RU2287369C1 - Способ приготовления катализатора для процесса гидроизомеризации бензола - Google Patents
Способ приготовления катализатора для процесса гидроизомеризации бензола Download PDFInfo
- Publication number
- RU2287369C1 RU2287369C1 RU2005130735/04A RU2005130735A RU2287369C1 RU 2287369 C1 RU2287369 C1 RU 2287369C1 RU 2005130735/04 A RU2005130735/04 A RU 2005130735/04A RU 2005130735 A RU2005130735 A RU 2005130735A RU 2287369 C1 RU2287369 C1 RU 2287369C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- mordenite
- temperature
- benzene
- modulus
- Prior art date
Links
Landscapes
- Catalysts (AREA)
Abstract
Изобретение относится к области нефтепереработки и может быть использовано для приготовления катализаторов для процессов переработки нефтяных фракций, например приготовления катализатора для процесса гидроизомеризации бензола. Описан способ приготовления катализатора для процесса гидроизомеризации бензола, включающий смешение компонентов: цеолитного компонента - морденита со связующим - гидроксидом алюминия, пластификацию путем пептизации раствором кислоты, гранулирования, нанесение платины, термообработку и восстановление катализатора, причем смешение компонентов проводят при массовом соотношении компонентов смеси в интервале от 1:9-2:3 в пересчете на прокаленный морденит и гидроксид алюминий и после нанесения платины термообработку производят в две стадии при температуре на первой стадии 100-110°С, второй не выше 250-300°С, а восстановление катализатора проводят при температуре не ниже 500°С. В качестве гидрооксида алюминия используют псевдобемит марки Catapal А. В качестве цеолитного компонента используют высокомодульный морденит с силикатным модулем М=20-30, при содержании его в катализаторе 20-30%. В качестве цеолитного компонента используют низкомодульный морденит с силикатным модулем М=10, при содержании его в катализаторе не более 10%. Технический эффект - получение катализатора с повышенной селективностью и значительное сокращение энергозатрат. 1 табл.
Description
Изобретение относится к области нефтепереработки и может быть использовано для приготовления катализаторов для процессов переработки нефтяных фракций, например приготовления катализатора для процесса гидроизомеризации бензола.
Ужесточение экологических требований к автобензинам и постепенный переход к выпуску бензинов, отвечающих нормам стандартов Евро-3, Евро-4, диктует необходимость резкого снижения содержания ароматических углеводородов и в первую очередь бензола, в катализатах процесса каталитического риформинга, доля которых в суммарном фонде компонентов автомобильных бензинов составляет до 50%, а содержание бензола в них превышает 5 об.%.
Указанная задача может быть решена разными способами.
Известен способ выделения бензольной фракции из риформата путем фракционирования или адсорбции на селективных адсорбентах (Абдульминов К. Г., Ахметов А.Ф. и др. Производство ароматических углеводородов и высокооктановых бензинов фракционированием катализаторов риформинга, Башкирский химический журнал - Уфа: ГИНТЛ «Реактив», 2000, т.7, №2, с.49-51).
К недостаткам известного способа производства можно отнести значительное снижение выхода целевого продукта, а сопутствующее этому процессу уменьшение октанового числа требует увеличения количества добавляемых высокооктановых компонентов с других процессов нефтепереработки - изомеризатов, алкилатов и т.п. или так называемых октаноповышающих добавок типа метил-трет-бутилового эфира (МТБЭ). Как первое, так и второе имеет количественные ограничения различного характера и неизбежно приводит к резкому удорожанию бензина.
Известен ряд каталитических процессов, из которых наибольшее распространение получили процесс трансалкилирования бензола углеводородами С9+ (Абдульминов К.Г, Соловьев А.С. Исследование реакций трансалкилирования бензола в составе риформата, Материалы II конференции нефтегазопромышленников России, Уфа, Изд. УГНТУ, 2000, с.127, Патент РФ №2145627) и процесс гидроизомеризации бензола до циклогексана и метилциклопентана (Парпуц О.И. и др. Гидроизомеризация бензолсодержащих фракций на морденитсодержащем катализаторе ИПМ-02, Процессы нефтепереработки и нефтехимии. Сборник научных трудов к 75-летию ВНИИНефтехима, Санкт-Петербург, ГИОРД, 2005, с.34-39).
