RU2473664C1 - Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления - Google Patents

Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления Download PDF

Info

Publication number
RU2473664C1
RU2473664C1 RU2011149347/04A RU2011149347A RU2473664C1 RU 2473664 C1 RU2473664 C1 RU 2473664C1 RU 2011149347/04 A RU2011149347/04 A RU 2011149347/04A RU 2011149347 A RU2011149347 A RU 2011149347A RU 2473664 C1 RU2473664 C1 RU 2473664C1
Authority
RU
Russia
Prior art keywords
hours
fraction
catalyst
platinum
hydrogen
Prior art date
Application number
RU2011149347/04A
Other languages
English (en)
Inventor
Анна Николаевна Логинова
Сергей Александрович Свидерский
Светлана Николаевна Потапова
Вадим Владимирович Фадеев
Янина Владиславовна Михайлова
Сергей Васильевич Лысенко
Денис Николаевич Герасимов
Илья Михайлович Круковский
Михаил Сергеевич Аксенов
Original Assignee
Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" filed Critical Общество с ограниченной ответственностью "Объединенный центр исследований и разработок"
Priority to RU2011149347/04A priority Critical patent/RU2473664C1/ru
Application granted granted Critical
Publication of RU2473664C1 publication Critical patent/RU2473664C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Изобретение описывает технологию получения синтетических топлив для летательных аппаратов из синтетических углеводородов. Изобретение касается способа получения синтетического авиационного топлива из углеводородов, полученных по методу Фишера-Тропша, включающего выделение из синтезированных жидких продуктов фракции 135-280°C с последующим разделением ее ректификацией на две фракции 135-190°C и 190-280°C, после чего фракцию с низшими температурами кипения подвергают ароматизации при температуре 400-500°C, под давлением водорода 1,8-2,5 МПа, при объемной скорости подачи сырья 1,5-2,0 час -1 и отношении водорода к сырью 1100-1500:1 нл/л над алюмоплатиновым катализатором, промотированным рением, содержащим от 0,28 до 0,32 мас.% платины и от 0,28 до 0,52 мас.% рения, нанесенных на носитель из γ-Al 2 O 3 , содержание примесей посторонних металлов в котором не превышает 1500 ррм, а фракцию с высшими температурами кипения последовательно подвергают гидроизомеризации при температуре 200-400°C, под давлением водорода 2,0-7,0 МПа, объемной скорости подачи сырья 0,2-2,5 час -1 , при отношении водорода к сырью 300-1500:1 нл/л над катализатором, включающим каталитически активный компонент - платину, нанесенную на цеолит, содержащий носитель и связующее, при этом содержание платины в катализаторе находится в пределах 0,15-0,60 мас.%, содержание цеолита составляет 5-60 мас.%, который выбирают из группы: ZSM-5, ZSM-23, β, SAPO-11 или SAPO-41, причем в качестве связующего используют γ-Al 2 O 3 в оставшемся количестве, а затем подвергают гидрофинишингу при температуре 180-240°C, под давлением водорода 2,0-4,0 МПа, объемной скорости подачи сырья 1,0-12,0 час -1 , при соотношении водорода к сырью 300-500:1 нл/л над алюмопалладиевым катализатором, содержащим 0,2-2,0 мас.% палладия, на γ-оксиде алюминия со средним радиусом пор 4,0-10,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррм, после этого фракции смешивают и подвергают стабилизации. Технический результат - высокий выход целевых продуктов, пригодных для получения после смешивания и стабилизации высококачественного авиационного топлива с температурой застывания не выше минус 55°C и температурой начала кристаллизации не выше минус 50°C. 2 н.п. ф-лы, 1 табл., 30 пр.

