RU2469511C2 - Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме - Google Patents

Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме Download PDF

Info

Publication number
RU2469511C2
RU2469511C2 RU2009119740/07A RU2009119740A RU2469511C2 RU 2469511 C2 RU2469511 C2 RU 2469511C2 RU 2009119740/07 A RU2009119740/07 A RU 2009119740/07A RU 2009119740 A RU2009119740 A RU 2009119740A RU 2469511 C2 RU2469511 C2 RU 2469511C2
Authority
RU
Russia
Prior art keywords
transmission
subframes
mode
interval
absence
Prior art date
Application number
RU2009119740/07A
Other languages
English (en)
Other versions
RU2009119740A (ru
Inventor
Азиз ГОЛМИЕХ
Этьенн Ф. ШАПОНЬЕР
Франческо ГРИЛЛИ
Хуан МОНТОХО
Натан Эдвард ТЕННИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38959681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2469511(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2009119740A publication Critical patent/RU2009119740A/ru
Application granted granted Critical
Publication of RU2469511C2 publication Critical patent/RU2469511C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

Изобретение относится к области беспроводной связи. Техническим результатом является обеспечение поддержки функционирования абонентского устройства связи (UE) в сжатом режиме и режиме непрерывной пакетной передачи (СРС). Указанный технический результат достигается тем, что UE может получать назначение разрешенных субкадров для СРС-режима и назначение интервалов отсутствия сигнала при передаче для сжатого режима. Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. UE может обмениваться данными в течение разрешенных субкадров, не перекрывающих интервалы отсутствия сигнала при передаче, и может пропускать обмены данными в течение разрешенных субкадров, перекрывающих интервалы отсутствия сигнала при передаче. UE может выполнять измерения сот в течение интервалов отсутствия сигнала при передаче, также UE может получать разрешенные субкадры и пропущенные субкадры, обмениваться данными в течение разрешенных субкадров, не соответствующих пропущенным субкадрам, и пропускать обмены данными в течение пропущенных субкадров. В еще одном аспекте, UE может принимать команды по совместно используемому каналу управления для того, чтобы быстро активировать и деактивировать сжатый режим. 8 н. и 30 з.п. ф-лы, 13 ил., 3 табл.

Description

Притязание на приоритет согласно 35 U.S.C. §119
Настоящая Заявка на патент притязает на приоритет Предварительной заявки на патент (США) порядковый номер 60/863128, озаглавленной "COMPRESSED MODE OPERATION AND REVERSE LINK POWER CONTROL ADJUSTMENT WITH DISCONTINUOUS TRANSMISSION AND/OR RECEPTION", поданной 26 октября 2006 года, права на которую принадлежат правообладателю настоящей заявки и таким образом явно содержащейся в данном документе по ссылке.
Уровень техники
Область техники, к которой относится изобретение
Настоящее раскрытие сущности, в общем, относится к связи, а более конкретно к методикам для функционирования пользовательского оборудования (UE) в системе беспроводной связи.
Уровень техники
Системы беспроводной связи широко развернуты, чтобы предоставлять различные услуги связи, например голосовые, видео, пакетные данные, обмен сообщениями, широковещательная передача и т.д. Эти системы могут быть системами множественного доступа, допускающими поддержку нескольких пользователей посредством совместного использования доступных системных ресурсов. Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы с ортогональным FDMA (OFDMA) и системы FDMA с одной несущей (SC-FDMA).
UE (к примеру, сотовый телефон) может допускать функционирование на различных частотах и/или в различных беспроводных системах. UE может обмениваться данными с обслуживающей сотой на конкретной частоте в одной системе, но может периодически выполнять измерения для сот на других частотах и/или в других системах. Измерения сот могут давать возможность UE устанавливать, лучше ли какая-нибудь сота на другой частоте и/или в другой системе, чем обслуживающая сота. Это может происходить, например, в случае если UE является мобильным и перемещается в другую зону покрытия. Если лучшая сота на другой частоте и/или в другой системе найдена, как указано посредством измерений сот, то UE может попытаться переключиться на лучшую соту и принимать обслуживание от этой соты.
Чтобы выполнять измерения сот для других частот и/или других систем, UE, возможно, должно отстраивать свое приемное устройство от частоты, используемой посредством обслуживающей соты. Система может предоставлять интервалы отсутствия сигнала при передаче для того, чтобы давать возможность UE отстраивать свое приемное устройство и выполнять измерения для других частот и/или других систем. Функционирование UE может быть усложнено вследствие этих интервалов отсутствия сигнала при передаче.
Сущность изобретения
В данном документе описываются методики для того, чтобы поддерживать функционирование UE в сжатом режиме с интервалами отсутствия сигнала при передаче и/или в режиме непрерывной пакетной передачи (CPC) с прерывистой передачей (DTX) и/или c прерывистым приемом (DRX). В аспекте изобретения, UE может получать назначение разрешенных субкадров для CPC-режима и назначение интервалов отсутствия сигнала при передаче для сжатого режима. Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. Например, каждый интервал отсутствия сигнала при передаче может начинаться в течение бездействия между последовательными разрешенными субкадрами. Разрешенные субкадры могут быть заданы, по меньшей мере, посредством одной первой комбинации, интервалы отсутствия сигнала при передаче могут быть заданы, по меньшей мере, посредством одной второй комбинации, и каждая вторая комбинация может в несколько раз превышать по длительности каждую первою комбинацию. UE может обмениваться данными в течение разрешенных субкадров, которые не перекрывают интервалы отсутствия сигнала при передаче, и может пропускать обмены данными в течение разрешенных субкадров, которые перекрывают интервалы отсутствия сигнала при передаче. UE может выполнять измерения сот (к примеру, для других частот и/или других систем) в течение интервалов отсутствия сигнала при передаче.
В другом аспекте, UE может определять разрешенные субкадры и пропущенные субкадры, к примеру, для CPC-режима. Пропущенные субкадры могут быть поднабором разрешенных субкадров. UE может обмениваться данными в течение разрешенных субкадров, не соответствующих пропущенным субкадрам, и может пропускать обмены данными в течение пропущенных субкадров. UE может выполнять измерения сот в течение продленного времени бездействия между разрешенными субкадрами и покрывать пропущенные субкадры. UE, возможно, не должен функционировать в сжатом режиме из-за продленного времени бездействия.
В еще одном аспекте, UE может получать конфигурацию для сжатого режима и может принимать команды относительно совместно используемого канала управления, чтобы активировать и отключать сжатый режим. Конфигурация для сжатого режима может отправляться через сигнализацию верхнего уровня, а команды могут отправляться как сигнализация нижнего уровня. UE может функционировать на основе конфигурации для сжатого режима, когда активирован в соответствии с командой, принимаемой через совместно используемый канал управления. Команды могут использоваться для того, чтобы быстро отключать сжатый режим перед пакетом данных для UE и быстро вновь активировать сжатый режим после пакета данных.
