскоростной пакетной связи со скоростью приблизительно 100 Мбит/с или выше.
Фиг.1 показывает пример системы 10 мобильной связи типа LTE. E-UTRAN 12 включает в себя узлы E-UTRAN NodeB (eNodeB или eNB) 18, которые обеспечивают завершение протокола в пользовательской плоскости и в управляющей плоскости E-UTRA для пользовательского оборудования (UE) 20 по радио-интерфейсу. Хотя eNB является логическим узлом, часто, но не обязательно воплощаемым с помощью физической базовой станции, термин «базовая станция» используется в данной работе, чтобы в общем случае охватывать и логические, и физические узлы. UE иногда упоминается как мобильный радио-терминал, и в состоянии ожидания он контролирует системную информацию, передаваемую к eNB в пределах диапазона, для получения информации о базовых станциях-«кандидатах» в зоне обслуживания. Когда UE необходим доступ к услугам сети радио-доступа, оно посылает запрос по каналу произвольного доступа (RACH) к соответствующему узлу eNB, обычно к eNB с самыми благоприятными условиями радиосвязи. Узлы eNB связаны друг с другом посредством интерфейса X2. eNB также подключены посредством интерфейса S1 к ядру эволюционной пакетной системы (EPC) 14, которое включает в себя модуль управления подвижностью (MME), с помощью S1-MME, и к шлюзу эволюционной системной архитектуры (SAE) с помощью S1-U. В данном примере на MME/шлюз SAE ссылаются как на один узел 22. Интерфейс S1 поддерживает отношения «многие со многими» между MME/шлюзами SAE и eNB. E-UTRAN 12 и EPC 14 вместе формируют наземную сеть мобильной связи общего пользования (PLMN). MME/шлюзы SAE 22 соединяют непосредственно или опосредованно с Интернет 16 и с другими сетями.
Для предоставления возможности работы при различных распределениях диапазона частот, например для обеспечения плавного перехода от существующих систем сотовой связи к новой с большой емкостью высокоскоростной системе передачи данных в существующем радио-спектре, необходима работа в гибком диапазоне частот, например в диапазоне частот в пределах от 1,25 МГц до 20 МГц, для передач нисходящей линии связи от сети к UE. Необходимо поддерживать и услуги по высокоскоростной передаче данных, и услуги с низкой скоростью, такие как передача голоса, и поскольку LTE 3G разработан для протокола TCP/IP, услугой по передаче речи, вероятно, будет VoIP.
Передача по восходящей линии связи LTE основана на так называемой передаче OFDM с расширением спектра с помощью дискретного преобразования Фурье (DFTS-OFDM), с низким отношением пиковой к средней мощности (PAPR), со схемой передачи с одной несущей (SC), которая учитывает свободное назначение диапазона частот, и на ортогональном множественном доступе не только во временной области, но также и в частотной области. Таким образом, схема передачи по восходящей линии связи LTE также часто упоминается как FDMA с одной несущей (SC-FDMA).
Обработка транспортного канала восходящей линии связи LTE представлена на фиг.2. Транспортный блок динамического размера доставляют от уровня управления доступом к среде передачи данных (MAC). Циклический избыточный код (ЦИК), который будет использоваться для обнаружения ошибок в приемнике базовой станции, вычисляют для блока и присоединяют к нему. Затем выполняют канальное кодирование восходящей линии связи с помощью канального кодера, который может использовать любую подходящую методику кодирования. В LTE код может быть турбокодом, который включает в себя основанный на квадратном полиноме перестановки (QPP) внутренний перемежитель для выполнения перемежения блоков как часть турбокодера. Гибридный автоматический запрос повторной передачи (ARQ) восходящей линии связи LTE извлекает из блока кодированных битов, доставленных канальным кодером, точный набор битов, которые будут передавать в каждый момент передачи/повторной передачи. Блок скремблирования скремблирует кодированные биты в восходящей линии связи LTE (например, с помощью скремблирования на битовом уровне) для рандомизации помех и, таким образом, для обеспечения полного использования усиления обработки, обеспеченного кодом канала.
Для обеспечения этой рандомизации помех скремблирование восходящей линии связи является конкретным для мобильного терминала, т.е. различные мобильные терминалы (UE) используют различные скремблирующие последовательности. Конкретное для терминала скремблирование также обеспечивает блоку планирования (распределения ресурсов) возможность планировать множество пользователей на том же самом частотно-временном ресурсе, разделение передач от множества пользователей основывается на обработке в приемнике базовой станции. Конкретное для терминала скремблирование рандомизирует помехи от других мобильных терминалов в той же самой ячейке, которые, как оказалось, запланированы на том же самом ресурсе, и улучшает производительность.
После скремблирования данные модулируют для преобразования блока кодированных/скремблированных битов в блок символов сложной модуляции. Набор схем модуляции, поддерживаемых для примерной восходящей линии связи LTE, включает в себя квадратурную фазовую манипуляцию (QPSK), 16-уровневую квадратурную амплитудную модуляцию (16QAM) и 64-уровневую квадратурную амплитудную модуляцию (64QAM), которые соответствуют двум, четырем и шести битам на символ модуляции соответственно. Блок символов модуляции затем применяют к модулятору DFTS-OFDM, который также отображает сигнал на назначенный радио-ресурс, например частотный поддиапазон.
Вместе с модулированными символами данных сигнал, отображенный в назначенный диапазон частот, также содержит опорные сигналы демодуляции. Опорные сигналы известны заранее и мобильному терминалу (UE), и базовой станции (eNodeB) и используются приемником для оценки канала и демодуляции символов данных. Различные опорные сигналы можно назначать пользовательским терминалам по аналогичным причинам, чтобы можно было использовать характерные для терминала коды скремблирования, т.е. интеллектуально планировать множество пользователей на том же самом частотно-временном ресурсе и таким образом реализовывать так называемые многопользовательские системы MIMO (с множеством входов и множеством выходов). В случае многопользовательских систем MIMO eNodeB выполняет обработку для разделения сигналов, передаваемых от двух (или большего количества) UE, одновременно запланированных на том же самом частотном ресурсе в той же самой ячейке. Терминалам, которые одновременно запланированы на том же самом частотном ресурсе, обычно назначают различные (например, ортогональные) опорные сигнальные последовательности, чтобы eNodeB оценивали радио-каналы для каждого из этих UE.
Основным требованием для любой сотовой или другой системы радио-связи является обеспечение пользовательскому терминалу возможности запрашивать установку соединения. Эта возможность обычно известна как произвольный доступ, и она соответствует двум основным целям в LTE, а именно установлению синхронизации восходящей линии связи с распределением временных интервалов базовой станции и установлению уникальной идентификационной информации пользовательского терминала, например временного идентификатора сотовой радиосети (C-RNTI) в LTE, известного и сети, и пользовательскому терминалу, который используется при осуществлении связи, чтобы различать передачу данных пользователя от других передач данных.
Но во время (начальной) процедуры произвольного доступа при передаче по восходящей линии связи от пользовательского терминала нельзя использовать характерные для терминала скремблирующие последовательности или опорные числа для рандомизации помех, потому что с помощью начального сообщения запроса произвольного доступа от пользовательского терминала только что начали осуществление связи с сетью, и ни конкретный для терминала скремблирующий код, ни конкретное для терминала опорное число не были назначены этому пользовательскому терминалу. Необходим механизм, который предоставляет возможность скремблировать сообщения произвольного доступа, посылаемые по совместно используемому каналу восходящей линии связи, пока конкретный для терминала код скремблирования не может быть назначен пользовательскому терминалу. Одной из причин скремблирования сообщений произвольного доступа является рандомизация помех между ячейками, что также является причиной для скремблирования во время «обычной» передачи данных по восходящей линии связи. В последнем случае скремблирование можно также использовать для подавления помех внутри ячейки в случае множества UE, запланированных на том же самом частотно-временном ресурсе. Точно так же желательно, чтобы пользовательские терминалы передавали известные опорные сигналы во время произвольного доступа для предоставления возможности приемнику базовой станции оценивать канал восходящей линии связи. Необходимо, чтобы сообщения произвольного доступа, а также «обычные» передачи данных восходящей линии связи включали в себя опорные сигналы для предоставления возможности оценки канала в eNodeB и соответствующей когерентной демодуляции.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Описанная ниже технология обеспечивает произвольный доступ с помощью пользовательского терминала к базовой радиостанции. Пользовательский терминал определяет одну из скремблирующих последовательностей восходящей линии связи первого типа и генерирует сообщение произвольного доступа, используя определенную одну из скремблирующих последовательностей восходящей линии связи первого типа. Его передатчик передает сообщение произвольного доступа к базовой радиостанции. Приемник пользовательского терминала затем принимает от базовой станции скремблирующую последовательность восходящей линии связи второго отличающегося типа. Терминал использует эту скремблирующую последовательность восходящей линии связи второго отличающегося типа для последующего осуществления связи с базовой радиостанцией. В одном из неограничивающих примерных вариантов осуществления скремблирующие последовательности восходящей линии связи первого типа могут быть связаны с конкретной областью ячейки базовой радиостанции или с конкретным радиоканалом произвольного доступа, связанным с базовой радиостанцией, но они конкретно не назначены ни одному из пользовательских терминалов, а скремблирующие последовательности восходящей линии связи второго отличающегося типа можно выбирать из второго набора скремблирующих последовательностей восходящей линии связи, назначенных конкретным пользовательским терминалам. Использование этих скремблирующих последовательностей двух отличающихся типов предоставляет возможность пользовательским терминалам скремблировать свои передачи сигнала восходящей линии связи даже при том, что характерные для терминала коды скремблирования не могут использоваться в восходящей линии связи во время произвольного доступа с помощью пользовательских терминалов.
Пользовательский терминал передает первое сообщение запроса произвольного доступа, включающее в себя преамбулу произвольного доступа, в базовую радиостанцию, используя радио-ресурс канала произвольного доступа. Затем принимают от базовой радиостанции второе сообщение ответа произвольного доступа, которое указывает корректировку распределения временных интервалов, идентифицированный радио-ресурс и временный идентификатор пользовательского терминала. Терминал корректирует распределение временных интервалов в пользовательском терминале для передачи сигналов к базовой радиостанции, основываясь на информации, принимаемой в сообщении ответа произвольного доступа, и основываясь на откорректированном распределении временных интервалов, передает третье сообщение, соответствующее сгенерированному сообщению произвольного доступа, включающее в себя полную идентифицирующую информацию пользовательского терминала, в базовую радиостанцию по идентифицированному радио-ресурсу. Третье сообщение скремблируют, используя определенную одну из скремблирующих последовательностей восходящей линии связи первого типа, модулируют и отображают в ресурс радио-канала. Терминал принимает четвертое сообщение разрешения конфликтов от базовой радиостанции для завершения процедуры произвольного доступа, и затем следует обычное осуществление связи.
Различные неограничивающие варианты осуществления отображают первый набор скремблирующих последовательностей восходящей линии связи в некоторый другой параметр, известный пользовательскому терминалу и базовой станции. Например, первый набор скремблирующих последовательностей восходящей линии связи можно отображать в соответствующие последовательности преамбулы произвольного доступа. Одну из первого набора скремблирующих последовательностей восходящей линии связи можно затем выбирать, основываясь на преамбуле произвольного доступа, которую включает в себя первое сообщение запроса произвольного доступа, и на этом отображении. Другой пример отображает первый набор скремблирующих последовательностей восходящей линии связи в соответствующие идентификаторы пользовательского терминала и выбирает одну из первого набора скремблирующих последовательностей восходящей линии связи, основываясь на идентификаторе пользовательского терминала, включенного в состав второго сообщения ответа произвольного доступа, и на этом отображении. Третий пример отображает первый набор скремблирующих последовательностей восходящей линии связи в соответствующие радио-ресурсы, используемые для передачи сообщения запроса произвольного доступа, и выбирает одну из первого набора скремблирующих последовательностей восходящей линии связи, основываясь на радио-ресурсе канала произвольного доступа, используемом для передачи в базовую радиостанцию первого сообщения запроса произвольного доступа, которое включает в себя преамбулу произвольного доступа, и на этом отображении.
Подход скремблирующих последовательностей двух типов также можно использовать для опорных сигналов, внедряемых в сообщения произвольного доступа восходящей линии связи, посылаемых в базовую станцию, которые используются базовой станцией для оценки канала восходящей линии связи, например, в целях выравнивания и т.д. Выбирают одну из первого набора опорных последовательностей восходящей линии связи, например опорных последовательностей восходящей линии связи, которые связаны с конкретной областью ячейки базовой радиостанции или с конкретным каналом произвольного доступа, но которые конкретно не назначены ни одному из пользовательских терминалов. Сообщение произвольного доступа генерируют, используя выбранную одну из первого набора скремблирующих последовательностей восходящей линии связи и выбранную одну из первого набора опорных последовательностей восходящей линии связи. Пользовательский терминал передает сообщение произвольного доступа к базовой радиостанции. После этого базовая станция сообщает пользовательскому терминалу опорную последовательность второго отличающегося типа для использования при последующем осуществлении связи восходящей линии связи, например, опорное число, назначенное конкретно этому пользовательскому терминалу.
В одной из неограничивающих примерных реализаций пользовательский терминал и базовую станцию конфигурируют для осуществления связи с системой радиосвязи долгосрочного развития (LTE) с помощью пользовательского терминала, передающего первое сообщение запроса произвольного доступа по каналу произвольного доступа (RACH), а третье сообщение - по совместно используемому каналу восходящей линией связи (UL-SCH). Идентификатор пользовательского терминала, посылаемый базовой станцией во втором сообщении, может быть временным идентификатором пользовательского терминала, используемым до тех пор, пока идентификатор терминала радиосети (RNTI) не назначен пользовательскому терминалу.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 является примером системы мобильной радиосвязи LTE;