Description

Изобретение относится к газохимии и газопереработке, а именно к технологии получения синтетических топлив для летательных аппаратов из синтетических углеводородов, полученных из природного или попутного газа по методу Фишера-Тропша. Способ получения авиационных топлив из синтетических углеводородов, полученных по методу Фишера-Тропша, относится к области топлив и энергетики, в частности к области получения экологически чистых топлив не нефтяного происхождения.
Известен способ получения смеси керосинов нефтяного происхождения и получаемых по Фишеру-Тропшу, в которой соотношение нормальных и изопарафиновых углеводородов в керосине, полученном по Фишеру-Тропшу, колеблется в пределах от 1:1 до 4:1 (Патент РФ №2341554, 2004).
К недостаткам способа следует отнести нестабильное качество получаемого продукта.
Известен способ получения дизельного и авиационного топлива с пониженным содержанием серы, путем фракционирования смеси синтетических углеводородов, полученных по низкотемпературному методу Фишера-Тропша, выделения керосиновой и дизельной фракций и/или смешения с соответствующими фракциями, выделенными из нефтепродуктов, различающихся по температуре застывания, плотности, содержанию ароматики, для достижения требуемых значений нормативных показателей по содержанию ароматики, плотности и др. (Патент США №2006/0111599, 2006).
В данном способе недостатком является низкое содержание синтетических углеводородов.
Известен способ получения синтетического реактивного топлива, включающий выделение двух фракций из продуктов синтеза Фишера-Тропша, выкипающих до 370°C и выкипающих выше 370°C. Легкая фракция разделяется на 2 фракции, одна из которых выкипает в пределах 120-245°C и содержит первичные спирты C6-C12, а другая выкипает в пределах 245-370°C, которая отдельно или совместно с тяжелой фракцией, выкипающей выше 370°C, подвергается гидроизомеризации.
Затем смешивают часть продукта гидроизомеризации фракции или смеси этой фракции с тяжелой фракцией, выкипающей выше 370°C, с фракцией, не подвергавшейся гидропереработке, с получением реактивного топлива или компонента реактивного топлива с пределами выкипания 120-245°C (Патент США №6669743, 2003).
К недостаткам данного способа можно отнести то, что низкотемпературные свойства реактивного топлива в значительной степени обеспечиваются присутствием в продукте углеводородов, выкипающих при температурах ниже 135°C.
Известен способ получения реактивного топлива путем гидроизомеризации легких продуктов синтеза Фишера-Тропша при противоточной подачи в зону реакции сырья и водородсодержащего газа с предварительным прямоточным гидрированием. Гидроизомеризацию фракции 40-260°C проводят над палладийсодержащим катализатором при температуре 200-450°C и давлении 100-1500 psig. (Патент США 5888376, 1999).
Данный способ позволяет получать реактивное топливо с температурой застывания до минус 51°C. Однако выход целевой фракции реактивного топлива 160-260°C, полученной по данному способу, составляет менее 50%.
Известен катализатор гидроизомеризации керосиновой фракции, представляющий собой палладий (0,3 мас.%), нанесенный на алюмосиликатный носитель, с содержанием оксида кремния 10%, кроме того, 6% оксида кремния дополнительно нанесено на поверхность носителя (Патент США 5888376, 1999).
Использование данного катализатора позволяет снизить температуру застывания исходной керосиновой фракции до минус 51°C. Однако выход целевой фракции (160-260°C) составляет около 45%, что можно отнести к недостаткам данного катализатора.
Наиболее близким к предлагаемому является катализатор изомеризации фракций синтетических углеводородов, полученных по методу Фишера-Тропша, представляющий собой оксиды металлов VI и VIII групп Периодической таблицы Д.И.Менделеева, в составе алюмосиликатных и цеолитсодержащих носителей. В патенте приведены примеры гидроизомеризации синтетической керосиновой фракции (177-260°C) над палладиевым катализатором, содержащим 0,5% Pd, нанесенного на ультрастабильный цеолит типа Y (Патент США 5378348, 1995).
В результате гидроизомеризации и оптимизации фракционного состава полученного продукта температура застывания полученной керосиновой фракции (160-260°C) составила минус 39°C. При выходе фракции около 59% данный показатель является недостаточным.
Целью изобретения является получение синтетического авиационного топлива с температурой застывания не выше минус 55°C и температурой начала кристаллизации не выше минус 50°C из не нефтяного сырья.
Указанная цель достигается способом переработки синтетических жидких углеводородов - фракция 135-280°C, полученных по методу Фишера-Тропша из синтез-газа на кобальтовом катализаторе. Полученные продукты в результате синтеза Фишера-Тропша, имеющие вид синтетических жидких углеводородов, представляют собой сложную смесь парафиновых углеводородов с числом углеродных атомов от 5 до 32, с отношением нормальных парафиновых углеводородов к изопарафиновым - 1-7:1.
