RU2474543C2 - Способ получения сильно расслоенного вермикулита и способ изготовления прессованного материала - Google Patents

Способ получения сильно расслоенного вермикулита и способ изготовления прессованного материала Download PDF

Info

Publication number
RU2474543C2
RU2474543C2 RU2009147761/03A RU2009147761A RU2474543C2 RU 2474543 C2 RU2474543 C2 RU 2474543C2 RU 2009147761/03 A RU2009147761/03 A RU 2009147761/03A RU 2009147761 A RU2009147761 A RU 2009147761A RU 2474543 C2 RU2474543 C2 RU 2474543C2
Authority
RU
Russia
Prior art keywords
vermiculite
hours
temperature
manufacturing
solution
Prior art date
Application number
RU2009147761/03A
Other languages
English (en)
Other versions
RU2009147761A (ru
Inventor
Филипп КАПЛЭН
Эрве ФЮЗЕЛЛЬЕ
Дамьен ЮНДРИ
Лоранс РЕЙНЕР
Жан-Франсуа ЖЮЛИЯ
Мишель ЛЕФРАНСУА
Original Assignee
Коммиссариат А Л' Энержи Атомик
Гарлок Франс Сас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Коммиссариат А Л' Энержи Атомик, Гарлок Франс Сас filed Critical Коммиссариат А Л' Энержи Атомик
Publication of RU2009147761A publication Critical patent/RU2009147761A/ru
Application granted granted Critical
Publication of RU2474543C2 publication Critical patent/RU2474543C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/202Vermiculite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/42Micas ; Interstratified clay-mica products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/204Mica; Vermiculite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7604Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Dental Preparations (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Объектом настоящего изобретения является способ получения расслоенного вермикулита, применяемого для теплоизоляции, содержащий следующие стадии: нагрев не расслоенного гидратированного вермикулита до температуры от 400 до 600°C в течение времени от 3 часов до 7 часов; контактирование обезвоженного вермикулита с раствором, содержащим реагент интеркаляции, который может разлагаться с выделением газов. Техническим результатом является получение сильно расслоенного вермикулита, которому можно придавать форму без использования органического связующего и который можно применять при температурах, достигающих 1000°С. 2 н. и 8 з.п. ф-лы, 1 пр.