фиг.2 является блок-схемой последовательности операций, иллюстрирующей неограничивающие примерные процедуры для подготовки транспортного блока, доставляемого от уровня доступа к среде передачи данных пользовательского терминала для передачи по радио-интерфейсу к сети в системе мобильной радиосвязи LTE;
фиг.3 является блок-схемой последовательности операций, иллюстрирующей неограничивающие примерные процедуры для выполнения пользовательским терминалом произвольного доступа к сети радиосвязи;
фиг.4 является блок-схемой последовательности операций, иллюстрирующей неограничивающие примерные процедуры для приема и обработки базовой станцией произвольного доступа от пользовательского терминала к сети радиосвязи;
фиг.5A и 5B показывают отображение между транспортными и физическими каналами в нисходящей линии связи и восходящей линии связи соответственно;
фиг.6 является схемой, показывающей три основных состояния пользовательского терминала;
фиг.7 является схемой сигналов, которая показывает неограничивающую примерную процедуру произвольного доступа;
фиг.8 показывает неограничивающий пример передачи преамбулы произвольного доступа; и
фиг.9 является неограничивающей примерной структурной функциональной схемой пользовательского терминала и базовой станции eNodeB.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
В следующем описании в целях объяснения, но не в качестве ограничения, сформулированы конкретные подробности, такие как конкретные узлы, функциональные модули, методики, протоколы, стандарты и т.д., для обеспечения понимания описанной технологии. В других случаях подробные описания известных способов, устройств, методик и т.д. опущены, чтобы не затенять описание ненужными подробностями. На фигурах показаны отдельные функциональные блоки. Специалисты должны признать, что функции этих блоков можно воплощать, используя отдельные аппаратные схемы, используя программы и данные вместе с соответствующим образом запрограммированным микропроцессором или универсальным компьютером, используя специализированные интегральные схемы (СпИС), программируемые логические матрицы и/или используя один или большее количество процессоров цифровой обработки сигналов (ПЦОС).
Специалистам будет очевидно, что другие варианты осуществления можно воплощать независимо от раскрытых ниже конкретных подробностей. Технология описана в контексте эволюционной системы UMTS 3GPP, такой как LTE, для обеспечения примерного и неограничивающего контекста для объяснения. См., например, схему системы LTE, показанную на фиг.1. Но эта технология не ограничена LTE и может использоваться в любой современной системе радиосвязи. Кроме того, приведенный ниже подход, в котором используются две скремблирующие последовательности различного типа - одна для произвольного доступа, и одна для связи после завершения произвольного доступа, - можно также применять к известным опорным сигналам оценки канала (которые иногда называют пилот-сигналами). Однако подробное объяснение обеспечивают, используя скремблирующие последовательности, с пониманием, что аналогичные подробности относятся к опорным сигналам. Для простоты описания пользовательское оборудование (UE) часто упоминается без ограничения как пользовательский терминал или мобильный терминал, и eNodeB относится к использованию более общего и знакомого термина «базовая станция».
Фиг.3 является блок-схемой последовательности операций, иллюстрирующей неограничивающие примерные процедуры для выполнения пользовательским терминалом произвольного доступа к сети радиосвязи, используя скремблирующий код восходящей линии связи, который в общем случае доступен для всех пользовательских терминалов, которым необходимо получить услугу произвольного доступа в определенной ячейке. Пользовательский терминал обнаруживает скремблирующую последовательность восходящей линии связи первого типа, например скремблирующую последовательность восходящей линии связи, связанную с конкретной областью ячейки базовой радиостанции или с конкретным каналом произвольного доступа, но которая конкретно не назначена ни одному из пользовательских терминалов (этап S1). Определяют выбранную одну из скремблирующих последовательностей восходящей линии связи первого типа (этап S2) и генерируют сообщение произвольного доступа, используя выбранную одну из скремблирующих последовательностей восходящей линии связи первого типа (этап S3). Пользовательский терминал передает сообщение произвольного доступа к базовой радиостанции (этап S4). После передачи сообщения произвольного доступа пользовательский терминал принимает от базовой радиостанции скремблирующую последовательность восходящей линии связи второго отличающегося типа, например скремблирующую последовательность восходящей линии связи, выбранную из второго набора скремблирующих последовательностей восходящей линии связи, назначенных конкретным пользовательским терминалам (этап S5). Пользовательский терминал использует скремблирующую последовательность восходящей линии связи второго типа для последующей связи с базовой радиостанцией. Аналогичные процедуры можно использовать для известных опорных сигналов восходящей линии связи.
Фиг.4 является блок-схемой последовательности операций, иллюстрирующей неограничивающие примерные аналогичные процедуры для приема и обработки базовой станцией произвольного доступа пользовательского терминала к сети радиосвязи. У каждой базовой станции в сети существует свой собственный набор последовательностей преамбул, опорных сигналов и не являющихся конкретными для терминала скремблирующих кодов или последовательностей. Базовая станция передает, неявно или явно, например, по каналу широковещания BCH свой набор преамбул и скремблирующих последовательностей восходящей линии связи (этап S10). Если базовая станция не передает явно скремблирующую последовательность, которая будет использоваться, то она передает идентификационную информацию ячейки, из которой скремблирующую последовательность для использования можно получить, например, через отображение между идентификатором ячейки и последовательностью. Скремблирующая последовательность восходящей линии связи может быть, например, связана с конкретной областью ячейки базовой радиостанции или с конкретным каналом произвольного доступа и конкретно не назначена ни одному из пользовательских терминалов. Базовая станция затем ждет приема первого сообщения запроса произвольного доступа от пользовательского терминала, которое включает в себя одну из преамбул базовой станции. В ответ базовая станция передает на один из пользовательских терминалов второе сообщение ответа произвольного доступа, указывающее коррекцию распределения временных интервалов, идентифицированный радио-ресурс и идентификатор пользовательского терминала. Третье сообщение, соответствующее сгенерированному сообщению произвольного доступа, которое включает в себя идентифицирующую информацию пользовательского терминала, дескремблируют, используя выбранную одну из первого набора скремблирующих последовательностей восходящей линии связи (этап S11). После этого базовая станция передает на пользовательский терминал четвертое сообщение, включающее в себя скремблирующую последовательность восходящей линии связи второго отличающегося типа, выбранную, например, из второго набора скремблирующих последовательностей восходящей линии связи. Скремблирующие последовательности восходящей линии связи назначают конкретным пользовательским терминалам (этап S12). Пользовательский терминал использует вторую скремблирующую последовательность восходящей линии связи для последующей связи с базовой радиостанцией. Аналогичные процедуры можно применять для известных опорных сигналов восходящей линии связи.
Чтобы лучше понять последующую примерную и неограничивающую процедуру произвольного доступа LTE, обращаются к фиг.5A и 5B, на которых показывают отображение между транспортными и физическими каналами в нисходящей линии связи и восходящей линии связи соответственно. Следующие каналы являются транспортными каналами нисходящей линии связи: канал широковещания (BCH), канал поискового вызова (PCH), совместно используемый канал нисходящей линии связи (DL-SCH) и канал мультивещания (MCH). BCH отображают в физический канал широковещания (PBCH), а PCH и DL-SCH отображают в физический совместно используемый канал нисходящей линии связи (PDSH). Транспортные каналы восходящей линии связи включают в себя канал произвольного доступа (RACH) и совместно используемый канал восходящей линии связи (UL-SCH). RACH отображают в физический канал произвольного доступа (PRACH), а UL-SCH отображают в физический совместно используемый канал восходящей линии связи (PUSCH).
В LTE, как в других системах мобильной радиосвязи, мобильный терминал может находиться в нескольких различных рабочих состояниях. Фиг.6 показывает эти состояния для LTE. При включении питания мобильный терминал входит в состояние LTE_DETACHED (неподсоединенное состояние). В этом состоянии мобильный терминал не известен сети. Прежде чем дальнейшее осуществление связи может происходить между мобильным терминалом и сетью, мобильный терминал должен зарегистрироваться в сети, используя процедуру произвольного доступа, чтобы войти в состояние LTE_ACTIVE (активное состояние). Состояние LTE_DETACHED является главным образом состоянием, используемым при включении питания. Когда мобильный терминал зарегистрировался в сети, он обычно находится в одном из других состояний: LTE_ACTIVE или LTE_IDLE (состоянии ожидания).
LTE_ACTIVE является состоянием, которое используется, когда мобильный терминал активен при передаче и приеме данных. В этом состоянии мобильный терминал подключен к определенной ячейке в пределах сети. Мобильному терминалу назначают один или несколько адресов Интернет-протокола (IP) или адресов пакетных данных другого типа, а также идентифицирующую информацию терминала, временный идентификатор ячейки радиосети (C-RNTI), используемые для обмена сигналами между мобильным терминалом и сетью. Состояние LTE_ACTIVE включает в себя два подсостояния, IN_SYNC и OUT_OF_SYNC, в зависимости от того, синхронизирована ли восходящая линия связи с сетью или нет. Пока восходящая линия связи находится в IN_SYNC, возможны передачи пользовательских данных по восходящей линии связи и обмен сигналами управления нижнего уровня. Если передача по восходящей линии связи не происходит в пределах данного окна времени, то объявляют, что восходящая линия связи вышла из синхронизации, в этом случае мобильный терминал должен выполнить процедуру произвольного доступа для восстановления синхронизации восходящей линии связи.
LTE_IDLE является состоянием с низким уровнем активности, в котором мобильный терминал бездействует большую часть времени для уменьшения потребления батареи. Синхронизация восходящей линии связи не поддерживается, и, следовательно, единственной деятельностью по передаче по восходящей линии связи, которая может происходить, является произвольный доступ для перехода в LTE_ACTIVE. Мобильный терминал сохраняет свой IP-адрес (а) и другую внутреннюю информацию для быстрого перехода в LTE_ACTIVE, когда это необходимо. Местоположение мобильного терминала частично известно сети, так что сеть знает по меньшей мере группу ячеек, в которых необходимо выполнять поисковый вызов мобильного терминала.
Неограничивающая примерная процедура произвольного доступа показана на фиг.7 и включает в себя четыре этапа, называемые этапами 1-4, с четырьмя соответствующими сигнальными сообщениями, называемыми сообщениями 1-4. Базовая станция передает набор преамбул, связанных с этой базовой станцией, информацию ресурса RACH и другую информацию в широковещательном сообщении, посылаемом регулярно по каналу широковещания, который регулярно сканируют активные мобильные терминалы. На первом этапе после того, как пользовательский терминал принимает и декодирует информацию, передаваемую базовой станцией (eNodeB), он выбирает одну из преамбул произвольного доступа базовой станции и передает ее по RACH. Базовая станция контролирует RACH и обнаруживает преамбулу, которая предоставляет возможность базовой станции оценивать распределение временных интервалов передачи пользовательского терминала. Синхронизация восходящей линии связи необходима для предоставления возможности терминалу передавать к базовой станции данные по восходящей линии связи.
Преамбула произвольного доступа включает в себя известную последовательность, случайно выбранную мобильным терминалом из набора известных последовательностей преамбул, доступных для произвольного доступа к определенной базовой станции. Выполняя попытку произвольного доступа, терминал выбирает одну из последовательностей преамбул случайным образом из набора последовательностей преамбул, распределенных ячейке, к которой терминал пытается обратиться. До тех пор пока никакой другой терминал не выполняет попытку произвольного доступа, используя ту же самую последовательность преамбулы в тот же самый момент времени, конфликтные ситуации не возникают, и очень вероятно, что запрос произвольного доступа будет обнаружен базовой станцией. Пользовательский терминал передает преамбулу на радио-ресурсе канала, например на частотно-временном ресурсе, назначенном для произвольного доступа, например, RACH.
Фиг.8 показывает концептуально передачу преамбулы произвольного доступа согласно спецификации LTE, как в данном описании. Один из неограничивающих примеров генерации соответствующей преамбулы основан на последовательности Задофа-Чу (ZC) и ее циклически сдвинутых последовательностях. Последовательности Задофа-Чу могут также использоваться, например, для создания опорных сигналов восходящей линии связи, которые включают в себя каждый кадр данных для оценки канала.
Пользовательский терминал, выполняющий попытку произвольного доступа, перед передачей преамбулы получает синхронизацию нисходящей линии связи из процедуры поиска ячейки, используя информацию распределения временных интервалов, передаваемую базовой станцией. Но, как объяснено выше, распределение временных интервалов восходящей линии связи еще не установлено. Начало кадра передачи по восходящей линии связи в терминале определяют относительно начала кадра передачи по нисходящей линии связи в терминале. Из-за задержки распространения между базовой станцией и терминалом передача по восходящей линии связи будет задержана относительно распределения временных интервалов передачи по нисходящей линии связи в базовой станции. Поскольку расстояние между базовой станцией и терминалом неизвестно, существует неопределенность в распределении временных интервалов восходящей линии связи, которая соответствует удвоенному расстоянию между базовой станцией и терминалом. Для учета этой неопределенности и чтобы избежать помех с последующими субкадрами, не используемыми для произвольного доступа, используется защитный временной интервал.
Возвращаясь ко второму этапу обмена сигналами произвольного доступа, показанному на фиг.7, в ответ на обнаруженную попытку произвольного доступа базовая станция передает сообщение 2 ответа на запрос произвольного доступа по совместно используемому каналу нисходящей линии связи (DL-SCH). Сообщение 2 содержит индекс или другой идентификатор преамбулы произвольного доступа, который базовая станция обнаружила и для которого ответ является действительным, коррекцию распределения временных интервалов восходящей линии связи или команду продвижения вперед распределения временных интервалов, вычисленную базовой станцией после обработки принятой преамбулы произвольного доступа, предоставление распределения ресурсов, указывающее ресурсы, которые пользовательский терминал должен использовать для передачи сообщения в третьем сообщении, посылаемом от мобильного терминала к базовой станции, и временную идентифицирующую информацию пользовательского терминала, используемую для последующей связи между пользовательским терминалом и базовой станцией. После того как этап 2 закончен, пользовательский терминал синхронизирован по времени.