Процесс трансалкилирования имеет ряд недостатков, из которых, в первую очередь, следует отметить низкую селективность, высокую температуру процесса и необходимость создания как специального катализатора, так и дополнительных достаточно сложных аппаратов для проведения процесса.
Процесс гидроизомеризации (ГИ) лишен перечисленных недостатков. Известен ряд катализаторов для этого процесса (Парпуц О. И. и др. Гидроизомеризация бензолсодержащих фракций на морденитсодержащем катализаторе ИПМ-02, Процессы нефтепереработки и нефтехимии. Сборник научных трудов к 75-летию ВНИИНефтехима, Санкт-Петербург, ГИОРД, 2005, с.34-39). Большинство из катализаторов представляют собой гетерогенные катализаторы, содержащие гидрирующий активный компонент - платину, палладий, никель и другие материалы, нанесенные на пористый огнеупорный носитель кислого характера, как правило, кристаллический алюмосиликат (цеолит) со связующим (оксид алюминия). Таким образом, катализаторы представляют собой бифункциональные контакты, в которых металлический компонент предназначен для осуществления реакции гидрирования бензола до циклогексана (ЦГ), а кислый компонент (носитель) - для изомеризации последнего в метилциклопентан (МЦП). Поскольку превращения сопряжены с изменением октанового числа (ОЧ), причем ОЧ в зависимости от условий в результате проведения процесса теоретически может в том числе и понижаться, желательно, чтобы катализатор был способен к изомеризации содержащихся в сырье нормальных парафиновых углеводородов - преимущественно н-гексана и н-гептана, т.е. обладал достаточно выраженными кислотными свойствами. В этом случае может быть обеспечено не снижение ОЧ, а некоторый его прирост (на 1-5 пунктов).
Известны варианты процесса ГИ, которые отличаются используемым сырьем, схемой переработки (в одну или две стадии) и применяемыми катализаторами. Соответственно, различаются и условия проведения процесса ГИ: температура, давление, объемная скорость и концентрация водорода, а также требования к содержанию присутствующих в сырье примесей (US 5246567, 5830345, 5350504, 5437783). При этом существенно, чтобы на катализаторе были сведены к минимуму так называемые процессы раскрытия кольца, то есть процессы, в которых ароматические углеводороды (бензол) превращаются не в нафтановые, а в парафиновые, особенно процесс гидрокрекинга (ГК), сопровождающийся снижением выхода целевого продукта.
Известны способы приготовления катализаторов для процесса ГИ, которые состоят в смешении цеолита гидроксидом алюминия, формовке экструзией, термообработке полученного носителя и адсобционном нанесении платины или платины с промоторами с последующими операциями сушки, прокаливания и восстановления катализатора. В качестве цеолитного компонента используют морденит, цеолит бета, цолит типа Y (US 5246567, 5830345, 5350504).
Наиболее близким к предлагаемому способу является способ приготовления катализатора ГИ, описанный в патенте США (SU 5830345, публ. 03.11.1998).
Согласно этому способу порошкообразный цеолит (морденит или бета) смешивают со связующим (гидроксид алюминия), смесь превращают в пасту и экструдируют, а экструдаты носителя прокаливают на воздухе при температуре 450-600°С. Далее на носитель наносят платину из раствора платинохлористоводородной кислоты (ПХВК), катализатор сушат при температуре около 100-150°С, а затем прокаливают на воздухе при температуре порядка 500-600°С. Перед применением катализатор восстанавливают в водороде при температуре 350-480°С. Недостатком известного способа является весьма высокая температура проведения процесса 350-480°С и достаточно большие потери бензола в результате ГК (более 4%) и, как следствие, недостаточно высокий выход катализатора.
Задачи, которые решены изобретением, заключаются в создании способа приготовления катализатора для ГИ бензола, обладающего повышенной селективностью за счет минимизации побочных реакций раскрытия кольца и гидрокрекинга, и значительном сокращении энергозатрат на процесс.