Description

Область техники
Настоящее изобретение касается способа получения сильно расслоенного вермикулита, который при формовании не требует использования органического связующего или органической добавки, при этом на выходе этого способа указанные вермикулиты имеют механические и химические характеристики, не ухудшающиеся до температуры 1000°.
Вермикулиты являются глинами, принадлежащими к семейству филосиликатов, то есть силикатов, структурно упорядоченных в виде пластинок. Упорядоченность пластинок в случае вермикулитов является такой, что пластинки имеют структуру в виде гармошки.
С учетом такой структуры вермикулиты могут задерживать большое количество воздуха и находят свое естественное применение в области теплоизоляции. Их можно использовать в качестве изолирующего материала насыпью, в частности, в потолках или включать в строительные материалы, такие как цемент или клеи, для выполнения этой изолирующей функции.
Таким образом, одной из основных областей применения изобретения является область теплоизоляции.
Предшествующий уровень техники
В области теплоизоляции долгие годы одним из основных материалов был асбест, который к тому же характеризуется очень высокой степенью огнестойкости.
Асбест является силикатом кальция и магния волокнистой природы, который обладает способностью осыпаться в виде микроскопических частиц, которые могут попадать в органы дыхания и достигать легочных альвеол и даже плевры, что при вдыхании делает его исключительно патогенным. Поэтому, начиная с 1997 года, асбест был запрещен к производству и к продаже во Франции.
Следовательно, в промышленности появилась потребность в замене асбеста другими силикатами, не осыпающимися в виде микроскопических частиц. Такими силикатами являются, в частности, большинство филосиликатов, которые имеют не волокнистую структуру, как асбест, а пластинчатую структуру.
В частности, филосиликаты представляют широкое семейство силикатов, в которых тетраэдры SiO4 связаны друг с другом и образуют бесконечные двухмерные пластинки и конденсируются с октаэдрами MgO или AlO в соотношении 2:1 или 1:1, при этом некоторые из элементов могут подвергаться изоморфному замещению (в тетраэдрах Si может быть частично замещен Al; при этом Al, Fe и/или Mg могут занимать те же места в октаэдрах). Катионы со степенью окисления +4 или меньше (Si44, Al3+, Mg2+) занимают центры тетраэдров и октаэдров таким образом, что заряд пластинки является отрицательным.
Если тетраэдры и октаэдры конденсируются в соотношении 2:1, это значит, говоря другими словами, что в пластинке слой октаэдров оказывается между двумя слоями тетраэдров (это упорядочение называют также «упаковкой слоев типа ТОТ»). Некоторые из этих филосиликатов 2:1, заряд пластинок которых, рассчитанный по половине ячейки, составляет от 0,6 до 0,9, называют вермикулитами. Одна пластинка отделена от другой, идентичной пластинки, межслоевым пространством, занятым гидратированными катионами (катионы щелочных металлов, катионы щелочноземельных металлов, катионы двухвалентного/трехвалентного железа и т.д.), положительные заряды которых компенсируют отрицательные заряды на поверхности пластинок. Эти катионы связаны с пластинками слабыми связями типа ван-дер-ваальсовых связей.
В силу своей пластинчатой и гармошечной (если они расслоены) структуры вермикулиты представляют особый интерес с точки зрения теплоизоляции, так как эта структура содержит значительное число ячеек, которые могут задерживать воздух. Кроме того, за счет соответствующей обработки можно производить расслоение пластинок, то есть существенно увеличивать межслоевое расстояние, что позволяет задерживать большее количество воздуха в структуре такого типа.
В последние годы были разработаны различные типы способов получения расслоенного вермикулита.
Так, расслоенный вермикулит можно получить путем быстрого нагрева до температуры от 800 до 1100°, что описано у Мейсингера в "Mineral Facts and Problems", том 675, 1985, издание US Department of the Interior Bureau of Mines Washington, стр.917-922. Механизм получения основан на механическом принципе. Резкое повышение температуры приводит к испарению межслоевой воды, что является причиной отделения пластинок друг от друга. Этот тип способа известен под названием механического расслоения. Он обеспечивает увеличение объема в 12-18 раз.
Другие авторы производили расслоение вермикулитов, вводя их в контакт с водным раствором пероксида водорода. Механизм основан на замещении молекул воды молекулами пероксида водорода (реакция интеркаляции). Последние, разлагаясь в межслоевом пространстве на кислород и воду, вызывают расслоение пластинок. Этот тип способа известен под названием химического расслоения. Повышение объема частиц наблюдалось с показателями расширения от 150 до 200 раз.
В документе WO 03004578 описан химически расслоенный вермикулит, полученный следующим образом:
- сначала не расслоенный сырой вермикулит обработали, вводя его в контакт с насыщенным водным раствором хлорида натрия, чтобы заместить ионы магния и получить гомоионный вермикулит;
- полученный гомоионный вермикулит вводят в контакт с раствором, содержащим ионы n-C4-H3NH3, для замещения ионов натрия ионами n-C4H3NH3;
- наконец, вермикулит подвергают простой промывке водой для завершения расслоения.
Вместе с тем, формование вермикулита возможно только с использованием органического связующего, которое обеспечивает агломерацию частиц вермикулита.
В силу присутствия этого органического связующего описанные выше вермикулиты, которые подвергаются значительному изменению структуры, начиная с 300°C, и теряют, таким образом, свои механические характеристики, нельзя применять в условиях температур, превышающих 450°C.
Поэтому существует потребность в разработке простого в применении способа, позволяющего получить сильно расслоенный вермикулит, которому можно придавать форму без использования органического связующего и который можно применять при температурах, достигающих 1000°C.
Сущность изобретения
В связи с этим первым объектом настоящего изобретения является способ получения расслоенного вермикулита, содержащий следующие последовательные этапы:
- нагрев не расслоенного гидратированного вермикулита до температуры от 400 до 600°C в течение времени от 3 часов до 7 часов, в результате чего получают обезвоженный вермикулит;
- контактирование обезвоженного вермикулита с раствором, содержащим реагент интеркаляции, который может разлагаться, выделяя, по меньшей мере, один газ.