Если базовая станция обнаруживает множество попыток произвольного доступа (от различных пользовательских терминалов), то сообщения ответа на запрос произвольного доступа 2 для множества мобильных терминалов можно объединять в одной передаче. Поэтому сообщение 2 ответа на запрос произвольного доступа планируют на DL-SCH и указывают на физическом канале управления нисходящей линии связи (PDCCH), используя общую идентифицирующую информацию, зарезервированную для ответа произвольного доступа. PDCCH является каналом управления, используемым для информирования терминала о том, существуют ли данные по DL-SCH, предназначенному для этого терминала, и если да, то на каком частотно-временном ресурсе можно найти DL-SCH. Все пользовательские терминалы, которые передали преамбулу, контролируют PDCCH на наличие ответа произвольного доступа, передаваемого с использованием предварительно определенной общей идентифицирующей информации, используемой базовой станцией для всех ответов произвольного доступа.
На третьем этапе 3 пользовательский терминал передает необходимую информацию в сообщении 3 к сети, используя заданные ресурсы восходящей линии связи, назначенные в сообщении 2 ответа произвольного доступа и синхронизированные по восходящей линии связи. Передача сообщения восходящей линии связи на этапе 3 таким же образом, как «обычные» запланированные данные восходящей линии связи, т.е. по UL-SCH, вместо присоединения их к преамбуле на первом этапе, удобно по нескольким причинам. Во-первых, количество информации, передаваемой в отсутствие синхронизации по восходящей линии связи, необходимо минимизировать, поскольку потребность в большом защитном временном интервале делает такие передачи относительно дорогостоящими. Во-вторых, использование «обычной» схемы передачи по восходящей линии связи для передачи сообщения позволяет корректировать величину и схему модуляции предоставления распределения ресурсов, например, в зависимости от различных условий радиосвязи. В-третьих, оно предоставляет возможность объединения гибридного ARQ с программным обеспечением для сообщения восходящей линии связи, что может быть ценным, особенно в сценариях ограниченной зоны действия, поскольку это позволяет быть уверенным, что одна или несколько повторных передач соберут достаточную энергию для обмена сигналами по восходящей линии связи, чтобы гарантировать достаточно высокую вероятность успешной передачи. Мобильный терминал передает свою временную идентифицирующую информацию мобильного терминала, например временный C-RNTI, на третьем этапе к сети, используя UL-SCH. Точное содержимое этого сообщения зависит от состояния терминала, например известен ли он ранее сети или нет.
До тех пор пока терминалы, которые выполняют произвольный доступ одновременно, используют различные последовательности преамбулы, конфликтная ситуация не возникает. Но существует определенная вероятность конфликта, когда множество терминалов используют ту же самую преамбулу произвольного доступа одновременно. В этом случае множество терминалов реагируют на то же самое сообщение ответа нисходящей линии связи на этапе 2, и на этапе 3 возникает конфликтная ситуация. Разрешение конфликтов выполняют на этапе 4.
На этапе 4 сообщение разрешения конфликтов передают с базовой станции на терминал по DL-SCH. На этом этапе разрешают конфликт в случае, когда множество терминалов пытаются обратиться к системе на том же самом ресурсе, с помощью идентификации, какой из пользовательских терминалов был обнаружен на третьем этапе. Множество терминалов, выполняющие одновременные попытки произвольного доступа, используя ту же самую последовательность преамбулы на этапе 1, анализируют то же самое сообщение ответа на этапе 2 и поэтому имеют тот же самый временный идентификатор пользовательского терминала. Таким образом на этапе 4 каждый терминал, принимающий сообщение нисходящей линии связи, сравнивает идентифицирующую информацию пользовательского терминала в данном сообщении с идентифицирующей информацией пользовательского терминала, которую они передали на третьем этапе. Только пользовательский терминал, у которого существует соответствие между идентифицирующей информацией, принятой на четвертом этапе, и идентифицирующей информацией, переданной как часть третьего этапа, определяет процедуру произвольного доступа как успешную. Если терминалу еще не назначен C-RNTI, то временную идентифицирующую информацию от второго этапа продвигают в C-RNTI; иначе пользовательский терминал сохраняет свой уже назначенный C-RNTI. Терминалы, которые не обнаруживают соответствие с идентифицирующей информацией, принятой на четвертом этапе, должны перезапускать процедуру произвольного доступа с первого этапа.
Как объяснено выше, идентифицирующая информация пользовательского терминала, которую включает в себя сообщение 3, используется в качестве части механизма разрешения конфликтов на четвертом этапе. Продолжая обсуждение неограничивающего примера LTE, если пользовательский терминал находится в состоянии LTE_ACTIVE, т.е. подключен к известной ячейке и поэтому имеет назначенный C-RNTI, этот C-RNTI используется в качестве идентифицирующей информации терминала в сообщении восходящей линии связи. Иначе используется идентификатор терминала базовой сети связи, и базовая станция должна привлекать базовую сеть связи перед ответом на сообщение восходящей линии связи на третьем этапе.
В этом неограничивающем примере LTE только первый этап использует обработку физического уровня, конкретно разработанную для произвольного доступа. Последние три этапа используют ту же самую обработку физического уровня, как при «обычной» передаче сигнала восходящей линии связи и нисходящей линии связи, что упрощает реализацию и терминала, и базовой станции. Поскольку схема передачи, используемая для передачи данных, предназначена для обеспечения большей универсальности диапазонов частот и большей емкости, то желательно использовать преимущество этих особенностей также при обмене сообщениями произвольного доступа.
В примерном неограничивающем контексте LTE общие этапы обработки, описанные на фиг.2, включающие в себя ЦИК, кодирование, HARQ, скремблирование, модуляцию и модуляцию DFT-S-OFDM, применяют с помощью пользовательского терминала к сообщению 3 на фиг.7 и к последующим передачам восходящей линии связи от этого пользовательского терминала к базовой станции (нет скремблирования в начальном сообщении произвольного доступа восходящей линии связи на этапе 1). Различные скремблирующие последовательности восходящей линии связи в терминале зависят от типа передачи восходящей линии связи. Для сообщения 3 произвольного доступа используют скремблирующую последовательность первого типа, например конкретный для ячейки или конкретный для канала произвольного доступа скремблирующий код. Для последующих «обычных» передач данных по восходящей линии связи, т.е. когда базовая станция назначила терминалу не являющуюся временной идентифицирующую информацию, используется второй тип скремблирующей последовательности, например конкретный для терминала скремблирующий код. Аналогичный подход с двумя типами может использоваться для опорных сигналов восходящей линии связи, используемых базовой станцией для оценки канала: первый тип, например, конкретный для ячейки или конкретный для канала произвольного доступа эталонный сигнал для сообщения 3 произвольного доступа, сопровождаемый вторым типом, например назначенным для базовой станции или соответствующей опорной сигнальной последовательностью восходящей линии связи для последующих «обычных» передач данных.
Когда базовая станция назначает мобильному терминалу скремблирующую последовательность и/или опорную последовательность, данная характерная для терминала скремблирующая последовательность и/или опорная последовательность используются для всех последующих передач данных по восходящей линии связи для этого конкретного соединения по восходящей линии связи. Скремблирующую последовательность и/или опорную последовательность, которая будет использоваться, можно или явно конфигурировать в мобильном терминале, или они могут быть привязаны к идентифицирующей информации терминала (например, C-RNTI), которую базовая станция назначает мобильному терминалу.
В указанном выше случае пользовательский терминал использует конкретную для ячейки скремблирующую последовательность для скремблирования сообщения 3, потому что перед выполнением произвольного доступа пользовательский терминал декодировал широковещательную информацию базовой станции/ячейки и поэтому знает идентифицирующую информацию ячейки, к которой он обращается, преамбулы произвольного доступа, связанные с этой ячейкой, и характерные для ячейки скремблирующие последовательности и/или опорные числа. До тех пор пока множеству терминалов, выполняющих произвольный доступ одновременно, назначают различные частотно-временные ресурсы для их соответствующего сообщения 3 произвольного доступа восходящей линии связи, нет никаких помех между этими пользователями и нехватка межпользовательской рандомизации не является проблемой.
В неограничивающем варианте осуществления взаимно однозначное отображение вводят между последовательностью преамбулы произвольного доступа, используемой в сообщении запроса произвольного доступа, посылаемом на этапе 1 на фиг.7, и скремблирующей последовательностью, используемой для скремблирования сообщения произвольного доступа, посылаемого на этапе 3. Поскольку и базовая станция, и пользовательский терминал знают преамбулу, используемую для сообщения запроса произвольного доступа, посылаемого на этапе 1, к тому времени, когда сообщение 3 должно быть передано, оба знают, какую скремблирующую последовательность необходимо использовать.
В другом неограничивающем варианте осуществления базовая станция назначает скремблирующую последовательность пользовательскому терминалу для использования для скремблирования сообщения 3 как часть ответа на запрос произвольного доступа, передаваемого на этапе 2 на фиг.7 (т.е. перед передачей сообщения 3). В качестве одного из примеров, это можно делать с помощью установления взаимно однозначного отображения между временным пользовательским идентификатором, посылаемом в сообщении 2, например временным C-RNTI, и скремблирующей последовательностью для использования.
Еще один неограничивающий вариант осуществления связывает скремблирующую последовательность, которая будет использоваться пользовательским терминалом для скремблирования сообщения 3, с частотно-временным ресурсом (ами), используемым пользовательским терминалом для передачи преамбулы произвольного доступа (сообщение 1). В этом случае скремблирующая последовательность будет известна и базовой станции, и пользовательскому терминалу, потому что оба знают частотно-временные ресурсы, используемые для первого сообщения запроса произвольного доступа. Для этого варианта осуществления скремблирующая последовательность будет совместно использоваться всеми пользовательскими терминалами, передающими преамбулу запроса произвольного доступа на том же самом частотно-временном ресурсе (ах). Но до тех пор, пока всем этим терминалам назначают различные частотно-временные ресурсы для их собственного сообщения 3 произвольного доступа, не существует помех между этими пользователями и нехватка межпользовательской рандомизации не является проблемой.
Можно также использовать комбинации одного или большего количества из четырех различных примерных вариантов осуществления. Снова принципы, описанные в указанном выше примере скремблирующих последовательностей и в этих четырех вариантах осуществления, можно также использовать к опорным числам восходящей линии связи, используемым для оценки канала восходящей линии связи. Другими словами, один общий или совместно используемый тип опорного числа можно использовать для сообщения 3 произвольного доступа восходящей линии связи, а другой конкретный для терминала тип опорного числа можно использовать для последующей связи по восходящей линии связи, связанной с данным соединением.
Могут существовать ситуации, когда пользовательскому терминалу уже назначили идентифицирующую информацию, но он все равно должен выполнять произвольный доступ. Одним из примеров является то, когда терминал зарегистрирован в сети, но теряет синхронизацию в восходящей линии связи и, следовательно, должен выполнить попытку произвольного доступа для восстановления синхронизации восходящей линии связи. Хотя пользовательскому терминалу назначали идентифицирующую информацию, конкретное для терминала скремблирование не может использоваться для сообщения 3 в этом случае, поскольку сеть не знает, почему терминал выполняет попытку произвольного доступа, пока сообщение 3 не принято. В результате должна использоваться связанная с ячейкой скремблирующая последовательность, а не устаревшая характерная для терминала скремблирующая последовательность.
Соответственно, преимущество характерного для терминала скремблирования для обычной передачи данных сохраняется, не воздействуя на функциональные возможности процедуры произвольного доступа. Как описано выше, конкретное для терминала скремблирование рандомизирует помехи, что улучшает производительность передачи по восходящей линии связи и обеспечивает дополнительную гибкость при разработке планирования.
Хотя различные варианты осуществления подробно показаны и описаны, формула изобретения не ограничена ни одним из конкретных вариантов осуществления или примеров. Например, хотя главным образом описано в терминах скремблирующих последовательностей, подход двух типов, описанный для скремблирующих последовательностей произвольного доступа, можно также использовать для определения последовательностей опорного сигнала, посылаемых в каждом кадре восходящей линии связи, которые используются приемником базовой станции для оценки канала восходящей линии связи. Ни одно из приведенных выше описаний не следует рассматривать как предполагающее, что какой-либо определенный элемент, этап, диапазон или функция являются основным, так что его должна включать в себя формула изобретения. Объем патентуемого объекта изобретения определяют только в соответствии с формулой изобретения. Степень правовой защиты определяют с помощью признаков, изложенных в принятой формуле изобретения и в их эквивалентах. Все структурные и функциональные эквиваленты элементов описанного выше предпочтительного варианта осуществления, которые известны специалистам, представлены в данной работе для справки, и их охватывает настоящая формула изобретения. Кроме того, не требуется, чтобы устройство или способ обращались к каждой проблеме, которую стремились решить с помощью настоящего изобретения, для того, чтобы они были охвачены настоящей формулой изобретения. Ни один из пунктов формулы изобретения не требует применения абзаца 6 §112 раздела 35 Кодекса законов США, если не используются слова «средство для» или «этап для». Кроме того, ни один из вариантов осуществления, особенностей, компонентов или этапов в данном описании не предназначен для представления общественности, независимо от того, представлены ли данный вариант осуществления, особенность, компонент или этап в формуле изобретения.