Поставленные задачи решены следующим образом. Способ приготовления катализатора для процесса гидроизомеризации бензола включает смешение компонентов цеолита со связующим - гидроксидом алюминия, пластификацию путем пептизации раствором кислоты, гранулирования, нанесение платины, термообработку и восстановление катализатора и отличается тем, что смешение компонентов проводят при соотношении компонентов смеси в интервале от 1:9-2:3 в пересчете на прокаленный морденит и гидроксид алюминий и после нанесения платины термообработку производят в две стадии при температуре на первой стадии 100-110°С, второй не выше 250-300°С, а восстановление катализатора проводят при температуре не ниже 500°С. В качестве гидрооксида алюминия используют псевдобемит марки Catapal А. В качестве цеолитного компонента используют высокомодульный морденит с силикатным модулем М=20-30, при содержании его в катализаторе 20-30%. В качестве цеолитного компонента используют низкомодульный морденит с силикатным модулем М=10, при содержании его в катализаторе не более 10%.
В предлагаемом способе, так же как и в известном, в качестве носителя используют цеолитный компонент - морденит. Наиболее предпочтителен морденит с силикатным модулем (мольным отношением М=SiO2/Al2O3) в пределах от 20 до 30, достигаемым в результате прямого синтеза, а не путем деалюминирования обычного низкомодульного морденита (М=10). Оптимальное содержание высокомодульного морденита (М=20-30) в катализаторе составляет около 25% (20-30%), а наиболее приемлемая температура проведения процесса ГИ 230-250°С.
Низкомодульный морденит (М=10) также может быть использован в соответствии с данным изобретением, но для него снижают содержание цеолита в композите примерно до 10%, и оптимальная температура реакций ГИ выше 300-330°С.
Порошок морденита смешивают в заданном соотношении с порошком псевдобемита высокой частоты (содержание основных примесей на уровне 0,015 мас.% и ниже каждой из следующих: натрий, кальций, железо, кремний, сера, углерод).
Нами было установлено, что тип псевдобемита, используемого в качестве связующего, имеет большое значение, наиболее предпочтительным связующим является псевдобемит марки Catapal А, производимый компанией Сасол (Германия) по алкоголятной технологии.
В таблице приводятся основные характеристики псевдобемита марки Catapal A.
№ | Показатели | Порошок марки Catapal A |
1 | Кристаллографическая фаза | псевдобемит |
2 | Размер кристаллитов (о.к.р.), А | 45 |
3 | Положение линии {002}, °2Θ (CuKa) | ~13,8-14,2 |
4 | Исходное сырье | Алкоголяты А1 |
5 | Форма частиц | Неправильная, более или менее округлая |
6 | Размер частиц, мкм | Единицы-десятки; преобладающий диаметр, d50=60 мкм |
7 | Внутренняя пористость | Микропоры и мезопоры; преимущественно монодисперсность |
8 | Удельная поверхность, м2/г, (средняя после прокаливания при 550°С 3 часа) | 250 |
9 | Насыпная плотность, г/мл: | 0,67-0,75 |
- свободная | 0,8-1,1 | |
- с уплотнением | ||
10 | Суммарный объем пор, мл/г | -0,50 |
11 | ППП при 850°С, % | 24-28 |
12 | Данные термического анализа | 2 эндопика с максимумами: ~ 100°С -130°С и ~430-440°С |
13 | Содержание примесей, мас.%: | |
- оксида натрия (Na2O) | 0,002 | |
- оксида железа (Fe2O3) | 0,01 | |
- кальция + магния | <0,01 | |
- диоксида кремния (SiO2) | 0,015 | |
- углерода | следы | |
- азота (на NO3) | 1·104-1·106 |
Соотношение компонентов в смеси выбирают в интервале от 1:9 до 2:3 в пересчете на прокаленный морденит и оксид алюминия соответственно. Далее смесь порошков подвергают пептизации раствором минеральной кислоты, предпочтительно азотной, и формуют на шнековом экструдере. Гранулы сформированного носителя прокаливают в потоке осушенного воздуха при температуре около 550°С. На поверхность прокаленного носителя наносят платину путем адсорбции из водного раствора ПХВК с добавками уксусной кислоты в количестве, обеспечивающем равномерное распределение платины по поперечному сечению гранул (в среднем -2 мас.% от массы носителя). Катализатор сушат при температуре: на первой стадии 100-110°С, а затем при 250-300°С, не выше. Затем катализатор восстанавливают в токе сухого водорода при температуре 500-600°С в течение 2-3 часов. Таким образом, в предлагаемом способе исключена операция прокаливания катализатора при относительно высокой температуре порядка 500°С и термообработка на воздухе ограничивается операцией сушки. Напротив, восстановление катализатора проводят не при относительно низких температурах 380-450°С, считающихся оптимальными для достижения высокой дисперсности платины, а при значительно более высокой температуре 500°С и выше.