В еще одном аспекте, UE может определять мощность передачи, используемую для первой передачи, отправленной в первом интервале времени, и может определять мощность передачи, чтобы использовать для второй передачи во втором интервале времени, на основе мощности передачи, используемой для первой передачи, и регулирования мощности. Второй интервал времени может быть отделен от первого интервала времени на период бездействия, который может соответствовать интервалу отсутствия сигнала при передаче в сжатом режиме или времени бездействия между разрешенными субкадрами в CPC-режиме. Регулирование мощности может быть определено на основе оценок без обратной связи, полученных для первой и второй передач. Регулирование мощности также может быть заранее определенным положительным значением, увеличивающимся значением в течение начальной части второй передачи и т.д.
Далее более подробно описаны различные аспекты и признаки изобретения.
Краткое описание чертежей
Фиг. 1 иллюстрирует систему беспроводной связи.
Фиг. 2 показывает формат кадра в универсальной системе мобильных телекоммуникаций (UMTS).
Фиг. 3 показывает последовательность комбинаций интервалов отсутствия сигнала при передаче для сжатого режима.
Фиг. 4 показывает передачу по нисходящей линии связи в сжатом режиме.
Фиг. 5 показывает некоторые физические каналы в UMTS.
Фиг. 6 показывает совмещение интервала отсутствия сигнала при передаче со временем бездействия в CPC-режиме.
Фиг. 7 показывает пропуск разрешенных субкадров для того, чтобы получать продленное время бездействия.
Фиг. 8 показывает команду, чтобы быстро активировать или отключить сжатый режим.
Фиг. 9 показывает процесс функционирования UE с интервалами отсутствия сигнала при передаче, совмещенными с интервалами времени бездействия.
Фиг. 10 показывает процесс функционирования UE посредством пропуска некоторых разрешенных субкадров.
Фиг. 11 показывает процесс функционирования UE с быстрой активацией и отключением сжатого режима через команды.
Фиг. 12 показывает процесс передачи после периода бездействия посредством UE.
Фиг. 13 иллюстрирует блок-схему UE и узла B.
Подробное описание изобретения
Методики, описанные в данном документе, могут использоваться для различных систем беспроводной связи, таких как системы CDMA, TDMA, FDMA, OFDMA, SC-FDMA и другие системы. Термины "система" и "сеть" зачастую используются взаимозаменяемо. CDMA-система может реализовывать такую технологию радиосвязи, как универсальный наземный радиодоступ (UTRA) cdma2000 и т.д. UTRA включает в себя широкополосную CDMA (W-CDMA) и другие варианты CDMA. Cdma2000 покрывает стандарты IS-2000, IS-95 и IS-856. TDMA-система может реализовывать такую технологию радиосвязи, как глобальная система мобильной связи (GSM). OFDMA-система может реализовывать такую технологию радиосвязи, как усовершенствованный UTRA (E-UTRA), сверхширокополосная передача для мобильных устройств (UMB), IEEE 802.20, IEEE 802.16 (WiMAX), 802.11 (WiFi), Flash-OFDM® и т.д. UTRA и E-UTRA являются частью UMTS. 3GPP Долгосрочное развитие (LTE) является планируемой к выпуску версией UMTS, которая использует E-UTRA. UTRA, E-UTRA, UMTS, LTE и GSM описываются в документах организации, называемой Партнерским проектом третьего поколения (3GPP). Cdma2000 и UMB описываются в документах организации, называемой Партнерским проектом третьего поколения 2 (3GPP2). Эти различные технологии и стандарты радиосвязи известны в данной области техники. Для ясности определенные аспекты методик описываются ниже для UMTS, и терминология 3GPP используется в большей части описания ниже.
Фиг. 1 иллюстрирует систему 100 беспроводной связи с несколькими узлами B 110 и UE 120. Узел B может быть стационарной станцией, которая обменивается данными с UE, и он также может упоминаться как усовершенствованный узел B (eNB), базовая станция, точка доступа и т.д. Каждый узел B 110 предоставляет покрытие связи для конкретной географической области и поддерживает обмен данными для UE, находящихся в зоне покрытия. Полная зона покрытия каждого узла B 110 может быть секционирована на несколько (к примеру, три) меньших областей. В 3GPP, термин "сота" может упоминаться как наименьшая зона покрытия узла B и/или подсистема узла B, обслуживающая эту зону покрытия. В других системах, термин "сектор" может упоминаться как наименьшая зона покрытия и/или подсистема, обслуживающая эту зону покрытия. Для ясности понятие соты из 3GPP используется в описании ниже. Системный контроллер 130 может подключаться к узлам B 110 и предоставлять координацию и управление для этих узлов B. Системный контроллер 130 может быть одним сетевым объектом или набором сетевых объектов.
UE 120 могут быть распределены по системе, и каждое UE может быть стационарным или мобильным. UE также может упоминаться как мобильная станция, терминал, терминал доступа, абонентское устройство, станция и т.д. Оборудованием UE может быть сотовый телефон, персональное цифровое устройство (PDA), беспроводное устройство, карманное устройство, беспроводной модем, портативный компьютер и т.д. UE может обмениваться данными с одним или более узлов B через передачи по нисходящей линии связи и восходящей линии связи. Нисходящая линия связи (или прямая линия связи) относится к линии связи от узлов B к UE, а восходящая линия связи (или обратная линия связи) относится к линии связи от UE к узлам B.
Фиг. 2 показывает формат кадра в UMTS. Временная шкала для передачи данных делится на радиокадры. Каждый радиокадр имеет длительность в 10 миллисекунд (мс) и идентифицируется посредством 12-битового системного номера кадра (SFN), который отправляется по каналу управления. Каждый радиокадр также может быть идентифицирован посредством 8-битового номера кадра при сборке (CFN), который поддерживается UE и Узлом B для вызова. Каждый радиокадр секционируется на 15 временных квантов, которые помечаются от временного кванта 0 до временного кванта 14. Каждый временной квант имеет длительность Tslot=0,667 мс и включает в себя 2560 символов шумоподобной последовательности при 3,84 Mcps. Каждый радиокадр также секционируется на пять субкадров от 0 до 4. Каждый субкадр имеет длительность в 2 мс и включает в себя 3 временных кванта.
UMTS поддерживает сжатый режим в нисходящей линии связи для того, чтобы предоставлять интервалы отсутствия сигнала при передаче, чтобы давать возможность UE выполнять измерения для соседних сот. В сжатом режиме обслуживающая сота может передавать данные в UE в течение только части радиокадра, что в таком случае создает интервал отсутствия сигнала при передаче в оставшейся части радиокадра. UE может временно покидать систему в течение интервала отсутствия сигнала при передаче, чтобы выполнять измерения для соседних сот на других частотах и/или в других системах, без потери данных от обслуживающей соты.