Claims (16)

1. Способ, осуществляемый в пользовательском терминале для доступа к радиоканалу, содержащий следующие этапы:
посылают первое сообщение, соответствующее сообщению запроса произвольного доступа, включающее в себя преамбулу произвольного доступа, в базовую радиостанцию, используя радиоресурс канала произвольного доступа;
принимают второе сообщение, соответствующее сообщению ответа произвольного доступа, от базовой радиостанции, указывающее изменение распределения временных интервалов, идентифицированный радиоресурс и идентификатор пользовательского терминала;
выбирают одну из первого набора скремблирующих последовательностей восходящей линии связи, основываясь на идентификаторе пользовательского терминала, включенном во второе сообщение, соответствующее сообщению ответа произвольного доступа;
корректируют распределение временных интервалов в пользовательском терминале для передачи сигналов к базовой радиостанции, основываясь на информации, принимаемой в сообщении ответа произвольного доступа;
основываясь на откорректированном распределении временных интервалов, передают третье сообщение, соответствующее запланированной передаче восходящей линии связи, включающей в себя идентифицирующую информацию пользовательского терминала, в базовую радиостанцию по идентифицированному радиоресурсу, причем третье сообщение скремблируют, используя выбранную одну из первого набора скремблирующих последовательностей восходящей линии связи; и принимают четвертое сообщение, соответствующее сообщению разрешения конфликтов, от базовой радиостанции.
2. Способ по п.1, дополнительно содержащий следующий этап:
после передачи первого сообщения принимают от базовой радиостанции конкретную для пользовательского терминала скремблирующую последовательность восходящей линии связи, выбранную из второго набора скремблирующих последовательностей восходящей линии связи, конкретно назначаемых пользовательским терминалам, причем пользовательский терминал использует выбранную конкретную для пользовательского терминала скремблирующую последовательность восходящей линии связи для последующей связи с базовой радиостанцией.
3. Способ по п.1, в котором первый набор скремблирующих последовательностей восходящей линии связи является конкретными для ячейки скремблирующими последовательностями, соответствующими ячейке, связанной с базовой радиостанцией.
4. Способ по п.1, в котором первый набор скремблирующих последовательностей восходящей линии связи отображают на соответствующие идентификаторы пользовательского терминала, и способ дополнительно содержит выбор одной из первого набора скремблирующих последовательностей восходящей линии связи, основываясь на этом отображении.
5. Способ по п.1, дополнительно содержащий следующие этапы:
выбирают одну из первого набора опорных последовательностей восходящей линии связи, связанных с конкретной областью ячейки базовой радиостанции или с конкретным каналом произвольного доступа, ассоциированным с базовой радиостанцией, но которые конкретно не назначены ни одному из пользовательских терминалов; генерируют третье сообщение, используя выбранную одну из первого набора скремблирующих последовательностей восходящей линии связи и выбранную одну из первого набора опорных последовательностей восходящей линии связи; и передают третье сообщение к базовой радиостанции.
6. Способ, осуществляемый в базовой станции для ответа пользовательским терминалам, запрашивающим услугу от базовой станции по радиоканалу, содержащий следующие этапы:
принимают первое сообщение, соответствующее сообщению запроса произвольного доступа, от пользовательского терминала, включающее в себя преамбулу произвольного доступа, используя радиоресурс канала произвольного доступа;
передают второе сообщение, соответствующее сообщению ответа произвольного доступа, на пользовательский терминал, указывающее изменение распределения временных интервалов, идентифицированный радиоресурс и идентификатор пользовательского терминала;
принимают по идентифицированному радиоресурсу третье сообщение, соответствующее передаче восходящей линии связи, включающее в себя идентифицирующую информацию пользовательского терминала, причем сообщение произвольного доступа скремблируют, используя одну из набора скремблирующих последовательностей восходящей линии связи, выбранную с использованием идентификатора пользовательского терминала; и
передают четвертое сообщение, соответствующее сообщению разрешения конфликтов, на пользовательский терминал.
7. Пользовательский терминал для запроса услуги от базовой станции, имеющей область ячейки, где базовая станция предлагает услугу радиосвязи, содержащий
радиопередатчик, конфигурированный для передачи первого сообщения, соответствующего сообщению запроса произвольного доступа, включающего в себя преамбулу произвольного доступа, в базовую радиостанцию, с использованием радиоресурса канала произвольного доступа;
радиоприемник, конфигурированный для приема второго сообщения, соответствующего сообщению ответа произвольного доступа, от базовой радиостанции, указывающего изменение распределения временных интервалов, идентифицированный радиоресурс и идентификатор пользовательского терминала;
электронную схему обработки, конфигурированную для выбора одной из первого набора скремблирующих последовательностей восходящей линии связи, основываясь на идентификаторе пользовательского терминала, включенном в сообщение ответа произвольного доступа, и для корректировки распределения временных интервалов в пользовательском терминале для передачи сигналов к базовой радиостанции на основе информации, принимаемой в сообщении ответа произвольного доступа;
причем на основе откорректированного распределения временных интервалов передатчик конфигурирован для передачи третьего сообщения, включающего в себя идентифицирующую информацию пользовательского терминала, к базовой радиостанции по идентифицированному радиоресурсу, причем третье сообщение соответствует запланированной передаче восходящей линии и третье сообщение скремблируется с использованием выбранной одной из первого набора скремблирующих последовательностей восходящей линии связи; и
приемник конфигурирован для приема четвертого сообщения, соответствующего сообщению разрешения конфликтов, от базовой радиостанции.
8. Пользовательский терминал по п.7, в котором первый набор скремблирующих последовательностей восходящей линии связи конкретно связан с областью ячейки или радиоканалом произвольного доступа базовой радиостанции, но они конкретно не назначены ни одному из пользовательских терминалов, и в котором электронная схема обработки конфигурирована для выбора скремблирующей последовательности восходящей линии связи второго отличающегося типа из второго набора скремблирующих последовательностей восходящей линии связи, конкретно назначаемых пользовательским терминалам.
9. Пользовательский терминал по п.7, в котором электронная схема обработки конфигурирована для отображения первого набора скремблирующих последовательностей восходящей линии связи на соответствующие идентификаторы пользовательских терминалов, и выбора одной из первого набора скремблирующих последовательностей восходящей линии связи на основе этого отображения.
10. Пользовательский терминал по п.7, в котором электронная схема обработки конфигурирована для выбора одной из первого набора опорных последовательностей восходящей линии связи, конкретно связанных с областью ячейки или каналом произвольного доступа базовой радиостанции, но которые конкретно не назначены ни одному из пользовательских терминалов, и генерации третьего сообщения, используя выбранную одну из первого набора скремблирующих последовательностей восходящей линии связи и выбранную одну из первого набора опорных последовательностей восходящей линии связи, причем передатчик конфигурирован для передачи третьего сообщения к базовой радиостанции.
11. Пользовательский терминал по п.7, в котором пользовательский терминал конфигурирован для осуществления связи с сетью радиосвязи долгосрочного развития (LTE), и передатчик конфигурирован для передачи первого сообщения по каналу произвольного доступа и третьего сообщения по совместно используемому каналу восходящей линии связи.
12. Пользовательский терминал по п.11, в котором идентификатор пользовательского терминала является временным идентификатором пользовательского терминала, используемым, пока временный идентификатор радиосети не назначен пользовательскому терминалу.
13. Базовая радиостанция для ответа пользовательским терминалам, запрашивающим услугу от базовой станции по радиоканалу, содержащая схему, сконфигурированную для приема от пользовательского терминала первого сообщения, соответствующего сообщению запроса произвольного доступа, включающего в себя преамбулу произвольного доступа, используя радиоресурс канала произвольного доступа;
передачи на пользовательский терминал второго сообщения, соответствующего сообщению ответа произвольного доступа, указывающего изменение распределения временных интервалов, идентифицированный радиоресурс и идентификатор пользовательского терминала;
приема от пользовательского терминала по идентифицированному радиоресурсу третьего сообщения, соответствующего запланированной передаче восходящей линии связи, включающего в себя идентифицирующую информацию пользовательского терминала, причем третье сообщение скремблировано с использованием одной из первого набора скремблирующих последовательностей восходящей линии связи, выбранной с использованием идентификатора пользовательского терминала; и
передачи четвертого сообщения, соответствующего сообщению разрешения конфликтов, на пользовательский терминал.
14. Базовая радиостанция по п. 13, причем базовая станция является частью сети радиосвязи долгосрочного развития (LTE), причем первое сообщение принимается по каналу произвольного доступа, а третье сообщение принимается по совместно используемому каналу восходящей линии связи.
15. Базовая радиостанция по п.14, в которой идентификатор пользовательского терминала является временным идентификатором пользовательского терминала, используемым, пока временный идентификатор радиосети не будет назначен пользовательскому терминалу.
16. Базовая радиостанция по п.13, причем одна скремблирующая последовательность восходящей линии связи выбирается с использованием идентификатора пользовательского терминала.
RU2010108231/07A 2007-08-08 2008-07-03 Скремблирование восходящей линии связи во время произвольного доступа RU2483490C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/835,782 US8169992B2 (en) 2007-08-08 2007-08-08 Uplink scrambling during random access
US11/835,782 2007-08-08
PCT/SE2008/050832 WO2009020423A1 (en) 2007-08-08 2008-07-03 Uplink scrambling during random access