Этап нагрева в вышеуказанном температурном интервале и в течение указанного времени является особенно важным, так как он обеспечивает оптимальное обезвоживание, которое сопровождается разделением пластинок, высвобождая, таким образом, межслоевое пространство. В освободившееся межслоевое пространство может быстро и оптимально заходить реагент интеркаляции. Разлагающийся в виде газов реагент интеркаляции обеспечивает, за счет выделения этих газов, еще большее разделение пластинок.
Более того, учитывая оптимальное удаление молекул воды в межслоевом пространстве, реагент интеркаляции вступает в контакт с пластинками, не растворяясь в межслоевой воде, что значительно повышает эффективность этого реагента интеркаляции.
Не расслоенный гидратированный вермикулит, который можно использовать в качестве исходного вермикулита, может быть вермикулитом в виде чешуек со средней длиной и шириной порядка сантиметра и с толщиной, как правило, менее миллиметра, и имеет межплоскостное расстояние, измеренное рентгенографическим методом, порядка 12,1 Å. Одним из вермикулитов, отвечающим этим критериям, является вермикулит, добываемый на шахте Палабора в Южной Африке.
Как было указано выше, реагент интеркаляции в соответствии с настоящим изобретением является веществом, которое может разлагаться с выделением, по меньшей мере, одного газа. Исключительно эффективным реагентом интеркаляции в соответствии с настоящим изобретением является пероксид водорода H2O2, который разлагается на H2O и O2, при этом выделение кислорода способствует раздвиганию пластинок, то есть расслоению.
С практической точки зрения введение в контакт с раствором, содержащим реагент интеркаляции, в основном производят погружением в этот раствор вермикулитов, предварительно обезвоженных при температуре от 400°C до 600°C в течение 3-7 часов. В обезвоженных вермикулитах происходит уменьшение межплоскостного расстояния, которое стремится к значению 10 Å, достигаемому термической обработкой при 800°C.
Если реагентом интеркаляции является пероксид водорода, используемым раствором может быть раствор пероксида водорода с концентрацией от 35 мас.% до 50 мас.%. Введение в контакт можно осуществлять при температуре от 20 до 100°C, при этом нагрев играет важную роль в повышении кинетики разложения реагента интеркаляции.
При использовании такого раствора пероксида водорода независимо от концентрации значительное разбухание наблюдают уже после одного часа погружения для вермикулита, обезвоженного при 400°C в течение 7 часов, при этом разбухание достигает своего максимума после 12 часов погружения. Обезвоживание при 600°C в таких же условиях приводит к появлению вермикулита с межплоскостным расстоянием, например, превышающим 100 Å.
В обоих случаях явление сопровождается показательным разбуханием. Наблюдаемый объем чешуек вермикулита увеличивается примерно в 600 раз. Когда сырой вермикулит (то есть не прошедший термической обработки в соответствии с настоящим изобретением) погружают в раствор пероксида водорода в аналогичных экспериментальных условиях концентрации и продолжительности, увеличение объема визуально наблюдается только после 10 часов и завершается только после 24 часов. Более того, наблюдаемое увеличение объема после этого в 3 раза меньше, чем у вермикулитов, которые предварительно подвергли термической обработке в соответствии с настоящим изобретением.
Это явление контактирования вермикулита с раствором реагента интеркаляции, такого как H2O2, соответствует химическому расслоению.
Следует уточнить, что предварительную термическую обработку вермикулитов не следует производить при температуре, превышающей 700°C, так как в этом температурном интервале обезвоженные таким образом вермикулиты уже не могут подвергаться химическому расслаиванию при помощи реагента интеркаляции, такого как H2O2. Не вдаваясь ни в какие теоретические рассуждения, это можно связать с химическим изменением концов пластинок, при этом удаление гидроксильных групп приводит к сближению пластинок и к конденсации их концов, что существенно уменьшает возможность проникновения и диффузии молекул реагента интеркаляции.
Вермикулиты, полученные при помощи способа в соответствии с настоящим изобретением, предпочтительно имеют удельную поверхность от 100 до 200 м2·г-1, при этом максимальное значение было достигнуто для образца сырого вермикулита, на первом этапе обработанного нагревом при температуре 600°C в течение 7 часов и погруженного на 1 час в 50%-ный раствор пероксида водорода. Такая удельная поверхность отражает разделение пластинок на пакеты примерно из 7-8 единиц, при этом удельная поверхность сырого вермикулита составляет примерно 10 м2·г-1. В основном частицы расслоенного вермикулита имеют средний размер от 6 мкм до 50 мкм. Наиболее мелкие частицы появляются, в частности, когда обработку химического расслоения сочетают с ультразвуковой обработкой.
Таким образом, вторым объектом настоящего изобретения являются вермикулиты, которые можно получать при помощи описанного выше способа.
Полученные вермикулиты являются вермикулитами, способными деформироваться в холодном состоянии, обладающие, в частности, механическими свойствами деформируемости, сжимаемости и способности к упругому восстановлению.
Формование полученных вермикулитов можно производить при помощи повторного прессования.
Эти вермикулиты можно использовать во многих областях, таких как строительство, для реализации изоляции, покрытий или для других более специальных вариантов применения, таких как механика, амортизаторы, легкие бетоны, строительные материалы, огнеупорные материалы, упаковочные материалы для транспортировки опасных жидкостей, материалы для изготовления температурных датчиков солнечного излучения, а также нанокомпозиты для пленок и покрытий.
Третьим объектом настоящего изобретения является способ изготовления прессованного материала, содержащий:
- осуществление описанного выше способа получения расслоенного вермикулита,
- формование путем прессования вермикулита, полученного на предыдущем этапе,
при этом формование предпочтительно осуществляют в отсутствие органического связующего.
Способность материала в виде чешуек, такого как вермикулиты в соответствии с настоящим изобретением, к повторному прессованию зависит от двух факторов: размер частиц и содержание воды.