Фиг. 3 показывает последовательность комбинаций интервалов отсутствия сигнала при передаче для сжатого режима в UMTS. В сжатом режиме конкретные для пользователя данные в UE передаются в соответствии с последовательностью комбинаций интервалов отсутствия сигнала при передаче, которая может включать в себя чередующиеся комбинации 1 и 2 интервалов отсутствия сигнала при передаче. Каждая комбинация интервалов отсутствия сигнала при передаче включает в себя один или два интервала отсутствия сигнала при передаче. Каждый интервал отсутствия сигнала при передаче может возникать полностью в рамках одного радиокадра или может охватывать два радиокадра. Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана посредством параметров, представленных в табл. 1.
Таблица 1
Символ Параметр Описание Значение
TGPRC Счетчик повторения комбинации интервалов отсутствия сигнала при передаче Число комбинаций интервалов отсутствия сигнала при передаче в последовательности комбинаций интервалов отсутствия сигнала при передаче
TGCFN CFN интервала отсутствия сигнала при передаче CFN первого радиокадра для комбинации 1 интервалов отсутствия сигнала при передаче 0-255
TGSN Номер начального временного кванта интервала отсутствия сигнала при передаче Номер временного кванта для первого временного кванта интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче временной квант 1-14
TGL1 Длина 1 интервала отсутствия сигнала при передаче Длительность первого интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче 1-14 временных квантов
TGL2 Длина интервала отсутствия сигнала при передаче 2 Длительность второго интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче 1-14 временных квантов
TGD Расстояние интервала отсутствия сигнала при передаче Длительность между начальными временными квантами первого и второго интервалов отсутствия сигнала при передаче 15-269 временных квантов
TGPL1 Длина комбинации интервалов отсутствия сигнала при передаче 1 Длительность комбинации интервалов отсутствия сигнала при передаче 1 1-144 кадров
TGPL2 Длина комбинации интервалов отсутствия сигнала при передаче 2 Длительность комбинации интервалов отсутствия сигнала при передаче 2 1-144 кадров
Сжатый режим описывается в документах 3GPP TS 25.212 (раздел 4.4), 25.213 (разделы 5.2.1 и 5.2.2) и 25.215 (раздел 6.1), все из которых являются общедоступными.
Фиг. 4 показывает передачу по нисходящей линии связи в сжатом режиме. Данные могут быть переданы при номинальном уровне мощности в каждом радиокадре без интервала отсутствия сигнала при передаче. Данные для радиокадра с интервалом отсутствия сигнала при передаче могут быть переданы при более высоком уровне мощности, чтобы достигать аналогичной надежности как для данных, передаваемых в радиокадре без интервала отсутствия сигнала при передаче. Интервал отсутствия сигнала при передаче может возникать между двумя сжатыми передачами и может иметь длительность 1-14 временных квантов. UE может быть выделено достаточное число интервалов отсутствия сигнала при передаче надлежащей длительности, чтобы давать возможность UE выполнять измерения для сот на других частотах и/или других системах.
3GPP версия 5 и выше поддерживает высокоскоростной пакетный доступ по нисходящей линии связи (HSDPA). 3GPP версия 6 и выше поддерживает высокоскоростной пакетный доступ восходящей линии связи (HSUPA). HSDPA и HSUPA - это наборы каналов и процедур, которые активируют высокоскоростную передачу пакетных данных по нисходящей линии связи и восходящей линии связи соответственно. Табл. 2 перечисляет некоторые физические каналы, используемые для HSDPA и HSUPA в 3GPP версия 6.
Figure 00000001
Фиг. 5 показывает некоторые из физических каналов, используемых для HSDPA и HSUPA в UMTS. P-CCPCH используется непосредственно как эталон времени для физических каналов нисходящей линии связи и используется косвенно как эталон времени для физических каналов восходящей линии связи. Для HSDPA, субкадры HS-SCCH совмещаются по времени с P-CCPCH. Субкадры HS-PDSCH задерживаются на τHS-PDSCH=2Tslot от субкадров HS-SCCH. Субкадры HS-DPCCH задерживаются на 7,5 временных квантов от субкадров HS-PDSCH. Для HSUPA, кадровая синхронизация E-HICH смещена на τE-HICH,n символов шумоподобной последовательности от кадровой синхронизации P-CCPCH, где τE-HICH,n задается в 3GPP TS 25.211. E-DPCCH и E-DPDCH совмещены по времени, и их кадровая синхронизация смещена на τDPCH,n+1024 символа шумоподобной последовательности от кадровой синхронизации P-CCPCH, при этом τDPCH,n=256n, и n может варьироваться от 0 до 149. Кадровая синхронизация физических каналов нисходящей линии связи и восходящей линии связи описывается в 3GPP TS 25.211. Для простоты, другие физические каналы, такие как каналы предоставления, не показаны на фиг. 5.
3GPP версия 7 поддерживает CPC, которая дает возможность UE функционировать с DTX и/или DRX, чтобы экономить питание аккумулятора. Для DTX, UE могут быть назначены определенные разрешенные субкадры восходящей линии связи, в которых UE может отправлять передачу по восходящей линии связи в узел B. Разрешенные субкадры восходящей линии связи могут быть заданы посредством комбинации пакетов DPCCH восходящей линии связи. Для DRX, UE могут быть назначены определенные разрешенные субкадры нисходящей линии связи, в которых узел B может отправлять передачу по нисходящей линии связи в UE. Разрешенные субкадры нисходящей линии связи также могут упоминаться как кадры приема и могут быть заданы посредством комбинации приема HS-SCCH. UE может отправлять сигнализацию и/или данные в разрешенных субкадрах восходящей линии связи и может принимать сигнализацию и/или данные в разрешенных субкадрах нисходящей линии связи. UE может отключать питание на время бездействия между разрешенными субкадрами, чтобы экономить питание аккумулятора. CPC описывается в документе 3GPP TR 25.903, озаглавленном "Continuous Connectivity for Packet Data Users," март 2007 года, который является общедоступным.
Для CPC, разрешенные субкадры нисходящей линии связи и восходящей линии связи могут быть заданы посредством параметров, представленных в табл. 3. CPC поддерживает интервал времени передачи (TTI) в 2 мс или 10 мс. Третий столбец табл. 3 задает возможные значения для параметров CPC при условии TTI в 2 мс.