Фракция 135-280°C предварительно разделяется на две фракции 135-190°C и 190-280°C. Фракция 135-190°C подвергается ароматизации, а фракция 190-280°C подвергается гидроизомеризации и гидрофинишингу. Последовательность проводимых технологических процессов представлена на схеме. Продукты, полученные в результате ароматизации фракции с низшими температурами кипения, и продукты, полученные в ходе гидроизомеризации и гидрофинишинга фракции с высшими температурами кипения, смешивают, подвергают стабилизации и получают синтетическое авиационное топливо с температурой застывания не выше минус 55°C и температурой начала кристаллизации не выше минус 50°C.
Указанные отличительные признаки существенны.
Предварительное выделение общей фракции 135-280°C с последующим разделением на две фракции обеспечивает минимальные значения параметров ректификации для разделения фракций, что в условиях непредельных углеводородов существенно снижает возможность нежелательной полимеризации.
Заданные значения режима ароматизации легкой фракции 135-190°C в сочетании с применением специфического алюмоплатинового катализатора, промотированного рением, определенные экспериментальным путем, так же как заявленный режим гидроизомеризации фракции 190-280°C, осуществляемый на новом катализаторе с последующим гидрофинишингом на специальном палладиевом катализаторе обеспечивают высокий выход целевых продуктов, пригодных для получения после смешивания и стабилизации высококачественного авиационного топлива с температурой застывания не выше минус 55°C и температурой начала кристаллизации не выше минус 50°C.
Способ реализуют следующим образом.
Из сложной смеси синтетических жидких углеводородов, полученных по методу Фишера-Тропша из синтез-газа, ректификацией выделяют фракцию 135-280°C, которую затем разделяют на фракцию с низшими температурами кипения - 135-190°C и фракцию с высшими температурами кипения - 190-280°C.
Фракцию 135-190°С подвергают ароматизации при температуре 400-500°С, давлении 1,8-2,5 МПа, объемной скорости подачи сырья 1,5-2,0 час-1, отношении водорода к сырью 1100-1500:1 нл/л. В процессе ароматизации используется алюмоплатиновый катализатор, промотированный рением, содержащий от 0,28 до 0,32 мас.% платины и от 0,28 до 0,52 мас.% рения, нанесенные на носитель, представляющий собой γ-Al2O3, содержание примесей посторонних металлов в котором не превышает 1500 ррм. Состав примесей является стандартным, а содержание примесей в составе γ-оксида алюминия составляет, ppm: SiO2 не более 50; TiO2 не более 1150; Fe2O3 не более 200; Na2O не более 100.
Фракцию 190-280°C подвергают гидроизомеризации при температуре 200-400°C, давлении 2,0-7,0 МПа, объемной скорости подачи сырья 0,2-2,5 час-1, при отношении водорода к сырью 300-1500:1 нл/л. Катализатор гидроизомеризации представляет собой многокомпонентную систему, включающую в себя:
Активный металлический компонент - 0,15-0,60 мас.% платины;
Активный кислотный компонент - цеолиты: 5-60 мас.%, выбранные из группы:
ZSM-5 или
ZSM-23 или
β или
SAPO-11 или
SAPO-41;
Связующее γ-Al2O3 - остальное.
Продукт гидроизомеризации фракции 190-280°C подвергают гидрофинишингу при температуре 180-240°C, давлении 2,0-4,0 МПа, объемной скорости подачи сырья 1,0-12,0 час-1, при отношении водорода к сырью 300-500:1 нл/л. В процессе гидрофинишинга используют палладиевый катализатор, содержащий от 0,2 до 2 мас.% палладия, нанесенный на носитель, представляющий собой γ-Al2O3 с эффективным радиусом пор 4,0-10,0 нм.
Полученные продукты смешивают, подвергают стабилизации и получают синтетическое авиационное топливо с температурой застывания не выше минус 55°C и температурой начала кристаллизации не выше минус 50°C.
Изобретение иллюстрируется следующими примерами.
Пример 1
121,44 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 3,78 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
5,43 г порошка цеолита ZSM-5 в Н-форме с мольным соотношением SiO2/Al2O3=50 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,4 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,6 г платины в составе платинохлористоводородной кислоты; 2,98 г 98,5% концентрированной уксусной кислоты и 2,76 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,6
Цеолит ZSM-5 в Н-форме с мольным
соотношением SiO2/Al2O3=50 5,0
Оксид алюминия (γ-Al2O3) 94,4
Пример 2
103,1 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 3,19 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
21,7 г порошка цеолита ZSM-5 в Н-форме с мольным соотношением SiO2/Al2O3=50 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г платины составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,3
Цеолит ZSM-5 в Н-форме с мольным
соотношением SiO2/Al2O3=50 19,94