Катализатор испытывают в проточной установке конверсии модельной смеси н-гептан - бензол с содержанием последнего 25%. Для приготовления сырья используют реактивные сорта углеводородов высокой чистоты (х.ч.).
Полученный катализатор обеспечивает высокую активность - почти полное превращение бензола в смесь ЦГ и МП при температуре 230-330°С (остаточное содержание бензола не более 0,5%) и выход жидкого катализата 96-98%.
Достигнутые технические результаты были получены при варьировании температуры сушки, прокаливания и восстановления катализатора. Они позволяют минимизировать энергозатраты на процесс приготовления катализатора. Было установлено, что для достижения высоких значений активности и селективности при достаточно низкой температуре процесса (не выше 330°С) необходимо термообработку катализатора проводить при максимально возможной низкой температуре - не выше 300°С, предпочтительно не выше 250°С, а восстановление катализатора - при относительно высокой температуре - не ниже 500°С (500-600°С).
ПРИМЕР 1
Берут 100 г порошка синтетического морденита в водородной форме с силикатным модулем М=20, достигнутым в прямом синтезе. В пересчете на прокаленное вещество, т.е. на смесь оксидов SiO2/Al2О3, это отвечает 88 г (ППП при 850°С=12%).
Также берут 368 г порошка псевдобемита марки Catapal А или 264 г в пересчете на прокаленное вещество (ППП при 850°С=28,2%).
Сухие порошки смешивают в смесителе Вернера с Z-образным лопастями в течение 10 минут для гомогенизации, а затем к ним постепенно приливают мелкими порциями, не прекращая перемешивание, 300 мл дистиллированной воды и перемешивают 10-15 минут. Содержание целлита в смеси со связующим составляет 25%.
Затем к смоченным порошкам приливают по каплям 10,6 мл раствора азотной кислоты с концентрацией 7,9 г-экв/л (30 мл НА 1000 г Al2O3) и перемешивают около 15 минут.
Далее к подготовленной массе небольшими порциями при непрерывном перемешивании добавляют еще 75 мл дистиллированной воды и перемешивают до однородности. Общее время перемешивания 45 минут. Получают пластичную массу, пригодную для экструдирования. Формовку производят на шнековом экструдере EXKFS-1 компании Fuji Padal (Япония) через матрицу с диаметром фильерных отверстий 1,5 мм. Полученные экструдаты высушивают в сушильном шкафу при температуре 110°С в течение 6 часов, а затем прокаливают в токе сухого воздуха (содержание водяного пара не более 100 ppm) при прокаливании носителя: температура 550°С, объемная скорость пропускания воздуха 1000 час-1, длительность разогрева 4 часа, длительность выдержки при температуре 550°С 3 часа.
Далее наносят на готовый носитель платину. Для этого берут 100 г носителя и смачивают его тонким водяным туманом для заполнения пор водой и снижения скорости адсорбции платины с целью достижения более равномерного ее распределения. Готовят 130 мл пропиточного раствора, содержащего 063 г ПХВК (0,3 г или 0,3 мас.% Pt) и 2 г ледяной уксусной кислоты (2% от массы носителя), остальное - дистиллированная вода. Собственно пропитку ведут в две стадии:
- без внешнего обогрева и
- с нагреванием раствора до 75°С в течение 1 часа.
Пропитку производят при периодическом перемешивании. Избыток раствора сливают.
Пропитанный катализатор высушивают в сушильном шкафу в две стадии: сначала при 130°С в течение 7 часов, а затем при 250°С еще 7 часов.