Таблица 3
Параметр Описание Значение
UE DTX-цикл 1 Длительность между разрешенными субкадрами восходящей линии связи, когда UE недавно выполняло передачу 1, 4, 5, 8, 10, 16 или 20 субкадров
UE DTX-цикл 2 Длительность между разрешенными субкадрами восходящей линии связи, когда UE не выполняло передачу недавно 4, 5, 8, 10, 16 или 20 субкадров
UE DRX-цикл Длительность между разрешенными субкадрами нисходящей линии связи 1, 4, 5, 8, 10, 16 или 20 субкадров
UE DPCCH-пакет 1 Число разрешенных субкадров восходящей линии связи для UE DTX-цикла 1 1, 2 или 5 субкадров
UE DPCCH пакет 2 Число разрешенных субкадров восходящей линии связи для UE DTX-цикла 2 1, 2 или 5 субкадров
UE DTX DRX-смещение Конкретное для UE смещение разрешенных субкадров от опорного времени От 0 до 159 субкадров
Фиг. 5 показывает примерную конфигурацию DTX и DRX для UE в CPC. В этом примере UE сконфигурировано следующим образом:
- UE DTX-цикл 1=UE DRX-цикл=4 субкадра,
- UE DTX-цикл 2=8 субкадров, и
- UE DPCCH-пакет 1=UE DPCCH-пакет 2=1 субкадр.
Для конфигурации CPC, заданной выше, разрешенные субкадры нисходящей линии связи разнесены на четыре субкадра и показаны со штриховкой серым. Разрешенные субкадры восходящей линии связи также разнесены на четыре субкадра и показаны со штриховкой серым. Совмещение разрешенных субкадров нисходящей линии связи и разрешенных субкадров восходящей линии связи зависит от τDPCH,n. Разрешенные субкадры нисходящей линии связи и восходящей линии связи могут быть совмещены во времени для того, чтобы продлевать возможное время ожидания для UE. Как показано на фиг. 5, UE может быть активированным в течение разрешенных субкадров нисходящей линии связи и восходящей линии связи и переходить в режим ожидания в течение времени бездействия между разрешенными субкадрами. Фиг. 5 предполагает, что UE не передает данные в восходящей линии связи и, следовательно, не должен отслеживать E-HICH на предмет ACK/NAK. Времена бездействия также могут упоминаться как времена ожидания, времена DTX/DRX и т.д.
UE может функционировать в сжатом режиме и ему может быть назначена последовательность комбинаций интервалов отсутствия сигнала при передаче. UE не может принимать или отправлять данные в течение интервалов отсутствия сигнала при передаче. UE также может функционировать в CPC-режиме и ему могут быть назначены определенные разрешенные субкадры нисходящей линии связи и восходящей линии связи для DTX- и DRX-режима. UE может не принимать или не отправлять данные в течение неразрешенных субкадров. Когда UE функционирует в обоих режимах, интервалы отсутствия сигнала при передаче в сжатом режиме могут влиять на функционирование CPC-режима. Таким образом, может быть желательным поддерживать взаимодействие между сжатым режимом и CPC-режимом.
В аспекте, интервалы отсутствия сигнала при передаче в сжатом режиме могут быть заданы так, чтобы быть совмещенными по времени (или совпадать) с интервалами времени бездействия в CPC-режиме. Параметры для этих двух режимов могут быть выбраны так, чтобы добиваться следующего:
1. Периодичность интервалов отсутствия сигнала при передаче является целым кратным периодичностей разрешенных субкадров нисходящей линии связи и восходящей линии связи, и
2. Интервалы отсутствия сигнала при передаче начинаются в течение интервалов времени бездействия для CPC.
Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана так, чтобы включать в себя только комбинацию 1 интервалов отсутствия сигнала при передаче на фиг. 3. Для вышеуказанного условия 1, TGPL1 может быть задан так, чтобы быть целочисленным кратным UE DTX-цикла 1. Для условия 2, TGCFN и TGSN могут быть заданы так, чтобы принимать во внимание UE DTX DRX-смещение. Кроме того, TGL1 может быть задан как функция от интервалов времени бездействия, которая может зависеть от τDPCH,n. Если второй интервал отсутствия сигнала при передаче включается в комбинацию 1 интервалов отсутствия сигнала при передаче, то TGD и TGL2 могут быть заданы как функция от τDPCH,n, UE DTX-цикла 1 и UE DTX DRX-смещения так, что второй интервал отсутствия сигнала при передаче совпадает с интервалами времени бездействия для CPC.
Интервал отсутствия сигнала при передаче в сжатом режиме может иметь длительность 1-14 временных квантов. Время бездействия в CPC-режиме может быть меньшим, чем интервал отсутствия сигнала при передаче. В одной схеме, интервал отсутствия сигнала при передаче может заменять пустотами разрешенные субкадры, которые находятся в пределах интервала отсутствия сигнала при передаче. В этой схеме, данные не передаются в разрешенных субкадрах, которые находятся в пределах интервала отсутствия сигнала при передаче.
Для конфигурации CPC с UE DTX-циклом 1 и UE DRX- циклом, равными четырем субкадрам, как показано на фиг. 5, может быть показано то, что времена бездействия могут варьироваться между 1,5 и 4,5 временными квантами, в зависимости от τDPCH,n. Эти времена бездействия являются примерными и предполагают передачу и прием во всех разрешенных субкадрах. Чтобы получать большее время бездействия, UE может пропускать один активный период, и при этом время бездействия может продлеваться до 13,5-16,5 временных квантов. Продленное время бездействия приблизительно соответствует самой большой возможной длительности интервала отсутствия сигнала при передаче. Для конфигурации CPC с UE DTX-циклом 1 и UE DRX- циклом равными восьми субкадрам, может быть показано то, что времена бездействия могут варьироваться между 7 и 11 временными квантами в одном цикле, в зависимости от τDPCH,n. Тем не менее, время бездействия в 7 временных квантов делится на две длины в 1,5 и 5,5 временных квантов, а время бездействия 11 временных квантов делится на две длины в 4,5 и 6,5 временных квантов. Если UE пропускает один период пробуждения, то время бездействия может быть продлено до 15-16,5 временных квантов, что превышает самую длинную возможную длительность интервала отсутствия сигнала при передаче. В общем, продленное время бездействия, соответствующее или превышающее интервал отсутствия сигнала при передаче, может быть получено посредством пропуска достаточного числа периодов пробуждения.
UE и узел B могут пропускать передачи в разрешенных субкадрах, которые находятся в пределах интервалов отсутствия сигнала при передаче. В нисходящей линии связи, UE может не прослушивать в течение интервалов отсутствия сигнала при передаче, а узел B может исключать отправку данных в UE в течение интервалов отсутствия сигнала при передаче. В восходящей линии связи, UE может избегать отправки передачи в течение интервалов отсутствия сигнала при передаче. Если UE не сконфигурировано для DRX в CPC, то UE может отслеживать все субкадры нисходящей линии связи за исключением тех, которые перекрывают интервалы отсутствия сигнала при передаче.