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2013103676A Division RU2623099C2 (ru) 2007-08-08 2013-01-28 Скремблирование восходящей линии связи во время произвольного доступа

Publications (2)

Publication Number Publication Date
RU2010108231A RU2010108231A (ru) 2011-09-20
RU2483490C2 true RU2483490C2 (ru) 2013-05-27

Family

ID=40341531

Family Applications (4)

Application Number Title Priority Date Filing Date
RU2010108231/07A RU2483490C2 (ru) 2007-08-08 2008-07-03 Скремблирование восходящей линии связи во время произвольного доступа
RU2013103676A RU2623099C2 (ru) 2007-08-08 2013-01-28 Скремблирование восходящей линии связи во время произвольного доступа
RU2017119447A RU2735718C2 (ru) 2007-08-08 2017-06-05 Скремблирование восходящей линии связи во время произвольного доступа
RU2020134808A RU2020134808A (ru) 2007-08-08 2020-10-23 Скремблирование восходящей линии связи во время произвольного доступа

Family Applications After (3)

Application Number Title Priority Date Filing Date
RU2013103676A RU2623099C2 (ru) 2007-08-08 2013-01-28 Скремблирование восходящей линии связи во время произвольного доступа
RU2017119447A RU2735718C2 (ru) 2007-08-08 2017-06-05 Скремблирование восходящей линии связи во время произвольного доступа
RU2020134808A RU2020134808A (ru) 2007-08-08 2020-10-23 Скремблирование восходящей линии связи во время произвольного доступа

Country Status (11)

Country Link
US (5) US8169992B2 (ru)
EP (6) EP2991432B1 (ru)
JP (2) JP5070339B2 (ru)
DK (4) DK2991430T3 (ru)
EG (1) EG26074A (ru)
ES (4) ES2711080T3 (ru)
HU (2) HUE026572T2 (ru)
PL (3) PL2186371T3 (ru)
RU (4) RU2483490C2 (ru)
TR (1) TR201819924T4 (ru)
WO (1) WO2009020423A1 (ru)