Оксид алюминия (γ-Al2O3) 79,76
Пример 3
77,4 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
43,4 г порошка цеолита ZSM-5 в Н-форме с мольным соотношением SiO2/Al2O3=50 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,85 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,15 г платины в составе платинохлористоводородной кислоты; 0,75 г 98,5% концентрированной уксусной кислоты и 0,69 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,15
Цеолит ZSM-5 в Н-форме с мольным
соотношением SiO2/Al2O3=50 39,94
Оксид алюминия (γ-Al2O3) 59,91
Пример 4
121,44 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 3,78 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
5,29 г порошка цеолита ZSM-23 в Н-форме с мольным соотношением SiO2/Al2O3=46 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,4 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,6 г платины в составе платинохлористоводородной кислоты; 2,98 г 98,5% концентрированной уксусной кислоты и 2,76 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,6
Цеолит ZSM-23 в Н-форме с мольным
соотношением SiO2/Al2O3=46 5,0
Оксид алюминия (γ-Al2O3) 94,4
Пример 5
103,1 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 3,19 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
21,1 г порошка цеолита ZSM-23 в Н-форме с мольным соотношением SiO2/Al2O3=46 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г платины в составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,3
Цеолит ZSM-23 в Н-форме с мольным
соотношением SiO2/Al2O3=46 19,94
Оксид алюминия (γ-Al2O3) 79,76
Пример 6
77,4 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
42,23 г порошка цеолита ZSM-23 в Н-форме с мольным соотношением SiO2/Al2O3=46 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,85 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,15 г платины в составе платинохлористоводородной кислоты; 0,75 г 98,5% концентрированной уксусной кислоты и 0,69 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,15
Цеолит ZSM-23 в Н-форме с мольным
соотношением SiO2/Al2O3=46 39,94
Оксид алюминия (γ-Al2O3) 59,91
Пример 7
102,7 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 3,18 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
20,7 г порошка цеолита β в Н-форме с мольным соотношением SiO2/Al2O3=38 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,4 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,6 г платины в составе платинохлористоводородной кислоты; 2,98 г 98,5% концентрированной уксусной кислоты и 2,76 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,6
Цеолит β в Н-форме с мольным
соотношением SiO2/Al2O3=38 19,88
Оксид алюминия (γ-Al2O3) 79,52
Пример 8
90,2 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 2,79 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
31,2 г порошка цеолита β в Н-форме с мольным соотношением SiO2/Al2O3=38 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г платины в составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,3
Цеолит β в Н-форме с мольным
соотношением SiO2/Al2O3=38 29,91
Оксид алюминия (γ-Al2O3) 69,79
Пример 9
77,4 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
41,6 г порошка цеолита β в Н-форме с мольным соотношением SiO2/Al2O3=38 сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную и модифицированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 3 ч с подъемом температуры прокалки 50°C в час.
99,85 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,15 г платины в составе платинохлористоводородной кислоты; 0,75 г 98,5% концентрированной уксусной кислоты и 0,69 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,15
Цеолит β в Н-форме с мольным
соотношением SiO2/Al2O3=38 39,94
Оксид алюминия (γ-Al2O3) 59,91
Пример 10
115,6 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 3,58 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
11,0 г порошка цеолита SAPO-11 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,4 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,6 г в составе платинохлористоводородной кислоты; 2,98 г 98,5% концентрированной уксусной кислоты и 2,76 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,6
Цеолит SAPO-11 в Н-форме 9,9
Оксид алюминия (γ-Al2O3) 89,5
Пример 11
77,3 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
44,3 г порошка цеолита SAPO-11 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г в составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,3
Цеолит SAPO-11 в Н-форме 39,9
Оксид алюминия (γ-Al2O3) 59,8
Пример 12
51,4 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 1,59 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
66,6 г порошка цеолита SAPO-11 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,85 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,15 г в составе платинохлористоводородной кислоты; 0,75 г 98,5% концентрированной уксусной кислоты и 0,69 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,15