Фиг. 6 показывает пример совмещения интервала отсутствия сигнала при передаче в сжатом режиме с интервалами времени бездействия в CPC-режиме. Разрешенные субкадры для каждого физического канала на фиг. 5 показаны в верхней части фиг. 6. Времена бездействия для CPC-режима показаны рядом с нижней частью фиг. 6. Один интервал отсутствия сигнала при передаче в сжатом режиме показан в нижней части фиг. 6. Этот интервал отсутствия сигнала при передаче имеет максимальную длительность в 14 временных квантов и совмещен с двумя временами бездействия для CPC-режима. Разрешенные субкадры в одном активном времени, которое находится в пределах интервала отсутствия сигнала при передаче, могут быть пропущены. UE может пропускать передачу и прием в течение пропущенных субкадров. Пропущенный субкадр представляет собой разрешенный субкадр, который пропускается с тем, чтобы данные или сигнализация не отправлялись в течение субкадра.
В другом аспекте, UE может функционировать в CPC-режиме, и продленные времена бездействия для измерений на других частотах и/или в других системах могут быть получены посредством пропуска некоторых разрешенных субкадров. UE не передает в течение пропущенных субкадров восходящей линии связи и не принимает в течение пропущенных субкадров нисходящей линии связи, что является исключениям в общих правилах CPC.
Фиг. 7 показывает пример пропуска разрешенных субкадров для того, чтобы получать продленное время бездействия в CPC-режиме. Разрешенные субкадры для каждого физического канала на фиг. 5 показаны в верхней части фиг. 7. Времена бездействия для CPC-режима показаны в нижней части фиг. 7. Набор разрешенных субкадров в одно активное время может быть пропущен так, чтобы получать продленное время бездействия, которое может покрывать два обычных времени бездействия и одно активное время. UE может выполнять измерения сот в течение продленного времени бездействия.
Пропущенные субкадры могут быть заданы посредством комбинации, которая может быть определена на основе различных факторов, таких как характеристики UE. Например, если UE сконфигурировано так, что времена бездействия в CPC являются достаточно длительными, то разрешенные субкадры не могут быть пропущены. Наоборот, если UE сконфигурировано так, что времена бездействия не являются достаточно длительным, то определенные разрешенные субкадры могут быть пропущены с тем, чтобы получать достаточно длительные продленные времена бездействия. Комбинация пропущенных субкадров может быть передана в UE с помощью механизма передачи сигнализации, используемого для того, чтобы конфигурировать сжатый режим. Комбинация пропущенных субкадров также может быть передана в UE другими способами. Поскольку продленное время бездействия имеет достаточно большую длительность, UE не обязательно должен функционировать в сжатом режиме.
Традиционно, сжатый режим конфигурируется с помощью сигнализации верхнего уровня и активирован все время, пока он не отключен с помощью дополнительных сигнализации верхнего уровня. Использование сигнализации верхнего уровня может иметь результатом большую задержку на конфигурирование и активирование сжатого режима, а также может потреблять больше ресурсов для передачи сигнализации.
В еще одном аспекте, UE может быть сконфигурировано с помощью последовательности комбинаций интервалов отсутствия сигнала при передаче для сжатого режима, и команды, чтобы активировать и отключать сжатый режим, могут отправляться по HS-SCCH. Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана так, как описано в 3GPP версии 6, или так, как описано выше, чтобы совмещать интервалы отсутствия сигнала при передаче с интервалами времени бездействия в CPC. DTX/DRX в CPC-режиме может быть активирована и отключена с помощью команд, отправляемых по HS-SCCH. Команды HS-SCCH являются сигнализацией нижнего уровня, которая может отправляться быстрее и эффективнее, чем сигнализация верхнего уровня. Команды HS-SCCH могут использоваться для того, чтобы быстро активировать и отключать сжатый режим для UE. Например, узел B может быстро отключать сжатый режим для UE каждый раз, когда узел B имеет большой объем данных, чтобы отправлять в UE, и после того может быстро вновь активировать сжатый режим после отправки данных.
Фиг. 8 показывает схему формата 800 команд HS-SCCH, которые могут использоваться для того, чтобы быстро активировать и отключать сжатый режим для UE. Сообщение сигнализации, отправляемое по HS-SCCH, может включать в себя две части. Часть 1 может включать в себя 7-битовое поле для набора кодов канализации и 1-битовое поле для схемы модуляции (Mod). Часть 2 может включать в себя 6-битовое поле идентификатора формата, 3-битовое поле типа команды, 4-битовое поле команды и 16-битовое идентификационных данных UE/CRC. Поле идентификатора формата может быть задано равным заранее определенному значению (к примеру, 111110), чтобы указать то, что сообщение содержит команду вместо сигнализации для HS-PDSCH. Поле типа команды может быть задано равным заранее определенному значению (к примеру, 001), чтобы указать то, что команда предназначена для сжатого режима (CM), а не для DRX или чего-либо еще. Поле команды может иметь выделенный бит, который может быть задан равным одному значению (к примеру, 1), чтобы активировать сжатый режим, или другому значению (к примеру, 0), чтобы отключать сжатый режим. Команда HS-SCCH для сжатого режима также может отправляться другими способами, используя другие форматы сообщения.
Фиг. 9 показывает схему процесса 900 для выполнения посредством UE. Назначение разрешенных субкадров для первого режима (к примеру, CPC-режима) может быть получено (этап 912). Назначение интервалов отсутствия сигнала при передаче для второго режима (к примеру, сжатого режима) может быть получено (этап 914). Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. Первый набор, по меньшей мере, из одного параметра для интервалов отсутствия сигнала при передаче может быть определен на основе второго набора, по меньшей мере, из одного параметра для разрешенных субкадров, чтобы совмещать интервалы отсутствия сигнала при передаче с интервалами времени бездействия. Каждый интервал отсутствия сигнала при передаче может начинаться во время бездействия между последовательными разрешенными субкадрами. Разрешенные субкадры могут быть заданы, по меньшей мере, посредством одной первой комбинации, к примеру комбинации пакетов DPCCH восходящей линии связи и/или комбинации приема HS-SCCH. Интервалы отсутствия сигнала при передаче могут быть заданы, по меньшей мере, посредством одной второй комбинации, к примеру, по меньшей мере, одной комбинации интервалов отсутствия сигнала при передаче. Каждая вторая комбинация может в несколько раз превышать по длительности каждую первую комбинацию.