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6131047A (en) 1997-12-30 2000-10-10 Ericsson Inc. Radiotelephones having contact-sensitive user interfaces and methods of operating same
US7770204B2 (en) * 2003-09-30 2010-08-03 Novell, Inc. Techniques for securing electronic identities
ATE553615T1 (de) 2006-10-30 2012-04-15 Nokia Corp Bereitstellung von parametern für direktzugriff auf einen erweiterten dedizierten kanal (e-dch)
US8897276B2 (en) 2007-01-25 2014-11-25 Nokia Corporation Collision detection for random access procedure
JP4601637B2 (ja) * 2007-03-20 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び無線通信システム
US8971305B2 (en) * 2007-06-05 2015-03-03 Qualcomm Incorporated Pseudo-random sequence mapping in wireless communications
KR101341515B1 (ko) 2007-06-18 2013-12-16 엘지전자 주식회사 무선 통신 시스템에서의 반복 전송 정보 갱신 방법
WO2008156314A2 (en) 2007-06-20 2008-12-24 Lg Electronics Inc. Effective system information reception method
PT2661133T (pt) 2007-08-08 2016-08-23 Huawei Tech Co Ltd Alinhamento de temporização num sistema de comunicação rádio
US8169992B2 (en) 2007-08-08 2012-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scrambling during random access
ES2623231T3 (es) * 2007-08-08 2017-07-10 Godo Kaisha Ip Bridge 1 Dispositivo y método de comunicación
EP2186247A4 (en) * 2007-08-10 2014-01-29 Lg Electronics Inc METHOD FOR CONTROLLING HARQ OPERATION WITH DYNAMIC RADIO RESOURCE ALLOCATION
MX2010001611A (es) * 2007-08-10 2010-06-23 Fujitsu Ltd Metodo para acceso aleatorio en un sistema de comunicacion inalambrica, sistema de comunicacion inalambrica, terminal inalambrica y unidad de estacion base.
KR101514841B1 (ko) 2007-08-10 2015-04-23 엘지전자 주식회사 효율적인 랜덤 액세스 재시도를 수행하는 방법
CN101370283B (zh) * 2007-08-13 2011-03-30 华为技术有限公司 演进网络中切换过程中非接入层消息的处理方法及装置
US8488523B2 (en) * 2007-08-14 2013-07-16 Lg Electronics Inc. Method of transmitting and processing data block of specific protocol layer in wireless communication system
US8971230B2 (en) * 2007-08-17 2015-03-03 Ntt Docomo, Inc. Mobile communication method, radio base station apparatus and mobile station
KR101461970B1 (ko) * 2007-09-13 2014-11-14 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR100937432B1 (ko) 2007-09-13 2010-01-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
KR101520683B1 (ko) * 2007-09-13 2015-05-15 엘지전자 주식회사 페이징 과정을 이용한 제어 정보 제공 방법
KR101513033B1 (ko) 2007-09-18 2015-04-17 엘지전자 주식회사 다중 계층 구조에서 QoS를 보장하기 위한 방법
KR101591824B1 (ko) 2007-09-18 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR101396062B1 (ko) 2007-09-18 2014-05-26 엘지전자 주식회사 헤더 지시자를 이용한 효율적인 데이터 블록 전송방법
US8687565B2 (en) 2007-09-20 2014-04-01 Lg Electronics Inc. Method of effectively transmitting radio resource allocation request in mobile communication system
KR101441138B1 (ko) * 2007-09-28 2014-09-18 엘지전자 주식회사 무선통신 시스템에서 상향링크 시간 동기 수행 방법
KR101428816B1 (ko) * 2007-09-28 2014-08-12 엘지전자 주식회사 이동통신 시스템에서의 셀 선택방법 및 단말의 정적상태 검출방법
US8867455B2 (en) * 2007-10-01 2014-10-21 Qualcomm Incorporated Enhanced uplink for inactive state in a wireless communication system
KR101473010B1 (ko) * 2007-10-17 2014-12-15 엘지전자 주식회사 패킷망을 이용하여 서킷서비스를 제공하는 방법
KR20090041323A (ko) * 2007-10-23 2009-04-28 엘지전자 주식회사 데이터 블록 구성함에 있어서 단말의 식별 정보를 효과적으로 전송하는 방법
KR101335793B1 (ko) 2007-10-25 2013-12-12 노키아 코포레이션 고속 전송 타입 선택 방법, 고속 전송 타입 선택 장치 및 컴퓨터 판독가능 저장 매체
KR20090043465A (ko) 2007-10-29 2009-05-06 엘지전자 주식회사 무선 베어러 타입에 따른 오류 해결 방법
US8432812B2 (en) * 2007-10-29 2013-04-30 Lg Electronics Inc. Method of performing random access procedure in wireless communication system
KR101588047B1 (ko) * 2007-10-31 2016-01-25 코닌클리케 필립스 엔.브이. 랜덤 액세스 채널들을 시그널링하는 방법
MX2010002756A (es) * 2007-11-05 2010-03-30 Ericsson Telefon Ab L M Alineamiento de cronometracion mejorado en un sistema lte.
ES2385690T3 (es) * 2007-12-11 2012-07-30 Telefonaktiebolaget L M Ericsson (Publ) Métodos y aparatos que generan una clave para estación de base de radio en un sistema celular de radio
US8665857B2 (en) * 2007-12-18 2014-03-04 Qualcomm Incorporated Method and apparatus for sending and receiving random access response in a wireless communication system
KR101514079B1 (ko) 2008-01-07 2015-04-21 엘지전자 주식회사 상향링크 시간 동기 타이머의 재구성 방법
US8446859B2 (en) * 2008-02-01 2013-05-21 Lg Electronics Inc. Method for controlling uplink load in cell— FACH state
JP5129863B2 (ja) 2008-02-25 2013-01-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるランダムアクセス実行方法
KR100925450B1 (ko) * 2008-03-03 2009-11-06 엘지전자 주식회사 상향링크 신호의 충돌 해결 방법
JP5561482B2 (ja) * 2008-03-07 2014-07-30 日本電気株式会社 無線通信システム、通信装置、無線通信ネットワークシステム及びその方法
KR100893869B1 (ko) * 2008-03-13 2009-04-20 엘지전자 주식회사 측정 간격을 고려한 harq 동작 방법
WO2009113815A2 (en) * 2008-03-13 2009-09-17 Lg Electronics Inc. Random access method for improving scrambling efficiency
US7756081B2 (en) * 2008-03-21 2010-07-13 Lg Electronics Inc. Method of data communication in a wireless communication system
US8437291B2 (en) * 2008-03-24 2013-05-07 Lg Electronics Inc. Method for configuring different data block formats for downlink and uplink
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
PL2289271T3 (pl) 2008-06-06 2014-01-31 Hmd Global Oy Dostęp do sieci z wyborem komórki
GB2461780B (en) 2008-06-18 2011-01-05 Lg Electronics Inc Method for detecting failures of random access procedures
GB2461159B (en) 2008-06-18 2012-01-04 Lg Electronics Inc Method for transmitting Mac PDUs
ATE528953T1 (de) 2008-06-19 2011-10-15 Ericsson Telefon Ab L M Verfahren und vorrichtungen zum durchführen von direktzugriff in einem telekommunikationssystem
US8174958B2 (en) 2008-08-01 2012-05-08 Broadcom Corporation Method and system for a reference signal (RS) timing loop for OFDM symbol synchronization and tracking
US8588150B2 (en) * 2008-08-07 2013-11-19 Qualcomm Incorporated RNTI-dependent scrambling sequence initialization
KR101548748B1 (ko) * 2008-08-07 2015-09-11 엘지전자 주식회사 랜덤 접속 절차를 수행하는 방법
US9094202B2 (en) * 2008-08-08 2015-07-28 Qualcomm Incorporated Utilizing HARQ for uplink grants received in wireless communications
US8780816B2 (en) * 2008-08-12 2014-07-15 Qualcomm Incorporated Handling uplink grant in random access response
US20100074204A1 (en) * 2008-09-16 2010-03-25 Qualcomm Incorporated Uplink hybrid automatic repeat request operation during random access
KR101549022B1 (ko) * 2008-11-03 2015-09-01 엘지전자 주식회사 상향링크 및 하향링크 멀티 캐리어를 지원하는 무선통신 시스템에 있어서, 사용자 기기의 기지국에의 임의 접속방법
CN105656513B (zh) * 2008-12-10 2019-05-03 太阳专利信托公司 终端装置、集成电路、基站装置以及通信方法
CN101772180A (zh) * 2008-12-31 2010-07-07 中兴通讯股份有限公司 随机接入方法和系统
KR100949972B1 (ko) 2009-01-02 2010-03-29 엘지전자 주식회사 단말의 임의접속 수행 기법
CN101841922B (zh) * 2009-03-16 2015-01-28 中兴通讯股份有限公司 选择随机接入资源的方法及终端
US8077670B2 (en) * 2009-04-10 2011-12-13 Jianke Fan Random access channel response handling with aggregated component carriers
EP3282805B1 (en) * 2009-04-23 2019-10-02 InterDigital Patent Holdings, Inc. Base station assistance for random access performance improvement
WO2010126418A1 (en) * 2009-04-27 2010-11-04 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for resource allocation for random access in wireless telecommunication systems with carrier-aggregation
US8958833B2 (en) * 2009-05-22 2015-02-17 Qualcomm Incorporated Systems, apparatus and methods for interference management on downlink channels in wireless communication systems
US8681793B2 (en) * 2009-05-22 2014-03-25 Lg Electronics Inc. Method and apparatus for space division multiple access for wireless local area network system
US8774113B2 (en) * 2009-07-07 2014-07-08 Telefonaktiebolaget L M Ericsson (Publ) Random access procedure utilizing cyclic shift of demodulation reference signal
JP4999893B2 (ja) * 2009-08-06 2012-08-15 シャープ株式会社 無線通信システム、基地局装置、移動局装置および無線通信方法
WO2011016285A1 (ja) * 2009-08-07 2011-02-10 日本電気株式会社 移動通信システム、基地局、上位装置、通信方法、プログラム
CN101998646A (zh) * 2009-08-19 2011-03-30 中兴通讯股份有限公司 用于长期演进系统的随机接入方法及装置
JP5993740B2 (ja) 2009-10-01 2016-09-14 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンク制御データの送信
CN102055552B (zh) * 2009-11-05 2014-07-30 华为技术有限公司 传输控制信息的方法、接收控制信息的方法及设备
US8898468B2 (en) 2009-12-08 2014-11-25 Bae Systems Information And Electronic Systems Integration Inc. Method for ensuring security and privacy in a wireless cognitive network
CN101741785B (zh) * 2009-12-21 2012-12-19 中兴通讯股份有限公司 随机接入脉冲信号的识别方法和系统
KR20150028365A (ko) 2010-01-08 2015-03-13 인터디지탈 패튼 홀딩스, 인크 다중 반송파의 채널 상태 정보 전송 방법
EP3913842A1 (en) 2010-01-11 2021-11-24 QUALCOMM Incorporated Method for communicating with data through component carriers in mobile communication system to which carrier aggregation method is applied and apparatus therefor
CN102215084A (zh) * 2010-04-02 2011-10-12 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
KR20120069174A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 무선통신시스템에서 임의 접근 신호 수신 장치 및 방법
CN103430459A (zh) * 2011-02-07 2013-12-04 英特尔公司 来自多个基础设施节点的传送的共定相
WO2011113385A2 (zh) * 2011-04-26 2011-09-22 华为技术有限公司 无线通信方法、基站和系统
CN102547592B (zh) * 2012-01-06 2015-02-18 电信科学技术研究院 一种数据传输方法及装置
US9374253B2 (en) * 2012-01-13 2016-06-21 Qualcomm Incorporated DM-RS based decoding using CSI-RS-based timing
US9503914B2 (en) * 2012-01-31 2016-11-22 Apple Inc. Methods and apparatus for enhanced scrambling sequences
EP2842380B1 (en) * 2012-04-27 2016-04-27 Telefonaktiebolaget LM Ericsson (publ) Data transmission using shared uplink control channel resource
EP2868154B1 (en) * 2012-06-27 2017-12-27 LG Electronics Inc. Method and apparatus for performing random access procedure in wireless communication system
US9232456B2 (en) * 2012-06-29 2016-01-05 Futurewei Technologies, Inc. Systems and methods for packet transmission with compressed address
BR112014032844B1 (pt) * 2012-07-04 2022-12-13 Hitachi Kokusai Electric Inc Sistema de comunicação sem fio, método de compartilhamento de canal de frequência, e dispositivo controlador de rede
JP6042127B2 (ja) * 2012-07-25 2016-12-14 株式会社Nttドコモ 移動端末装置及び基地局装置
GB2508871A (en) * 2012-12-13 2014-06-18 Broadcom Corp Providing a UE with scrambling code initialization parameters associated with an interfering signal
WO2014112806A1 (en) * 2013-01-17 2014-07-24 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN104937944B (zh) 2013-01-17 2018-06-26 Lg电子株式会社 传输广播信号的装置、接收广播信号的装置、传输广播信号的方法和接收广播信号的方法
GB2513314A (en) * 2013-04-22 2014-10-29 Sony Corp Communications device for transmitting and receiving data
KR102159391B1 (ko) 2013-10-18 2020-09-23 삼성전자주식회사 이동통신 시스템에서 상향링크 랜덤 접속 절차 제어 방법 및 장치
CN105723792B (zh) * 2013-11-14 2020-01-14 索尼公司 通信系统、基础设施、通信装置及方法
ES2836493T3 (es) * 2014-01-28 2021-06-25 Huawei Tech Co Ltd Ajuste de parámetros de comunicación mediante el uso de RACH.
JP6313524B2 (ja) * 2015-05-15 2018-04-18 京セラ株式会社 無線端末、基地局、及び無線通信方法
EP3329729B1 (en) 2015-07-27 2020-04-01 Intel Corporation Enhanced rach (random access channel) design for 5g ciot (cellular internet of things)
EP3404964B1 (en) * 2016-01-15 2022-08-24 NTT DoCoMo, Inc. User terminal, wireless base station, and wireless communication method
CN107493608B (zh) * 2016-06-12 2020-06-05 电信科学技术研究院 一种进行随机接入的方法和设备
US10973055B2 (en) * 2016-10-20 2021-04-06 Alcatel Lucent System and method for preamble sequence transmission and reception to control network traffic
US20180124830A1 (en) * 2016-11-03 2018-05-03 Huawei Technologies Co., Ltd. Random access channel design, methods, and apparatus
US10485030B2 (en) * 2016-11-04 2019-11-19 Electronics And Telecommunications Research Institute Method and apparatus for receiving uplink signal in train communication network
JP6828156B2 (ja) 2016-11-11 2021-02-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ランダムアクセス手順
US11239972B2 (en) * 2016-11-17 2022-02-01 Qualcomm Incorporated Large cell support for narrowband random access
CN108271214B (zh) * 2017-01-04 2022-07-22 华为技术有限公司 一种通信方法及其终端设备、网络设备
US10848287B2 (en) * 2017-01-13 2020-11-24 Motorola Mobility Llc Method and apparatus for performing contention based random access in a carrier frequency
US10531494B2 (en) * 2017-01-17 2020-01-07 Huawei Technologies Co., Ltd. Reference signal scrambling for random access
CN111818664B (zh) * 2017-03-20 2023-01-13 华为技术有限公司 随机接入方法、用户设备、基站以及随机接入系统
CN108737020B (zh) * 2017-04-25 2021-02-12 华为技术有限公司 一种信息承载方法及装置
EP3937553A1 (en) 2017-05-04 2022-01-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting power headroom information in a communication system
US10841062B2 (en) * 2017-05-04 2020-11-17 Qualcomm Incorporated Sequence for reference signals during beam refinement
WO2018203807A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for transmitting signals over a physical random access channel
EP3639494A1 (en) * 2017-06-16 2020-04-22 Telefonaktiebolaget LM Ericsson (publ) Waveform indication in wireless communication networks
CN109391342B (zh) * 2017-08-04 2020-10-23 华为技术有限公司 一种数据传输方法、相关设备及系统
WO2019028793A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 随机接入前导码传输方法及装置
US10880033B2 (en) * 2018-01-12 2020-12-29 Qualcomm Incorporated Two-stage resource spread multiple access (RSMA) design
CN108494535B (zh) * 2018-01-26 2020-06-19 北京邮电大学 一种基于交织的随机接入信道容量增强的方法和装置
WO2019173961A1 (en) * 2018-03-13 2019-09-19 Qualcomm Incorporated Sequence selection techniques for non-orthogonal multiple access (noma)
CN112075121A (zh) * 2018-07-25 2020-12-11 Oppo广东移动通信有限公司 随机接入的方法和通信设备
CN110830523B (zh) * 2018-08-07 2022-11-18 黎光洁 用户id的构造、加扰和分配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565507A2 (en) * 1992-04-10 1993-10-13 Ericsson Inc. Power control for random access call set-up in a mobile telephone system
EP1146762A2 (en) * 2000-03-18 2001-10-17 Lg Electronics Inc. Physical channel allocation method in a mobile communication system and communication method using the same
RU2214686C2 (ru) * 1997-10-23 2003-10-20 Телефонактиеболагет Лм Эрикссон (Пабл) Произвольный доступ в системе мобильной связи
US6958989B1 (en) * 1999-05-19 2005-10-25 Interdigital Technology Corporation Uplink scrambling code assignment for a random access channel
US20050271025A1 (en) * 2004-06-07 2005-12-08 Roland Guethaus Methods of avoiding multiple detections of random access channel preamble in wireless communication systems