Высушенный катализатор восстанавливают при температуре 500°С в токе электролитического водорода.
Результаты каталитических испытаний: остаточное содержание бензола -0,2% мас., выход катализата 96,7 мас.%, выход МЦП 16,1%, выход ЦГ 5,8%, температура опыта 240°С.
ПРИМЕР 2
Для приготовления катализатора берут те же компоненты и проводят те же операции, что и в примере 1, за исключением соотношения цеолит:связующее, которое берут в соотношении 40:60 соответственно (по массе прокаленных веществ).
Соответственно этому для смешения берут 100 г цеолита (н-форма, М=20) и 183,8 г псевдобемита марки Catapal A (132 г Al2О3). Расход 12 г раствора азотной кислоты на пептизацию 5,3 мл (40 мл на 1 кг Al2O3). Суммарное количество добавленной воды 240 мл, диаметр фильерных отверстий в матрице экструдера 1,4 мм.
В отличие от примера 1 температура восстановления катализатора 570°С. Результаты каталитических испытаний: остаточное содержание бензола 0,0 мас.% выход катализата 95,7 мас.%, выход МЦП 13,3%, выход ЦГ 8,2%, темпертура опыта 270°С.
ПРИМЕР 3
Для приготовления катализатора используют морденит с силикатным модулем М=10 в аммонийной форме. Берут 100 г порошка цеолита с ППП=13,9% или 86,1 г в пересчете на прокаленное вещество. Берут 1079 г порошка псевдобемита марки Catapal А или 774,9 г в пересчете на прокаленный оксид алюминия. Порошки в сухом виде смешивают в смесителе с Z-образными лопастями. Содержание цеолита в смеси со связующим 10% по массе. Для пептизации к порошкам добавляют 15,5 мл 12 г азотной кислоты или 20 мл на 1 кг оксида алюминия. Суммарное количество добавляемой воды 1,1 л.
Остальные параметры и условия приготовления катализатора не отличаются от описанных в примере 1, но восстановление проводят при температуре 600°С.
Результаты стандартного каталитического испытания: остаточное содержание бензола 0,2 мас.%, выход катализата 96,8 мас.%, выход МЦП 14,7%, выход ЦГ 8,2%, температура опыта 318°С.
Claims (4)
1. Способ приготовления катализатора для процесса гидроизомеризации бензола, включающий смешение компонентов: цеолитного компонента - морденита со связующим - гидроксидом алюминия, пластификацию путем пептизации раствором кислоты, гранулирования, нанесение платины, термообработку и восстановление катализатора, отличающийся тем, что смешение компонентов проводят при массовом соотношении компонентов смеси в интервале от 1:9-2:3 в пересчете на прокаленный морденит и гидроксид алюминий и после нанесения платины термообработку производят в две стадии при температуре на первой стадии 100-110°С, второй не выше 250-300°С, а восстановление катализатора проводят при температуре не ниже 500°С.
2. Способ по п.1, отличающийся тем, что в качестве гидроксида алюминия используют псевдобемит марки Catapal A.
3. Способ по п.1, отличающийся тем, что в качестве цеолитного компонента используют высокомодульный морденит с силикатным модулем М=20-30 при содержании его в катализаторе 20-30%.