Перед формованием вермикулиты, полученные путем контактирования с раствором реагента интеркаляции, можно подвергнуть измельчению, предпочтительно механическому измельчению, причем это измельчение можно осуществлять при помощи шаровой дробилки или ультразвуковым способом, после чего, в случае необходимости, производят просеивание, чтобы отобрать гранулометрический состав частиц размером, позволяющим легко производить повторное прессование. Речь может идти о частицах размером от 63 до 500 мкм, полученных измельчением в механических дробилках. Речь может также идти о частицах размером менее 10 мкм, в частности, если измельчение производят ультразвуком (например, на частоте от 20 до 40 кГц).
Содержание воды тоже является важным фактором для формования вермикулитов, при этом воду получают из раствора реагента интеркаляции и, в случае необходимости, при его разложении.
Действительно, материал для формования, содержащий остаточную воду, может подвергаться явлениям значительной усадки, если его применяют в условиях воздействия повышенных температур.
Поэтому после контактирования с раствором реагента интеркаляции или после возможного измельчения и перед формованием вермикулиты, полученные при помощи способа в соответствии с настоящим изобретением, предпочтительно подвергают нагреву до температуры от 700 до 800°C в течение времени от 1 до 14 часов (так называемый заключительный нагрев).
Вермикулиты можно подвергнуть повторному прессованию в виде смеси, содержащей вермикулиты, прошедшие так называемый заключительный нагрев, и вермикулиты, не прошедшие через этот нагрев.
После возможного заключительного нагрева и перед формованием вермикулиты в виде частиц можно подвергнуть повторному увлажнению, например, вводя указанный вермикулит в контакт с водой, предпочтительно с дистиллированной водой в количестве от 0,2 мл до 0,5 мл на 100 мг порошка, при этом вода предназначена для облегчения связывания частиц вермикулита.
После формования частицы вермикулита сушат при температуре от 40°C до 80°C в течение времени от 12 часов до 24 часов, например, при 40°C в течение 24 часов для получения прессованного и сухого материала. После сушки материал обладает механическими свойствами, значительно превышающими свойства, полученные путем прессования сухих частиц вермикулита, то есть частиц, не прошедших через этап повторного увлажнения.
Не вдаваясь в теорию, можно отметить, что вода, добавляемая во время повторного увлажнения, за счет образования водородных связей с группами -ОН на краю пластинок глины позволяет улучшить наслаивание частиц вермикулита во время прессования. Во время сушки, необходимой в связи с осуществлением повторного увлажнения, водородные связи между группами -OH по краю прижатых друг к другу пластинок вермикулита позволяют материалу сохранять свои механические свойства.
Кроме и вместо повторного увлажнения, можно предусмотреть контактирование вермикулита в виде частиц с так называемым «мостикообразующим» раствором, содержащим элементы, выбранные из группы, в которую входят алюминий и кремний.
Если мостикообразующий раствор является раствором на основе алюминия, его можно получить путем растворения хлорида алюминия (AlCl3, 6H2O) в дистиллированной воде с такой концентрацией, чтобы [Al3+]=0,2 моль·л-1. Полученный раствор подвергают гидролизу путем добавления гидроксида натрия при взбалтывании, при этом концентрация ионов OH- равна 0,2 моль·л-1, и добавление не прекращают до получения молярного соотношения OH-/Al3+, равного 2. Полученный раствор после этого выдерживают в течение 48 часов в закрытой емкости при температуре окружающей среды до получения золя, содержащего макромолекулярный катион «Al137+», в результате поликонденсации находящихся в растворе веществ, при этом время, необходимое для поликонденсации, можно определить методом ядерно-магнитным резонанса 27Al. После этого золь каплями добавляют в вермикулит, в случае необходимости, в виде водной суспензии (например, из расчета 2,5 мас.%), например, из расчета 4·10-3 моль алюминия на один грамм глины. Полученный комплекс взбалтывают в течение 30 минут при температуре окружающей среды для обеспечения прививания макрокатиона «Al137+» по краям пластинок за счет закрепления на поверхностных группах -OH. После фильтрования, удаления хлоридов путем промывки и после сушки (например, при 40°C в течение 24 часов) материал можно легко формовать прессованием. Последующий обжиг (например, при 700°C в течение 2 часов) позволяет превратить макромолекулярный катион в глинозем, обеспечивающий сцепление между пластинками, что обеспечивает прочность формованного материала.
Как правило, после формования материал подвергают сушке при температуре от 500°C до 800°C, например 700°C, чтобы еще лучше улучшить сцепление.
Далее следует описание примера изобретения, который носит иллюстративный, но не ограничительный характер.
Пример
2 г вермикулита "Large Grade" поместили в химический стакан емкостью 250 мл и промывали подвергнутой осмосу водой в количестве 100 мл в течение 30 минут. Затем влажное твердое вещество подвергли обезвоживанию путем помещения в печь, нагретую до температуры 400°C, в течение 7 часов в воздушной атмосфере в тигле из глинозема. Обезвоженный вермикулит охладили до температуры окружающей среды в сушильному шкафу, содержащем силикагель, после чего произвели его химическое расслоение путем погружения в 100 мл пероксида водорода концентрацией 35 мас.% в течение одного часа. Затем полученный продукт высушили в печи при 40°C в течение 14 часов и измельчили вручную в ступке.
Далее, приготовили мостикообразующий раствор на основе алюминия. Для этого приготовили раствор хлорида алюминия при 0,2 моль·л-1 в катионах и раствор соды при 0,2 моль·л-1 путем растворения соответствующих количеств AlCl3, 6H2O и NaOH в дистиллированной воде. Раствор соды добавили каплями при взбалтывании в раствор AlCl3 до получения соотношения OH/Al, равного 2. После этого полученный раствор выдержали при температуре окружающей среды в течение 48 часов, избегая его загрязнения и без механического перемешивания, чтобы получить макромолекулярный катион Al137+.
Химически расслоенный вермикулит перевели во взвешенное состояние в дистиллированной воде. Ранее полученный мостикообразующий раствор добавили каплями с взбалтыванием таким образом, чтобы получить 4 миллимоля алюминия на грамм вермикулита. Затем полученный раствор перемешивали в течение 30 минут при температуре окружающей среды для гомогенизации суспензии, после чего его отфильтровали. Полученный после фильтрации вермикулит промыли, чтобы удалить ионы хлоридов. Затем полученный вермикулит подвергли обжигу в течение 2 часов при 700°C для окисления катионов алюминия. После этого произвели ручное измельчение для разделения агломератов, образовавшихся во время обжига. Полученный порошок спрессовали в виде таблеток под давлением 180 бар с добавлением воды.