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304962A (en) 1965-08-25 1981-12-08 Bell Telephone Laboratories, Incorporated Data scrambler
JPS5148633B1 (ru) 1975-09-18 1976-12-22
EP0046831B1 (fr) 1980-08-26 1984-12-05 International Business Machines Corporation Système de retransmission de trames numérotées et reçues en erreur dans un système de transmission de données
US4736424A (en) 1986-09-22 1988-04-05 Rockwell International Corporation Data scrambling apparatus
JP2769334B2 (ja) 1988-11-11 1998-06-25 オリンパス光学工業株式会社 レンズ駆動装置
US5164040A (en) 1989-08-21 1992-11-17 Martin Marietta Energy Systems, Inc. Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
US5673252A (en) 1990-02-15 1997-09-30 Itron, Inc. Communications protocol for remote data generating stations
JP2746033B2 (ja) 1992-12-24 1998-04-28 日本電気株式会社 音声復号化装置
US5477550A (en) 1993-03-08 1995-12-19 Crisler; Kenneth J. Method for communicating data using a modified SR-ARQ protocol
JP3550165B2 (ja) 1993-06-04 2004-08-04 株式会社エヌ・ティ・ティ・ドコモ 通信中のスクランブルコード変更方法
US5566170A (en) 1994-12-29 1996-10-15 Storage Technology Corporation Method and apparatus for accelerated packet forwarding
US5673259A (en) * 1995-05-17 1997-09-30 Qualcomm Incorporated Random access communications channel for data services
US6449482B1 (en) 1995-05-24 2002-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Creation of overlapping cells when using multi casting
US5752078A (en) 1995-07-10 1998-05-12 International Business Machines Corporation System for minimizing latency data reception and handling data packet error if detected while transferring data packet from adapter memory to host memory
US5754754A (en) 1995-07-26 1998-05-19 International Business Machines Corporation Transmission order based selective repeat data transmission error recovery system and method
US5799012A (en) 1995-08-11 1998-08-25 Motorola, Inc. System controlled asymmetrical automatic repeat request protocol method
US5717689A (en) 1995-10-10 1998-02-10 Lucent Technologies Inc. Data link layer protocol for transport of ATM cells over a wireless link
TW313734B (en) 1996-01-05 1997-08-21 Motorola Inc System controlled asymmetrical automatic repeat request protocol method
US5968197A (en) 1996-04-01 1999-10-19 Ericsson Inc. Method and apparatus for data recovery
US5918078A (en) 1996-09-06 1999-06-29 Nikon Corporation Lens driving device
US5790534A (en) 1996-09-20 1998-08-04 Nokia Mobile Phones Limited Load control method and apparatus for CDMA cellular system having circuit and packet switched terminals
US6034963A (en) 1996-10-31 2000-03-07 Iready Corporation Multiple network protocol encoder/decoder and data processor
US6061337A (en) 1996-12-02 2000-05-09 Lucent Technologies Inc. System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site
FI107501B (fi) 1997-01-31 2001-08-15 Nokia Mobile Phones Ltd Menetelmä käyttäjätunnuksen varaamiseksi
JPH10224313A (ja) * 1997-02-04 1998-08-21 Nippon Telegr & Teleph Corp <Ntt> 無線パケット衝突干渉判定方法
US5991299A (en) 1997-09-11 1999-11-23 3Com Corporation High speed header translation processing
EP1760695B1 (en) 1997-10-22 2013-04-24 Panasonic Corporation Orthogonalization search for the CELP based speech coding
US6442153B1 (en) 1997-10-23 2002-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
US6317430B1 (en) 1998-02-19 2001-11-13 Lucent Technologies Inc. ARQ protocol support for variable size transmission data unit sizes using a hierarchically structured sequence number approach
US6359877B1 (en) 1998-07-21 2002-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for minimizing overhead in a communication system
EP2919548A1 (en) * 1998-10-05 2015-09-16 Sony Deutschland Gmbh Random access channel prioritization scheme
US6724813B1 (en) * 1998-10-14 2004-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Implicit resource allocation in a communication system
US6473399B1 (en) 1998-11-30 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining an optimum timeout under varying data rates in an RLC wireless system which uses a PDU counter
US6542490B1 (en) 1999-01-29 2003-04-01 Nortel Networks Limited Data link control proctocol for 3G wireless system
US6567482B1 (en) * 1999-03-05 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient synchronization in spread spectrum communications
EP1159846A1 (en) * 1999-03-08 2001-12-05 Nokia Corporation Method for establishing a communication between a user equipment and a radio network
EP1037481A1 (en) 1999-03-15 2000-09-20 Sony International (Europe) GmbH Simultaneous transmission of random access bursts
US6480558B1 (en) * 1999-03-17 2002-11-12 Ericsson Inc. Synchronization and cell search methods and apparatus for wireless communications
US6772215B1 (en) 1999-04-09 2004-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Method for minimizing feedback responses in ARQ protocols
US6535547B1 (en) 1999-06-02 2003-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
GB9914926D0 (en) 1999-06-26 1999-08-25 Koninkl Philips Electronics Nv Radio communication system
AU766021B2 (en) 1999-07-07 2003-10-09 Samsung Electronics Co., Ltd. Channel assignment apparatus and method for common packet channel in a WCDMA mobile communication system
JP3704003B2 (ja) 1999-08-16 2005-10-05 株式会社東芝 無線基地局装置、無線端末装置及び情報通信方法
JP3495658B2 (ja) 1999-09-13 2004-02-09 ペンタックス株式会社 レンズ駆動制御装置
US6628942B1 (en) 1999-10-06 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for paging and responding to pages in a mobile radio communications system
JP3840112B2 (ja) 2000-02-16 2006-11-01 サムスン エレクトロニクス カンパニー リミテッド 符号分割多元接続通信システムにおける共通パケットチャンネルを割り当てるための装置及び方法
EP1212853B1 (en) * 2000-06-02 2005-08-31 Samsung Electronics Co., Ltd. Method for selecting rach in a cdma mobile communication system
US7120132B2 (en) * 2000-06-24 2006-10-10 Samsung Electronics Co., Ltd. Apparatus and method for synchronization of uplink synchronous transmission scheme in a CDMA communication system
EP1170973B1 (en) 2000-07-08 2013-03-27 LG Electronics Inc. Code combining soft handoff method
US7349371B2 (en) 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US7630346B2 (en) 2000-09-29 2009-12-08 Intel Corporation Hopping on random access channels
KR100442603B1 (ko) 2001-03-20 2004-08-02 삼성전자주식회사 고속 패킷 데이터 전송 이동통신시스템에서 패킷 데이터채널 및 패킷 데이터 제어 채널을 스크램블링하기 위한장치 및 방법
US7453863B2 (en) * 2002-04-04 2008-11-18 Lg Electronics Inc. Cell searching apparatus and method in asynchronous mobile communication system
US7391755B2 (en) 2002-09-30 2008-06-24 Lucent Technologies Inc. Signaling and control mechanisms in MIMO harq schemes for wireless communication systems
JP4150239B2 (ja) * 2002-10-03 2008-09-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局、移動局、及びセル制御方法
US7477920B2 (en) 2002-10-25 2009-01-13 Intel Corporation System and method for automatically configuring and integrating a radio base station into an existing wireless cellular communication network with full bi-directional roaming and handover capability
WO2004047355A1 (en) 2002-11-15 2004-06-03 Siemens Aktiengesellschaft Method and apparatus for channel coding and rate matching
DE10254182A1 (de) 2002-11-20 2004-01-15 Siemens Ag Verfahren zur Sendeleistungssteuerung einer ersten Station in einem Kommunikationssystem durch eine zweite Station sowie erste und zweite Station und Kommunikationssystem
JP4276009B2 (ja) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
CN1275485C (zh) 2003-03-18 2006-09-13 大唐移动通信设备有限公司 一种用于检测用户终端随机接入的方法
DE10315058A1 (de) 2003-04-02 2004-10-14 Siemens Ag Datenübertragungsverfahren
GB2404113B (en) 2003-07-12 2005-11-02 * Motorola, Inc Communication units, cell-based communication system and method for frequency planning therein
DE20314660U1 (de) 2003-09-23 2003-12-04 Ab Skf Lagerung für den Rotor einer Windkraftanlage
GB2406473B (en) 2003-09-27 2006-02-15 Motorola Inc A method of determining the identity of an unknown neighbour cell,and apparatus therefor
US7130627B2 (en) 2003-12-12 2006-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Management of neighbor lists
GB2412036A (en) 2004-03-08 2005-09-14 Ipwireless Inc Mitigation of intercell and intracell interference in a cellular communication system
CN1934893B (zh) 2004-03-24 2010-11-03 日本电气株式会社 基站设备及其初始化方法
US7738423B2 (en) 2004-07-09 2010-06-15 Alcatel-Lucent Usa Inc. Cell switching and packet combining in a wireless communication system
JP4451286B2 (ja) 2004-11-12 2010-04-14 株式会社エヌ・ティ・ティ・ドコモ 基地局、基地局制御局および移動通信システム並びにスクランブリングコード設定方法
US7848782B2 (en) 2005-02-02 2010-12-07 Interdigital Technology Corporation Method and apparatus for improving network resource planning in a wireless communication network
US7574209B2 (en) 2005-04-13 2009-08-11 Cisco Technology, Inc. Dynamically obtaining neighborhood information
US20060239239A1 (en) * 2005-04-26 2006-10-26 Navini Networks, Inc. Random access method for wireless communication systems
AU2005333761B2 (en) * 2005-06-29 2011-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Evaluation of random access preamble codes
WO2007040451A1 (en) 2005-10-04 2007-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio network controller selection for ip-connected radio base station
JP4726060B2 (ja) 2005-10-20 2011-07-20 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、無線通信用パラメータ更新方法
WO2007045504A1 (en) 2005-10-21 2007-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing a random access procedure over a radio interface
US8625601B2 (en) 2005-10-31 2014-01-07 Qualcomm Incorporated Method and apparatus for low-overhead packet data transmission and control of reception mode
US8489128B2 (en) 2005-10-31 2013-07-16 Qualcomm Incorporated Efficient transmission on a shared data channel for wireless communication
KR101119247B1 (ko) 2005-11-02 2012-03-15 삼성전자주식회사 이동통신 시스템의 송수신기에서 수행되는 단말기와 네트워크 노드간의 초기 액세스 방법
KR100996087B1 (ko) 2005-11-24 2010-11-22 삼성전자주식회사 이동통신 시스템에서 공용 채널을 이용하기 위한 통신의 초기화 방법 및 장치
US8254316B2 (en) 2005-12-15 2012-08-28 Interdigital Technology Corporation QOS-based multi-protocol uplink access
RU2421911C2 (ru) * 2005-12-23 2011-06-20 Эл Джи Электроникс Инк. Способ и процедуры несинхронизированной связи, синхронизированной связи и синхронизации связи в режиме ожидания "stand-by" и в системах e-utra
JP4678597B2 (ja) 2005-12-27 2011-04-27 富士フイルム株式会社 レンズ鏡胴
PL1972119T3 (pl) 2006-01-12 2020-06-29 Nokia Technologies Oy Szyfrowanie pilotażowe w systemach telekomunikacyjnych
US8457076B2 (en) * 2006-01-20 2013-06-04 Lg-Ericsson Co., Ltd. Apparatus and method for transmitting and receiving a RACH signal in SC-FDMA system
AP2648A (en) * 2006-01-20 2013-04-24 Nokia Corp Random access procedure with enhanced coverage
JP4795046B2 (ja) * 2006-02-15 2011-10-19 株式会社エヌ・ティ・ティ・ドコモ 無線アクセスネットワーク装置及び周辺セル情報報知方法
US9674869B2 (en) * 2006-03-20 2017-06-06 Qualcomm Incorporated Apparatus and method for fast access in a wireless communication system
WO2007127902A2 (en) 2006-04-27 2007-11-08 Texas Instruments Incorporated Methods and apparatus to allocate reference signals in wireless communication systems
US7701919B2 (en) 2006-05-01 2010-04-20 Alcatel-Lucent Usa Inc. Method of assigning uplink reference signals, and transmitter and receiver thereof
CN101473565B (zh) 2006-06-21 2012-11-07 Lg电子株式会社 在无线移动通信系统中使用消息分离发送和接收无线电接入信息的方法
US8923321B2 (en) * 2006-07-28 2014-12-30 Motorola Mobility Llc Apparatus and method for handling control channel reception/decoding failure in a wireless VoIP communication system
US20080039141A1 (en) 2006-08-10 2008-02-14 Holger Claussen Changing the scrambling code of a base station for wireless telecommunications
EP2087633B1 (en) 2006-08-17 2010-09-22 QUALCOMM Incorporated Method and apparatus for low-overhead packet data transmission and control of reception mode
US8295243B2 (en) 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
KR20080018147A (ko) 2006-08-23 2008-02-27 한국전자통신연구원 셀룰라 시스템에서 임의 접속에 대한 응답 메시지 전송방법 및 이를 이용한 임의 접속 방법
US8259688B2 (en) * 2006-09-01 2012-09-04 Wi-Lan Inc. Pre-allocated random access identifiers
CN101523816B (zh) * 2006-10-03 2013-02-13 高通股份有限公司 无线通信系统中临时ue id的重新同步
JP5028945B2 (ja) 2006-10-17 2012-09-19 ソニー株式会社 撮像装置
EP2084928B1 (en) 2006-10-30 2017-08-23 LG Electronics Inc. Method of performing random access in a wireless communication system
JP4523072B2 (ja) 2006-10-30 2010-08-11 エルジー エレクトロニクス インコーポレイティド 上り接続のリディレクション方法
KR20120114362A (ko) 2006-10-31 2012-10-16 콸콤 인코포레이티드 무선 통신을 위한 랜덤 액세스 장치 및 방법
KR100965673B1 (ko) 2006-11-15 2010-06-24 삼성전자주식회사 이동통신 시스템에서 데이터 송신 방법
US8305999B2 (en) 2007-01-05 2012-11-06 Ravi Palanki Resource allocation and mapping in a wireless communication system
CN101578783A (zh) 2007-01-10 2009-11-11 Lg电子株式会社 用于在移动通信中构造数据格式的方法及其终端
US8897276B2 (en) * 2007-01-25 2014-11-25 Nokia Corporation Collision detection for random access procedure
GB2446193B (en) 2007-01-30 2009-03-11 Motorola Inc A code division multiple access cellular communication system
WO2008097030A1 (en) 2007-02-07 2008-08-14 Lg Electronics Inc. Optimized random access channel (rach) access
JP4533915B2 (ja) 2007-02-07 2010-09-01 株式会社エヌ・ティ・ティ・ドコモ 移動局、無線アクセスネットワーク装置及び移動通信システム
KR101112145B1 (ko) 2007-02-09 2012-02-22 삼성전자주식회사 이동통신 시스템의 랜덤 액세스 프로시져에서 경쟁의 감지 방법 및 장치
EP2485514B1 (en) 2007-02-28 2013-12-18 Unwired Planet, LLC Self configuring and optimisation of cell neighbours in wireless telecommunications networks
WO2008113373A1 (en) 2007-03-16 2008-09-25 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for providing cell identity information at handover
US8150327B2 (en) 2007-03-19 2012-04-03 Apple Inc. Channel sounding techniques for a wireless communication system
US9295003B2 (en) * 2007-03-19 2016-03-22 Apple Inc. Resource allocation in a communication system
US9516580B2 (en) * 2007-03-19 2016-12-06 Texas Instruments Incorporated Enabling down link reception of system and control information from intra-frequency neighbors without gaps in the serving cell in evolved-UTRA systems
KR101149389B1 (ko) * 2007-03-20 2012-06-04 알카텔-루센트 유에스에이 인코포레이티드 무선 통신 시스템에서 범위 확장을 위해 구성가능한 랜덤 액세스 채널 구조
KR20080086413A (ko) * 2007-03-21 2008-09-25 이노베이티브 소닉 리미티드 무선 통신 시스템의 랜덤 액세스 절차를 핸들링하는 방법및 장치
JP2008252889A (ja) * 2007-03-21 2008-10-16 Asustek Computer Inc 無線通信システムにおいてランダムアクセスプロセスを処理する方法及び装置
US20080232283A1 (en) 2007-03-21 2008-09-25 Yu-Chih Jen Method and Apparatus for Handling Random Access Procedure in a Wireless Communications System
MX2009011674A (es) 2007-04-30 2010-01-29 Nokia Siemens Networks Oy Cambio ciclico coordinado y salto de secuencia para secuencias de expansion zadoff-chu, zadoff-chu modificado y en relacion con el bloque.
KR20080097327A (ko) 2007-05-01 2008-11-05 엘지전자 주식회사 시퀀스 세트 구성 방법 및 이를 이용한 임의접속 방법
EP2953416A1 (en) 2007-06-06 2015-12-09 Sharp Kabushiki Kaisha Mobile communication system, base station apparatus and mobile station apparatus
US8681716B2 (en) 2007-06-12 2014-03-25 Sharp Kabushiki Kaisha Base station device, mobile station device, program, uplink synchronization requesting method, and synchronization-shift measurement signal transmitting method
HUE033683T2 (en) 2007-06-18 2017-12-28 Lg Electronics Inc Procedure for performing user device upload direction connection synchronization in a wireless communication system
US8391400B2 (en) 2007-06-20 2013-03-05 Qualcomm Incorporated Control channel format indicator frequency mapping
US8180058B2 (en) 2007-06-21 2012-05-15 Qualcomm Incorporated Encryption of the scheduled uplink message in random access procedure
US8169992B2 (en) 2007-08-08 2012-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scrambling during random access
JP5306101B2 (ja) 2009-07-31 2013-10-02 キヤノン株式会社 レンズ鏡筒
JP2013007906A (ja) 2011-06-24 2013-01-10 Olympus Imaging Corp レンズ鏡筒及びカメラシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565507A2 (en) * 1992-04-10 1993-10-13 Ericsson Inc. Power control for random access call set-up in a mobile telephone system
RU2214686C2 (ru) * 1997-10-23 2003-10-20 Телефонактиеболагет Лм Эрикссон (Пабл) Произвольный доступ в системе мобильной связи
US6958989B1 (en) * 1999-05-19 2005-10-25 Interdigital Technology Corporation Uplink scrambling code assignment for a random access channel
EP1146762A2 (en) * 2000-03-18 2001-10-17 Lg Electronics Inc. Physical channel allocation method in a mobile communication system and communication method using the same
US20050271025A1 (en) * 2004-06-07 2005-12-08 Roland Guethaus Methods of avoiding multiple detections of random access channel preamble in wireless communication systems