Цеолит SAPO-11 в Н-форме 59,90
Оксид алюминия (γ-Al2O3) 39,85
Пример 13
115,6 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 3,58 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
11,0 г порошка цеолита SAPO-41 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,4 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,6 г в составе платинохлористоводородной кислоты; 2,98 г 98,5% концентрированной уксусной кислоты и 2,76 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,6
Цеолит SAPO-41 в Н-форме 9,9
Оксид алюминия (γ-Al2O3) 89,5
Пример 14
77,3 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
44,3 г порошка цеолита SAPO-41 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г в составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,3
Цеолит SAPO-41 в Н-форме 39,9
Оксид алюминия (γ-Al2O3) 59,8
Пример 15
51,4 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 1,59 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/см3.
66,6 г порошка цеолита SAPO-41 в Н-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,85 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,15 г в составе платинохлористоводородной кислоты; 0,75 г 98,5% концентрированной уксусной кислоты и 0,69 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) 0,15
Цеолит SAPO-41 в Н-форме 59,90
Оксид алюминия (γ-Al2O3) 39,85
Пример 16
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации в присутствии водорода при температуре 400°C, давлении 1,8 МПа, объемной скорости подачи сырья 1,5 час-1, соотношении водород: сырье - 1100:1 нл/л.
Ароматизацию проводят в присутствии катализатора, содержащего 0,28 мас.% платины, 0,28 мас.% рения на носителе, представляющем собой γ-оксид алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 200°C, давлении 2,0 МПа, объемной скорости подачи сырья 0,2 час-1. Соотношение водород: сырье поддерживают равным 300:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,15 мас.%, в качестве активного кислотного компонента цеолит ZSM-5 в количестве 40 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу в присутствии водорода при температуре 180°C, давлении 2,0 МПа, объемной скорости подачи сырья 1,0 час-1. Соотношение водород: сырье поддерживают равным 300:1 нл/л.
Гидрофинишинг гидрогенизата проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 0,2 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 4,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 17
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации в присутствии водорода при температуре 450°C, давлении 2,0 МПа, объемной скорости подачи сырья 1,75 час-1, соотношении водород: сырье - 1200:1 нл/л.
Ароматизацию проводят в присутствии катализатора, содержащего 0,30 мас.% платины, 0,48 мас.% рения на носителе, представляющем собой γ-оксид алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 235°C, давлении 3,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 1000:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,3 мас.%, в качестве активного кислотного компонента цеолит ZSM-5 в количестве 20 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу в присутствии водорода при температуре 200°C, давлении 3,0 МПа, объемной скорости подачи сырья 5,0 час-1. Соотношение водород: сырье поддерживают равным 400:1 нл/л.
Гидрофинишинг гидрогенизата проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 1,0 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 6,5 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 18
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации в присутствии водорода при температуре 500°C, давлении 2,5 МПа, объемной скорости подачи сырья 2,0 час-1, соотношении водород: сырье - 1500:1 нл/л.
Ароматизацию проводят в присутствии катализатора, содержащего 0,32 мас.% платины, 0,52 мас.% рения на носителе, представляющем собой γ-оксид алюминия, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 300°C, давлении 7,0 МПа, объемной скорости подачи сырья 2,5 час-1. Соотношение водород: сырье поддерживают равным 1500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,6 мас.%, в качестве активного кислотного компонента цеолит ZSM-5 в количестве 5 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу в присутствии водорода при температуре 240°C, давлении 4,0 МПа, объемной скорости подачи сырья 12,0 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидрофинишинг гидрогенизата проводят в присутствии катализатора, содержащего в качестве каталитически активного компонента палладий в количестве 2,0 мас.%. В качестве носителя катализатора используют пористый γ-оксид алюминия со средним размером пор 10,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 ррм.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 19