Claims (10)

1. Способ получения расслоенного вермикулита, содержащий следующие стадии:
- нагрев не расслоенного гидратированного вермикулита при температуре от 400 до 600°C в течение времени от 3 ч до 7 ч с образованием обезвоженного вермикулита;
- контактирование обезвоженного вермикулита с раствором, содержащим реагент интеркаляции, который может разлагаться, выделяя, по меньшей мере, один газ.
2. Способ по п.1, в котором реагент интеркаляции является пероксидом водорода.
3. Способ по п.1, в котором пероксид водорода используют в виде раствора с концентрацией от 35 мас.% до 50 мас.%.
4. Способ по любому из пп.1-3, в котором контактирование осуществляют при температуре от 20°C до 100°C.
5. Способ изготовления прессованного материала, содержащий:
- формование расслоенного вермикулита, полученного способом по любому из пп.1-4 путем его прессования.
6. Способ изготовления по п.5, в котором формование осуществляют без применения органического связующего.
7. Способ изготовления по п.5, в котором перед формованием измельчают указанный вермикулит.
8. Способ изготовления по п.7, в котором измельченный вермикулит перед формированием нагревают при температуре от 700°C до 800°C в течение времени от 1 до 14 ч.
9. Способ изготовления по п.7 или 8, в котором вермикулит после нагревания и перед формованием повторно увлажняют дистиллированной водой или вводят в контакт с «мостикообразующим» раствором, содержащим элементы, выбранные из группы, состоящие из алюминия и кремния.
10. Способ изготовления по п.5, в котором вермикулит после формования нагревают до температуры от 500°C до 800°C.
RU2009147761/03A 2007-05-23 2008-05-22 Способ получения сильно расслоенного вермикулита и способ изготовления прессованного материала RU2474543C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0755220 2007-05-23
FR0755220A FR2916439B1 (fr) 2007-05-23 2007-05-23 Procede de fabrication d'une vermiculite fortement exfoliee ne necessitant pas l'utilisation de liant organique ou d'additif organique pour etre mis en forme
PCT/EP2008/056329 WO2008142144A2 (fr) 2007-05-23 2008-05-22 Procede de fabrication d'une vermiculite fortement exfoliee ne necessitant pas l'utilisation de liant organique ou d'additif organique pour etre mis en forme