Данными можно обмениваться (к примеру, они могут отправляться и/или приниматься) в течение разрешенных субкадров, которые не перекрывают интервалы отсутствия сигнала при передаче (этап 916). Обмены данными могут быть пропущены в течение разрешенных субкадров, которые перекрывают интервалы отсутствия сигнала при передаче (этап 918). Измерения сот (к примеру, для других частот и/или других систем) могут быть выполнены в течение интервалов отсутствия сигнала при передаче (этап 920).
Фиг. 10 показывает схему процесса 1000 для выполнения посредством UE. Разрешенные субкадры для UE могут быть определены, к примеру, на основе, по меньшей мере, одной первой комбинации, которая может включать в себя комбинацию пакетов DPCCH восходящей линии связи и/или комбинацию приема HS-SCCH (этап 1012). Пропущенные субкадры для UE могут быть определены, к примеру, на основе второй комбинации (этап 1014). Пропущенные субкадры могут быть поднабором разрешенных субкадров. Данными можно обмениваться в течение разрешенных субкадров, не соответствующих пропущенным субкадрам (этап 1016). Обмены данными могут быть пропущены в течение пропущенных субкадров (этап 1018). Измерения сот могут быть выполнены в течение интервалов продленного времени бездействия, которые находятся между разрешенными субкадрами и покрывают пропущенные субкадры, к примеру, как показано на фиг. 7 (этап 1020).
Фиг. 11 показывает схему процесса 1100 для выполнения посредством UE. Конфигурация для сжатого режима UE может быть получена, к примеру, через сигнализацию верхнего уровня или некоторое другое средство (этап 1112). Команды могут быть приняты по совместно используемому каналу управления, чтобы активировать и отключать сжатый режим (этап 1114). Команды могут отправляться как сигнализация нижнего уровня (к примеру, L1/L2). UE может функционировать на основе конфигурации для сжатого режима, когда активирован в соответствии с командой, принимаемой через совместно используемый канал управления (этап 1116). Конфигурация для сжатого режима может указывать интервалы отсутствия сигнала при передаче. Обмены данными могут быть пропущены в течение интервалов отсутствия сигнала при передаче, когда сжатый режим активирован. UE может принимать команду, чтобы отключать сжатый режим, затем принимать пакет передаваемых данных и после этого принимать команду, чтобы активировать сжатый режим.
UE может возобновлять передачу после периода бездействия в сжатом режиме или в CPC-режиме. UE может сохранять мощность передачи, используемую в конце предшествующей передачи, и может использовать эту мощность передачи для текущей передачи. Тем не менее, характеристики канала, возможно, изменились в течение периода бездействия. В этом случае, мощность передачи, используемая для предшествующей передачи, может быть недостаточной для текущей передачи, которая в результате может быть менее надежной.
В одной схеме, UE использует оценки без обратной связи для того, чтобы определять мощность передачи для текущей передачи. Оценка без обратной связи может быть оценкой потерь в тракте передачи от узла B к UE и может быть получена на основе пилот-сигнала, передаваемого посредством узла B. Если пилот-сигнал передается при известной или постоянной мощности передачи, то потери в тракте передачи могут быть определены на основе мощности принимаемого пилот-сигнала в UE. UE может выполнять первую оценку без обратной связи в конце предшествующей передачи и может выполнять вторую оценку без обратной связи в начале текущей передачи. Если мощность передачи для пилот-сигнала является постоянной, то каждая оценка без обратной связи может быть равной мощности принимаемого пилот-сигнала. UE может определять мощность передачи для текущей передачи следующим образом:
P2=P1+AOL, и
Figure 00000002
уравнение (1)
AOL=OL1-OL2,
Figure 00000003
уравнение (2)
где P1 - это мощность передачи для предшествующей передачи, P2 - это мощность передачи для текущей передачи, OL1 - это первая оценка без обратной связи для предшествующей передачи, OL2 - это вторая оценка без обратной связи для текущей передачи, и AOL - это регулирование мощности на основе оценок без обратной связи.
Если оценка без обратной связи (к примеру, мощность принимаемого пилот-сигнала) для текущей передачи меньше, чем оценка без обратной связи для предшествующей передачи, что может указывать ухудшенные характеристики канала, то AOL может быть положительным значением, и более высокая мощность передачи может использоваться для текущей передачи. Это позволяет повысить надежность текущей передачи. Наоборот, если OL2 больше OL1, то AOL может быть задан равным или (i) отрицательному значению, чтобы возможно уменьшить помехи, или (ii), нулю, чтобы обеспечить то, что мощность передачи для текущей передачи равна или превышает мощность передачи для предшествующей передачи.
В другой схеме, UE начинает с положительным регулированием мощности смещения для текущей передачи. В этой схеме, UE может определять мощность передачи для текущей передачи следующим образом:
P2=P1+AOS,
Figure 00000004
уравнение (3)
где AOS - это положительное регулирование мощности смещения. AOS может быть фиксированным значением, к примеру, X децибел (дБ), где X может быть надлежащим образом выбранным значением. Альтернативно, AOS может быть конфигурируемым значением, к примеру, определяемым на основе величины и/или скорости изменения мощности передачи в течение предшествующей передачи.
В еще одной схеме, UE наращивает мощность передачи в течение преамбулы текущей передачи. Преамбула представляет собой контрольный сигнал, отправляемый до передачи данных в разрешенном субкадре восходящей линии связи. Длина преамбулы может быть конфигурируемой и может составлять 2-15 временных квантов для CPC. В этой схеме, UE может увеличивать мощность передачи в каждом временном кванте в течение преамбулы следующим образом:
P2=P1+Am, для m=1, 2, ...,
Figure 00000005
уравнение (4)
где Am - это регулирование мощности для m-го временного кванта преамбулы, причем A1<A2<.... Am может быть фиксированным значением или конфигурируемым значением.
Для всех схем, описанных выше, механизм управления мощностью может использоваться для того, чтобы регулировать мощность передачи UE, чтобы достигать требуемой производительности. Для этого механизма управления мощностью, узел B может принимать текущую передачу от UE, определять качество принимаемого сигнала передачи и отправлять команды управления мощностью (PC), чтобы регулировать мощность передачи UE, чтобы достигать требуемого качества принимаемого сигнала. Регулирование мощности посредством UE в начале текущей передачи может обеспечивать то, что достаточная мощность передачи используется для передачи. Механизм управления мощностью может обеспечивать то, что мощность передачи регулируется до надлежащего уровня, чтобы достигать хорошей производительности для UE при снижении помех для других UE.
Фиг. 12 показывает схему процесса 1200 для передачи посредством UE. Мощность передачи, используемая для первой передачи, отправляемой в первом интервале времени (к примеру, первом разрешенном субкадре восходящей линии связи), может быть определена (этап 1212). Мощность передачи для второй передачи во втором интервале времени (к примеру, втором разрешенном субкадре восходящей линии связи) может быть определена на основе мощности передачи, используемой для первой передачи, и регулирования мощности (этап 1214). Второй интервал времени может быть отделен от первого интервала времени на период бездействия, который может соответствовать интервалу отсутствия сигнала при передаче в сжатом режиме или времени бездействия между двумя разрешенными субкадрами в CPC-режиме.