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 300°C, давлении 5,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,15 мас.%, в качестве активного кислотного компонента цеолит ZSM-23 в количестве 40 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 20
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 320°C, давлении 3,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,3 мас.%, в качестве активного кислотного компонента цеолит ZSM-23 в количестве 20 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 21
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 350°C, давлении 2,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,6 мас.%, в качестве активного кислотного компонента цеолит ZSM-23 в количестве 5 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 22
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 320°C, давлении 2,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,15 мас.%, в качестве активного кислотного компонента цеолит SAPO-41 в количестве 60 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 23
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 350°C, давлении 3,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,3 мас.%, в качестве активного кислотного компонента цеолит SAPO-41 в количестве 40 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 24
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 400°C, давлении 6,0 МПа, объемной скорости подачи сырья 2.0 час-1. Соотношение водород: сырье поддерживают равным 1000:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,6 мас.%, в качестве активного кислотного компонента цеолит SAPO-41 в количестве 10 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 25
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 330°C, давлении 3,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,15 мас.%, в качестве активного кислотного компонента цеолит SAPO-11 в количестве 60 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 26
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 360°C, давлении 3,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,3 мас.%, в качестве активного кислотного компонента цеолит SAPO-11 в количестве 40 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 27
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 380°C, давлении 6,0 МПа, объемной скорости подачи сырья 1,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,6 мас.%, в качестве активного кислотного компонента цеолит SAPO-11 в количестве 10 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 28
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 220°C, давлении 6,0 МПа, объемной скорости подачи сырья 2,0 час-1. Соотношение водород: сырье поддерживают равным 300:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,15 мас.%, в качестве активного кислотного компонента цеолит β в количестве 40 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 29
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 260°C, давлении 4,0 МПа, объемной скорости подачи сырья 2,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,3 мас.%, в качестве активного кислотного компонента цеолит β в количестве 30 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Пример 30
Смесь синтетических жидких углеводородов подвергают ректификации с выделением фракции 135-280°C. Полученная фракция разделяется на две фракции 135-190°C и 190-280°C.
Фракцию 135-190°C подвергают ароматизации аналогично Примеру 17.
Фракцию 190-280°C подвергают гидроизомеризации в присутствии водорода при температуре 280°C, давлении 4,0 МПа, объемной скорости подачи сырья 2,5 час-1. Соотношение водород: сырье поддерживают равным 500:1 нл/л.
Гидроизомеризацию фракции 190-280°C проводят в присутствии катализатора, содержащего в качестве активного металлического компонента платину в количестве 0,6 мас.%, в качестве активного кислотного компонента цеолит β в количестве 20 мас.%, остальное γ-оксид алюминия.
После стадии гидроизомеризации полученный гидрогенизат подвергают гидрофинишингу аналогично примеру 17.
После проведения раздельных стадий ароматизации и гидрофинишинга продукты смешивают и стабилизируют. Полученный продукт является синтетическим авиационным топливом.
Физико-химические свойства синтетических фракций, подвергнутых гидрированию и гидроизомеризации по примерам 16-30, приведены в таблице 1.
Таблица 1
Наименование примеров Выход синтетического авиационного топлива, мас.% Температура застывания, °C Температура начала кристаллизации, °C
Пример 16 51 -60 -53
Пример 17 65 -55 -50
Пример 18 68 -55 -50
Пример 19 85 -60 -53
Пример 20 88 -62 -54
Пример 21 80 -63 -56
Пример 22 90 -56 -51
Пример 23 88 -59 -53
Пример 24 85 -60 -53
Пример 25 87 -57 -52
Пример 26 78 -65 -57
Пример 27 59 -75 -65
Пример 28 51 -63 -55
Пример 29 55 -55 -50
Пример 30 59 -56 -51