Publications (2)

Publication Number Publication Date
RU2009147761A RU2009147761A (ru) 2011-06-27
RU2474543C2 true RU2474543C2 (ru) 2013-02-10

Family

ID=38814504

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009147761/03A RU2474543C2 (ru) 2007-05-23 2008-05-22 Способ получения сильно расслоенного вермикулита и способ изготовления прессованного материала

Country Status (13)

Country Link
US (1) US20110006263A1 (ru)
EP (1) EP2150506B1 (ru)
JP (1) JP5442601B2 (ru)
CN (1) CN101679116A (ru)
AT (1) ATE525334T1 (ru)
AU (1) AU2008252922B2 (ru)
BR (1) BRPI0811235A2 (ru)
CA (1) CA2687645C (ru)
ES (1) ES2372330T3 (ru)
FR (1) FR2916439B1 (ru)
RU (1) RU2474543C2 (ru)
WO (1) WO2008142144A2 (ru)
ZA (1) ZA200907665B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694264C2 (ru) * 2016-12-14 2019-07-11 Тарим Юниверсити Способ получения пвх продукта с использованием термостабилизатора из вермикулита
RU2751944C1 (ru) * 2020-06-29 2021-07-21 Общество с ограниченной ответственностью "Торговый Дом "ФАРМАКС" (ООО "ТД "ФАРМАКС") Способ получения дуолита