В одной схеме регулирование мощности может быть определено на основе первой оценки без обратной связи, полученной для первой передачи, и второй оценки без обратной связи, полученной для второй передачи. Первая оценка без обратной связи может быть основана на мощности принимаемого пилот-сигнала в конце первого интервала времени, а вторая оценка без обратной связи может быть основана на мощности принимаемого пилот-сигнала в начале второго интервала времени. В другой схеме, регулирование мощности представляет собой заранее определенное положительное значение. В еще одной схеме, регулирование мощности представляет собой увеличивающееся значение в течение начальной части (к примеру, преамбулы) второй передачи.
Фиг. 13 показывает блок-схему схемы UE 120, которое может быть одним из UE на фиг. 1. В восходящей линии связи, кодер 1312 может принимать данные и сигнализацию, которые должны быть отправлены посредством UE 120 по восходящей линии связи. Кодер 1312 может обрабатывать (к примеру, форматировать, кодировать и перемежать) данные и сигнализацию. Модулятор (Mod) 1314 может дополнительно обрабатывать (к примеру, модулировать, канализировать и скремблировать) кодированные данные и сигнализацию и предоставлять выходные символы шумоподобной последовательности. Передающее устройство (TMTR) 1322 может приводить к требуемым параметрам (к примеру, преобразовывать в аналоговую форму, фильтровать, усиливать и преобразовывать с понижением частоты) выходные символы шумоподобной последовательности и формировать сигнал восходящей линии связи, который может быть передан через антенну 1324 в узел B 110.
В нисходящей линии связи, антенна 1324 может принимать сигналы нисходящей линии связи, передаваемые посредством узла B 110 и других узлов B. Приемное устройство (RCVR) 1326 может приводить к требуемым параметрам (к примеру, фильтровать, усиливать, преобразовывать с понижением частоты и оцифровывать) принимаемый сигнал из антенны 1324 и предоставлять выборки. Демодулятор (Demod) 1316 может обрабатывать (к примеру, дескремблировать, канализировать и демодулировать), выборки и предоставлять оценки символов. Декодер 1318 может дополнительно обрабатывать (к примеру, выполнять обратное перемежение и декодировать) оценки символов и предоставлять декодированные данные и сигнализацию. Сигнализация по нисходящей линии связи может содержать конфигурационную информацию для сжатого режима (к примеру, последовательность комбинаций интервалов отсутствия сигнала при передаче), конфигурационную информацию для CPC-режима (к примеру, разрешенные субкадры нисходящей линии связи и восходящей линии связи), команды HS-SCCH для того, чтобы конфигурировать, активировать и/или отключать CPC-режим и/или сжатый режим и т.д. Кодер 1312, модулятор 1314, демодулятор 1316 и декодер 1318 могут быть реализованы посредством модемного процессора 1310. Эти модули могут выполнять обработку в соответствии с технологией радиосвязи (к примеру, W-CDMA, GSM и т.д.), используемой системой.
Контроллер/процессор 1330 может направлять функционирование различных модулей в UE 120. Контроллер/процессор 1330 может реализовывать процесс 900 на фиг. 9, процесс 1000 на фиг. 10, процесс 1100 на фиг. 11 и/или другие процессы, чтобы поддерживать функционирование в CPC-режиме и/или сжатом режиме. Контроллер/процессор 1330 также может реализовывать процесс 1200 на фиг. 12 и/или другие процессы для управления мощностью в восходящей линии связи. Запоминающее устройство 1332 сохраняет программные коды и данные для UE 120.
Фиг. 13 также показывает блок-схему узла B 110, который может быть одним из узлов B на фиг. 1. В узле B 110, передающее устройство/приемное устройство 1338 может поддерживать радиосвязь с UE 120 и другими UE. Процессор/контроллер 1340 может выполнять различные функции для обмена данными с UE. Процессор/контроллер 1340 может выполнять обработку на стороне узла B для каждого из процессов, показанных на фиг. 9-12, чтобы поддерживать функционирование UE 120 в CPC-режиме и/или сжатом режиме. Запоминающее устройство 1342 может сохранять программные коды и данные для узла B 110.
Специалисты в данной области техники должны понимать, что информация и сигналы могут быть представлены с помощью любой из множества различных технологий и методик. Например, данные, инструкции, информация, сигналы, биты, символы и символы шумоподобной последовательности, которые могут приводиться в качестве примера по всему описанию выше, могут быть представлены напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами либо любой комбинацией вышеозначенного.
Специалисты в данной области техники дополнительно должны принимать во внимание, что различные иллюстративные логические блоки, модули, схемы и этапы алгоритма, описанные в связи с раскрытием сущности, могут быть реализованы как электронные аппаратные средства, компьютерное программное обеспечение либо их комбинации. Чтобы понятно проиллюстрировать эту взаимозаменяемость аппаратных средств и программного обеспечения, различные иллюстративные компоненты, блоки, модули, схемы и этапы описаны выше, в общем, на основе их функциональности. Реализована эта функциональность в качестве аппаратных средств или программного обеспечения, зависит от конкретного варианта применения и структурных ограничений, накладываемых на систему в целом. Высококвалифицированные специалисты могут реализовать описанную функциональность различными способами для каждого конкретного варианта применения, но такие решения по реализации не должны быть интерпретированы как являющиеся отступлением от объема настоящего раскрытия сущности.
Различные иллюстративные логические блоки, модули и схемы, описанные в связи с раскрытием сущности в данном документе, могут быть реализованы или выполнены с помощью процессора общего назначения, процессора цифровых сигналов (DSP), специализированной интегральной схемы (ASIC), программируемой вентильной матрицы (FPGA) или другого программируемого логического устройства, дискретного логического элемента или транзисторной логики, дискретных компонентов аппаратных средств либо любой комбинации вышеозначенного, предназначенной для того, чтобы выполнять описанные в данном документе функции. Процессором общего назначения может быть микропроцессор, но в альтернативном варианте, процессором может быть любой традиционный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть реализован как комбинация вычислительных устройств, к примеру, сочетание DSP и микропроцессора, множество микропроцессоров, один или более микропроцессоров вместе с ядром DSP либо любая другая подобная конфигурация.