Claims (2)

1. Способ получения синтетического авиационного топлива из углеводородов, полученных по методу Фишера-Тропша, включающий выделение из синтезированных жидких продуктов фракции 135-280°C с последующим разделением ее ректификацией на две фракции 135-190°C и 190-280°C, после чего фракцию с низшими температурами кипения подвергают ароматизации при температуре 400-500°C, под давлением водорода 1,8-2,5 МПа, при объемной скорости подачи сырья 1,5-2,0 ч-1 и отношении водорода к сырью 1100-1500:1 нл/л над алюмоплатиновым катализатором, промотированным рением, содержащим от 0,28 до 0,32 мас.% платины и от 0,28 до 0,52 мас.% рения, нанесенных на носитель из γ-Al2O3, содержание примесей посторонних металлов в котором не превышает 1500 млн-1, а фракцию с высшими температурами кипения последовательно подвергают гидроизомеризации при температуре 200-400°C, под давлением водорода 2,0-7,0 МПа, объемной скорости подачи сырья 0,2-2,5 ч-1, при отношении водорода к сырью 300-1500:1 нл/л над катализатором, включающим каталитически активный компонент - платину, нанесенную на цеолит, содержащий носитель и связующее, при этом содержание платины в катализаторе находится в пределах 0,15-0,60 мас.%, содержание цеолита составляет 5-60 мас.%, который выбирают из группы: ZSM-5, ZSM-23, β, SAPO-11 или SAPO-41, причем в качестве связующего используют γ-Al2O3 в оставшемся количестве, а затем подвергают гидрофинишингу при температуре 180-240°C, под давлением водорода 2,0-4,0 МПа, объемной скорости подачи сырья 1,0-12,0 ч-1, при соотношении водорода к сырью 300-500:1 нл/л над алюмопалладиевым катализатором, содержащим 0,2-2,0 мас.% палладия, на γ-оксиде алюминия со средним радиусом пор 4,0-10,0 нм, содержание примесей посторонних металлов в котором не превышает 1500 млн-1, после этого фракции смешивают и подвергают стабилизации.
2. Катализатор гидроизомеризации углеводородов для осуществления способа по п.1, включающий каталитически активный компонент - платину, нанесенную на цеолит, содержащий носитель и связующее, отличающийся тем, что содержание платины в катализаторе находится в пределах 0,15-0,60 мас.%, содержание цеолита составляет 5-60 мас.%, который выбирают из группы: ZSM-5, ZSM-23, β, SAPO-11 или SAPO-41, а в качестве связующего используют γ-Al2O3 в оставшемся количестве.
RU2011149347/04A 2011-12-05 2011-12-05 Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления RU2473664C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011149347/04A RU2473664C1 (ru) 2011-12-05 2011-12-05 Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011149347/04A RU2473664C1 (ru) 2011-12-05 2011-12-05 Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления