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584065B (zh) * 2012-02-15 2015-05-06 关范 一种生产膨胀珍珠岩的装置
US8978761B2 (en) 2012-03-27 2015-03-17 Halliburton Energy Services, Inc. Hydrated sheet silicate minerals for reducing permeability in a well
GB2500704B (en) * 2012-03-30 2015-03-25 Goodwin Plc Fire extinguisher and fire extinguishing medium
GB2512016A (en) * 2012-09-24 2014-09-24 Arterius Ltd Methods
FR3019812A1 (fr) * 2014-04-14 2015-10-16 Centre Nat Rech Scient Composition comprenant des particules phyllominerales et procede de preparation
JP6301802B2 (ja) * 2014-10-03 2018-03-28 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
DE202015105340U1 (de) 2015-10-08 2016-10-12 Fouad Hatem Ersatzstoff für Wasserpfeifen-Tabak
DE202015105339U1 (de) 2015-10-08 2016-10-12 Fouad Hatem Ersatzstoff für Wasserpfeifen-Tabak
CN106431046A (zh) * 2016-10-18 2017-02-22 南京依柯卡特排放技术股份有限公司 一种蛭石改性膨胀制备方法
US11426695B2 (en) * 2018-04-23 2022-08-30 Richard Gerlach Media and air filters for carbon dioxide sequestration
CN113209541B (zh) * 2021-05-15 2022-01-28 江苏阜民新材料有限公司 一种新型锂电池灭火剂及制备方法
CN115231582B (zh) * 2022-07-19 2023-12-19 西安交通大学 一种二维蒙脱土大尺径纳米片剥离方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976908C (de) * 1943-04-27 1964-07-23 Samica Sa Verfahren zur Teilung von Glimmer in Schueppchen
US3813346A (en) * 1971-08-12 1974-05-28 Takeda Chemical Industries Ltd Method for expanding mica-group minerals with hydrogen peroxide plus an acid
EP0251473A1 (en) * 1986-07-02 1988-01-07 T&N Materials Research Limited Vermiculite moulding compositions and articles made therefrom
WO2003004578A1 (en) * 2001-07-05 2003-01-16 Flexitallic Investments Incorporated Process for the production of vermiculite foil
RU2296725C2 (ru) * 2005-01-13 2007-04-10 Закрытое акционерное общество "УНИХИМТЕК" (ЗАО "УНИХИМТЕК") Способ получения вспученной слюды

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265366A (ru) * 1969-05-13 1972-03-01
JPS4918717B1 (ru) * 1970-12-05 1974-05-11
DE2744393C3 (de) * 1977-10-03 1981-04-30 Hans Kramer GmbH & Co KG, 4000 Düsseldorf Verfahren zur Herstellung hochtemperaturbeständiger, wasserfester Formkörper mit niedriger Rohdichte
DE3105860A1 (de) * 1980-02-18 1981-12-10 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute, Aichi Platten- bzw. plaettchenfoermiges produkt aus mineralton
JPS58161967A (ja) * 1982-03-19 1983-09-26 株式会社豊田中央研究所 ひる石成形体およびその製造方法
SU1629270A1 (ru) * 1989-08-10 1991-02-23 Государственный Всесоюзный Проектный И Научно-Исследовательский Институт Неметаллорудной Промышленности Способ вспучивани вермикулита
ZA971233B (en) * 1996-02-23 1998-09-14 Thermax Brandschutzbauteile Ge Method of producing a non-flammable shaped part in particular a building-material panel
US20020193493A1 (en) * 2000-01-13 2002-12-19 Symons Michael Windsor Method of making a product from an expanded mineral

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976908C (de) * 1943-04-27 1964-07-23 Samica Sa Verfahren zur Teilung von Glimmer in Schueppchen
US3813346A (en) * 1971-08-12 1974-05-28 Takeda Chemical Industries Ltd Method for expanding mica-group minerals with hydrogen peroxide plus an acid
EP0251473A1 (en) * 1986-07-02 1988-01-07 T&N Materials Research Limited Vermiculite moulding compositions and articles made therefrom
WO2003004578A1 (en) * 2001-07-05 2003-01-16 Flexitallic Investments Incorporated Process for the production of vermiculite foil
RU2296725C2 (ru) * 2005-01-13 2007-04-10 Закрытое акционерное общество "УНИХИМТЕК" (ЗАО "УНИХИМТЕК") Способ получения вспученной слюды