Also Published As

Publication number Publication date
PL2186371T3 (pl) 2016-05-31
RU2020134808A (ru) 2022-04-25
EP3496503A1 (en) 2019-06-12
PL3496503T3 (pl) 2022-02-28
EP2186371A1 (en) 2010-05-19
HUE037477T2 (hu) 2018-08-28
RU2623099C2 (ru) 2017-06-22
RU2013103676A (ru) 2014-08-10
RU2017119447A3 (ru) 2020-08-31
US8717996B2 (en) 2014-05-06
ES2652314T3 (es) 2018-02-01
EP3944707A1 (en) 2022-01-26
US20220232559A1 (en) 2022-07-21
EP4277422A3 (en) 2024-02-07
US20120176995A1 (en) 2012-07-12
ES2897125T3 (es) 2022-02-28
US11330567B2 (en) 2022-05-10
RU2010108231A (ru) 2011-09-20
EP2991430B1 (en) 2018-11-28
EP2186371A4 (en) 2014-09-10
JP5070339B2 (ja) 2012-11-14
EP2991432B1 (en) 2017-09-13
ES2560531T3 (es) 2016-02-19
US9949239B2 (en) 2018-04-17
DK3496503T3 (da) 2021-09-27
EP3496503B1 (en) 2021-09-01
ES2711080T3 (es) 2019-04-30
WO2009020423A1 (en) 2009-02-12
DK2991430T3 (en) 2019-02-25
US20090041240A1 (en) 2009-02-12
EP4277422A2 (en) 2023-11-15
HUE026572T2 (en) 2016-06-28
JP2012257310A (ja) 2012-12-27
EP2991432A1 (en) 2016-03-02
EP2991430A1 (en) 2016-03-02
PL2991430T3 (pl) 2019-05-31
EP2186371B1 (en) 2015-12-02
DK2186371T3 (en) 2016-02-29
RU2735718C2 (ru) 2020-11-06
JP2010536236A (ja) 2010-11-25
EG26074A (en) 2013-01-30
DK2991432T3 (en) 2017-10-30
RU2017119447A (ru) 2018-12-05
JP5570561B2 (ja) 2014-08-13
US8169992B2 (en) 2012-05-01
US20140219257A1 (en) 2014-08-07
US20180295614A1 (en) 2018-10-11
TR201819924T4 (tr) 2019-01-21

Similar Documents

Publication Publication Date Title
RU2483490C2 (ru) Скремблирование восходящей линии связи во время произвольного доступа
CN101507148B (zh) 用于在无线通信系统中执行随机接入过程的方法
KR101506415B1 (ko) 에너지 절감 기지국 및 방법
EP3170276A1 (en) Uplink data transmission method in wireless communication system and apparatus for the same
US20120106460A1 (en) Carrier reconfiguration in multi-carrier aggregation
JP2017532818A (ja) 無線通信システムにおいてd2d通信のための同期信号送信方法及びそのための装置