Publications (1)

Publication Number Publication Date
RU2473664C1 true RU2473664C1 (ru) 2013-01-27

Family

ID=48806975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011149347/04A RU2473664C1 (ru) 2011-12-05 2011-12-05 Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления

Country Status (1)

Country Link
RU (1) RU2473664C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582806A (zh) * 2016-12-14 2017-04-26 中国石油大学(北京) 以水合改性氧化铝为基质原位合成SAPO‑11@γ‑Al2O3复合载体材料的方法
CN106669820A (zh) * 2016-12-14 2017-05-17 中国石油大学(北京) 以磷改性氧化铝为基质原位合成SAPO‑11@γ‑Al2O3复合载体材料的方法
RU2779444C1 (ru) * 2021-12-15 2022-09-07 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор второй стадии гидрокрекинга

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
RU2320703C2 (ru) * 2003-01-27 2008-03-27 Энститю Франсэ Дю Петроль Способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом загрузок, полученных по способу фишера-тропша
RU2341554C2 (ru) * 2003-09-17 2008-12-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Смесь керосинов нефтяного происхождения и получаемых по фишеру-тропшу
EP2384815A1 (en) * 2008-12-26 2011-11-09 JX Nippon Oil & Energy Corporation Hydrogenation isomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, and method for producing lubricant base oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
RU2320703C2 (ru) * 2003-01-27 2008-03-27 Энститю Франсэ Дю Петроль Способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом загрузок, полученных по способу фишера-тропша
RU2341554C2 (ru) * 2003-09-17 2008-12-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Смесь керосинов нефтяного происхождения и получаемых по фишеру-тропшу
EP2384815A1 (en) * 2008-12-26 2011-11-09 JX Nippon Oil & Energy Corporation Hydrogenation isomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, and method for producing lubricant base oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582806A (zh) * 2016-12-14 2017-04-26 中国石油大学(北京) 以水合改性氧化铝为基质原位合成SAPO‑11@γ‑Al2O3复合载体材料的方法
CN106669820A (zh) * 2016-12-14 2017-05-17 中国石油大学(北京) 以磷改性氧化铝为基质原位合成SAPO‑11@γ‑Al2O3复合载体材料的方法
CN106582806B (zh) * 2016-12-14 2019-08-09 中国石油大学(北京) 以水合改性氧化铝为基质原位合成SAPO-11@γ-Al2O3复合载体材料的方法
CN106669820B (zh) * 2016-12-14 2019-08-16 中国石油大学(北京) 以磷改性氧化铝为基质原位合成SAPO-11@γ-Al2O3复合载体材料的方法
RU2779444C1 (ru) * 2021-12-15 2022-09-07 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор второй стадии гидрокрекинга
RU2821943C2 (ru) * 2022-12-23 2024-06-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов из СО и Н2 и способ его получения

Similar Documents

Publication Publication Date Title
US9677016B2 (en) Catalytic processes and systems for base oil production using zeolite SSZ-32X
US20130260985A1 (en) Catalytic processes and systems for base oil production from heavy feedstock
RU2351635C2 (ru) Гидрогенизация ароматических соединений и олефинов с использованием мезопористого катализатора
JP2010537808A (ja) 芳香族水素化触媒並びに当該触媒の製造および使用方法
CA2780981C (en) Synthetic naphtha manufacturing method
JPH08311461A (ja) プレミアム異性化ガソリン生成用水素化処理方法
EP1641899B1 (en) Process for the preparation of middle distillates and lube bases starting from synthetic hydrocarbon feedstocks
NO335525B1 (no) Fremgangsmåte for fremstilling av mellomdestillater fra en parafinfødestrøm fremstilt av Fischer-Tropsch prosessen
JP5159785B2 (ja) ディーゼル燃料基材の製造方法および得られるディーゼル燃料基材
AU2008297217B2 (en) A process for hydrocracking and hydro-isomerisation of a paraffinic feedstock
RU2473664C1 (ru) Способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления
RU2287369C1 (ru) Способ приготовления катализатора для процесса гидроизомеризации бензола
RU2419649C2 (ru) Способ гидрирования синтетической нефти и способ изготовления базового топлива
RU2493237C2 (ru) Способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления
US10793791B2 (en) Use of a bifunctional catalyst based on zeolite IZM-2 for the hydroisomerization of light paraffinic feedstocks resulting from Fischer-Tropsch synthesis
JP5268177B2 (ja) 液体燃料の製造方法
EP2025400A1 (en) Hydrocracking catalyst, and method for production of fuel base material
RU2446136C1 (ru) Способ гидрирования олефинов и кислородсодержащих соединений в составе синтетических жидких углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления
US10793787B2 (en) Process for the production of olefins and of middle distillates from a hydrocarbon effluent resulting from the fischer-tropsch synthesis
RU2785685C1 (ru) Способ получения низкозастывающего дизельного топлива
RU2648046C1 (ru) Цеолитный катализатор и способ безводородной депарафинизации углеводородного сырья с его использованием
WO2013146867A1 (ja) ディーゼル燃料又はディーゼル燃料基材とその製造方法
TW202237803A (zh) 使用分子篩ssz-91之加氫裂解催化劑及製程
CN116390809A (zh) 通过特定热处理制备基于izm-2的催化剂的方法以及所述催化剂用于将链烷烃原料异构化为中间馏出物的用途
WO2022047282A1 (en) Process and system for base oil production