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694264C2 (ru) * 2016-12-14 2019-07-11 Тарим Юниверсити Способ получения пвх продукта с использованием термостабилизатора из вермикулита
RU2694264C9 (ru) * 2016-12-14 2019-09-02 Тарим Юниверсити Способ получения пвх продукта с использованием термостабилизатора из вермикулита
RU2751944C1 (ru) * 2020-06-29 2021-07-21 Общество с ограниченной ответственностью "Торговый Дом "ФАРМАКС" (ООО "ТД "ФАРМАКС") Способ получения дуолита

Also Published As

Publication number Publication date
ES2372330T3 (es) 2012-01-18
WO2008142144A3 (fr) 2009-02-26
FR2916439A1 (fr) 2008-11-28
JP2010527887A (ja) 2010-08-19
AU2008252922A1 (en) 2008-11-27
RU2009147761A (ru) 2011-06-27
BRPI0811235A2 (pt) 2014-11-04
US20110006263A1 (en) 2011-01-13
EP2150506B1 (fr) 2011-09-21
EP2150506A2 (fr) 2010-02-10
WO2008142144A2 (fr) 2008-11-27
FR2916439B1 (fr) 2010-09-10
JP5442601B2 (ja) 2014-03-12
ATE525334T1 (de) 2011-10-15
CA2687645A1 (fr) 2008-11-27
ZA200907665B (en) 2010-07-28
CA2687645C (fr) 2014-10-14
AU2008252922B2 (en) 2013-05-02
CN101679116A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
RU2474543C2 (ru) Способ получения сильно расслоенного вермикулита и способ изготовления прессованного материала
US4676929A (en) Gels, gel products and methods
AU2021201262A1 (en) Thermally insulating material
Prud'Homme et al. In situ inorganic foams prepared from various clays at low temperature
US4777206A (en) Article of manufacture composed of gel
Lampris et al. Geopolymerisation of silt generated from construction and demolition waste washing plants
Díaz et al. Development and use of geopolymers for energy conversion: An overview
Belmokhtar et al. Effect of structural and textural properties of a ceramic industrial sludge and kaolin on the hardened geopolymer properties
Talbi et al. Virtuous cycle of destruction and total recycling of pure asbestos and asbestos-containing waste
Diop et al. Manufacturing brick from attapulgite clay at low temperature by geopolymerization
JPS6242877B2 (ru)
Mandal et al. Effect of bottom ash fineness on properties of red mud geopolymer
DE102020134133A1 (de) Reststoffbasierte Zusammensetzung zur Herstellung eines Geopolymer-Leichtsteins; Geopolymer-Leichtstein, sowie ein Verfahren zu dessen Herstellung und deren Verwendung
Nmiri et al. Temperature effect on mechanical and physical proprieties of Na or K alkaline silicate activated metakaolin-based geopolymers
CN110156355A (zh) 一种地质聚合物改性聚苯保温板
Onutai et al. Geopolymer sourced with fly ash and industrial aluminum waste for sustainable materials
JP3058322B2 (ja) 骨材、及び骨材の製造方法
Panias et al. The geopolymerization technology for the utilization of mining and metallurgical solid wastes
Franus et al. Modification of the lightweight aggregate with the use of spent zeolite sorbents after the sorption of diesel fuel
JP3007954B2 (ja) 混合層ケイ酸塩及びその製造方法
RU2063941C1 (ru) Сырьевая смесь для получения пористого теплоизоляционного материала
Enoh et al. Evaluating the effect of utilising biomass leachates as alkali activators for the synthesis of geopolymers
Hassen et al. Structural Transformations of Northcom Transvaal and Libby Montana Vermiculite Clay Produced by Firing: Mossbauer Study
Abood AL-Saadi et al. Glass Waste Based Geopolymers and Their Characteristics.
Tleuov et al. THE TECHNOLOGY OF SORBENT PREPARATION ON A BASIS OF ALUMINOSILICATE MATERIALS FOR PHOSPHORIC SLUDGE CLEANING

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140523