4. Способ по п.1, отличающийся тем, что в качестве цеолитного компонента используют низкомодульный морденит с силикатным модулем М=10 при содержании его в катализаторе не более 10%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005130735/04A RU2287369C1 (ru) | 2005-10-05 | 2005-10-05 | Способ приготовления катализатора для процесса гидроизомеризации бензола |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005130735/04A RU2287369C1 (ru) | 2005-10-05 | 2005-10-05 | Способ приготовления катализатора для процесса гидроизомеризации бензола |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2287369C1 true RU2287369C1 (ru) | 2006-11-20 |
Family
ID=37502221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005130735/04A RU2287369C1 (ru) | 2005-10-05 | 2005-10-05 | Способ приготовления катализатора для процесса гидроизомеризации бензола |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2287369C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA014964B1 (ru) * | 2007-12-05 | 2011-04-29 | Басф Каталистс Ллк | Низкотемпературный катализатор конверсии водяного газа |
RU2529997C1 (ru) * | 2013-04-23 | 2014-10-10 | Владимир Борисович Марышев | Способ активации платиноморденитного катализатора гидроизомеризации бензолсодержащих фракций |
RU2545307C1 (ru) * | 2013-09-05 | 2015-03-27 | Общество с ограниченной ответственностью Научно-Производственная фирма "ОЛКАТ" | Адсорбент для очистки газов от сероводорода и способ его приготовления |
ES2732235R1 (es) * | 2017-01-23 | 2019-11-22 | Compania Espanola De Petroleos S A U Cepsa | Catalizador de núcleo-corteza para reacciones de hidroisomerización de hidrocarburos lineales |
RU2762251C1 (ru) * | 2021-03-17 | 2021-12-17 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) | Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций |
-
2005
- 2005-10-05 RU RU2005130735/04A patent/RU2287369C1/ru active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA014964B1 (ru) * | 2007-12-05 | 2011-04-29 | Басф Каталистс Ллк | Низкотемпературный катализатор конверсии водяного газа |
RU2529997C1 (ru) * | 2013-04-23 | 2014-10-10 | Владимир Борисович Марышев | Способ активации платиноморденитного катализатора гидроизомеризации бензолсодержащих фракций |
RU2545307C1 (ru) * | 2013-09-05 | 2015-03-27 | Общество с ограниченной ответственностью Научно-Производственная фирма "ОЛКАТ" | Адсорбент для очистки газов от сероводорода и способ его приготовления |
ES2732235R1 (es) * | 2017-01-23 | 2019-11-22 | Compania Espanola De Petroleos S A U Cepsa | Catalizador de núcleo-corteza para reacciones de hidroisomerización de hidrocarburos lineales |
RU2762251C1 (ru) * | 2021-03-17 | 2021-12-17 | Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) | Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491121C2 (ru) | Селективный катализатор для конверсии ароматических углеводородов | |
KR101539613B1 (ko) | 촉매와, 이 촉매를 이용하여 탄화수소 공급원료로부터경방향족 탄화수소 및 경알칸의 제조방법 | |
US4062905A (en) | Manufacture of light olefins | |
US8716540B1 (en) | Aromatic transformation using UZM-44 aluminosilicate zeolite | |
RU2287369C1 (ru) | Способ приготовления катализатора для процесса гидроизомеризации бензола | |
US20080035525A1 (en) | "Synthetic Zeolite, in Particular for Catalytic Hydroisomerization of Higher Paraffins" | |
CN107512726A (zh) | 无粘结剂Beta分子筛的制备方法 | |
JP5991362B2 (ja) | 金属高含有分子篩およびそれらの製造プロセス | |
JP2563910B2 (ja) | 水素化分解触媒の製造方法 | |
CN107512727A (zh) | 无粘结剂mww结构分子筛的制备方法 | |
JP3554804B2 (ja) | 芳香族炭化水素化合物の転化用触媒および転化方法 | |
JP5717447B2 (ja) | 大きな結晶の分子篩およびその製造 | |
US20200024530A1 (en) | Use of a bifunctional catalyst based on zeolite izm-2 for the hydroisomerization of light paraffinic feedstocks resulting from fischer-tropsch synthesis | |
WO2014093440A1 (en) | Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite | |
RU2303485C2 (ru) | Катализатор для гидродеалкилирования алкилароматических углеводородов | |
US11590481B2 (en) | Heteroatom-doped zeolites for bifunctional catalytic applications | |
RU2387477C1 (ru) | Катализатор, способ его приготовления и способ очистки олефинов | |
JPH0938497A (ja) | 芳香族炭化水素変換用触媒及び該変換用触媒を用いた 芳香族炭化水素の変換方法 | |
JP2004105963A (ja) | 芳香族炭化水素化合物の転化用触媒および転化方法 | |
JPH09187658A (ja) | 芳香族炭化水素化合物の転化用触媒および転化方法 | |
CN107511173A (zh) | 烷基苯的生产方法 | |
JP2000042417A (ja) | 芳香族炭化水素の転化用触媒および転化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Free format text: LICENCE Effective date: 20110610 |