Этапы способа или алгоритма, описанные в связи с раскрытием сущности в данном документе, могут быть реализованы непосредственно в аппаратных средствах, в программном модуле, приводимом в исполнение посредством процессора, либо в комбинации вышеозначенного. Программный модуль может постоянно размещаться в RAM, флэш-памяти, ROM, памяти типа EPROM, памяти типа EEPROM, регистрах, на жестком диске, сменном диске, компакт-диске или любой другой форме носителя хранения данных, известной в данной области техники. Типичный носитель хранения соединяется с процессором, причем процессор может считывать информацию и записывать информацию на носитель хранения. В альтернативном варианте носитель хранения может быть встроен в процессор. Процессор и носитель хранения могут постоянно размещаться в ASIC. ASIC может постоянно размещаться в пользовательском терминале. В альтернативном варианте процессор и носитель хранения могут постоянно размещаться как дискретные компоненты в пользовательском терминале.
В одной или более примерных схем описанные функции могут быть реализованы в аппаратных средствах, программном обеспечении, микропрограммном обеспечении или любой комбинации вышеозначенного. Если реализованы в программном обеспечении, функции могут быть сохранены или переданы как одна или более инструкций или код на компьютерно-читаемом носителе. Компьютерно-читаемые носители включают в себя как компьютерные носители хранения данных, так и среду связи, включающую в себя любую передающую среду, которая упрощает перемещение компьютерной программы из одного места в другое. Носители хранения могут быть любыми доступными носителями, к которым можно осуществлять доступ посредством компьютера общего назначения или специального назначения. В качестве примера, а не ограничения, эти компьютерно-читаемые носители могут содержать RAM, ROM, EEPROM, CD-ROM или другое устройство хранения на оптических дисках, устройство хранения на магнитных дисках или другие магнитные устройства хранения, либо любой другой носитель, который может быть использован для того, чтобы переносить или сохранять требуемое средство программного кода в форме инструкций или структур данных, и к которому можно осуществлять доступ посредством компьютера общего назначения или специального назначения или процессора общего назначения или специального назначения. Так же, любое подключение корректно называть компьютерно-читаемым носителем. Например, если программное обеспечение передается с веб-узла, сервера или другого удаленного источника с помощью коаксиального кабеля, оптоволоконного кабеля, "витой пары", цифровой абонентской линии (DSL) или беспроводных технологий, таких как инфракрасные, радиопередающие и микроволновые среды, то коаксиальный кабель, оптоволоконный кабель, "витая пара", DSL или беспроводные технологии, такие как инфракрасные, радиопередающие и микроволновые среды, включены в определение носителя. Диск (disk) и диск (disc) при использовании в данном документе включают в себя компакт-диск (CD), лазерный диск, оптический диск, универсальный цифровой диск (DVD), гибкий диск и диск Blu-Ray, при этом диски (disk) обычно воспроизводят данные магнитно, тогда как диски (disc) обычно воспроизводят данные оптически с помощью лазеров. Комбинации вышеперечисленного также следует включить в число компьютерно-читаемых носителей.
Предшествующее описание раскрытия сущности предоставлено для того, чтобы дать возможность любому специалисту в данной области техники создавать или использовать раскрытие сущности. Различные модификации в раскрытие сущности должны быть очевидными для специалистов в данной области техники, а описанные в данном документе общие принципы могут быть применены к другим вариантам без отступления от объема раскрытия сущности. Таким образом, изобретение не предназначено для того, чтобы быть ограниченным описанными в данном документе примерами и схемами, а должно удовлетворять самой широкой области применения, согласованной с принципами и новыми функциями, раскрытыми в данном документе.

Claims (38)

1. Устройство для беспроводной связи, содержащее:
средство получения назначения разрешенных субкадров, соответствующих выбранным из множества субкадров в первом радиокадре, для первого режима для пользовательского оборудования (UE), причем, по меньшей мере, один интервал времени бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема; и
средство получения назначения, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS), причем, по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме.
2. Устройство по п.1, содержащее также средство обмена данными в течение разрешенных субкадров, не перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче, и средство пропуска обменов данными в течение разрешенных субкадров, перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче.
3. Устройство по п.1, содержащее также средство выполнения измерений сот в течение, по меньшей мере, одного интервала отсутствия сигнала при передаче.
4. Устройство по п.1, в котором, по меньшей мере, один интервал времени бездействия задан в соответствии с конфигурируемым смещением синхронизации выделенного физического канала (DPCH) второго режима.
5. Устройство по п.4, в котором, по меньшей мере, один интервал времени бездействия расширяется посредством включения, по меньшей мере, одного из разрешенных субкадров, который находится в активном времени, и попадает в, по меньшей мере, один интервал отсутствия сигнала при передаче.
6. Устройство по п.1, дополнительно содержащее средство определения мощности передачи для текущей передачи, по меньшей мере, одного из разрешенных субкадров на основании:
P2=P1+AOL и AOL=OL1-OL2,
где P1 - мощность передачи для предшествующей передачи, Р2 - мощность передачи для текущей передачи, OL1 - первая оценка без обратной связи для предшествующей передачи, ОL2 - вторая оценка без обратной связи для текущей передачи, и AOL - регулирование мощности на основе оценок без обратной связи.
7. Способ беспроводной связи, содержащий этапы, на которых: получают назначение разрешенных субкадров, соответствующих
выбранным из множества субкадров в первом радиокадре, для первого режима пользовательского оборудования (UE), причем, по меньшей мере, один период бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема; и
получают назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS), по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме.
8. Способ по п.7, содержащий также этапы, на которых: обмениваются данными в течение разрешенных субкадров, не перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче; и пропускают обмены данными в течение разрешенных субкадров, перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче.
9. Способ по п.7, содержащий также этап, на котором: выполняют измерения сот в течение, по меньшей мере, одного интервала отсутствия сигнала при передаче.
10. Способ по п.7, в котором, по меньшей мере, один интервал времени бездействия определяют в соответствии с конфигурируемым смещением синхронизации выделенного физического канала (DPCH) второго режима.
11. Способ по п.10, в котором, по меньшей мере, один интервал времени бездействия расширяют посредством включения, по меньшей мере, одного из разрешенных субкадров, который находится в активном времени, и попадает в, по меньшей мере, один интервал отсутствия сигнала при передаче.
12. Способ по п.7, дополнительно содержащий средство определения мощности передачи для текущей передачи, по меньшей мере, одного из разрешенных субкадров на основании:
P2=P1+AOL и АOL=OL1-OL2,
где P1 - мощность передачи для предшествующей передачи, Р2 - мощность передачи для текущей передачи, OL1 - первая оценка без обратной связи для предшествующей передачи, OL2 - вторая оценка без обратной связи для текущей передачи, и AOL - регулирование мощности на основе оценок без обратной связи.
13. Устройство для беспроводной связи, содержащее:
средство определения назначения разрешенных субкадров для первого режима, соответствующих выбранным из множества субкадров в первом радиокадре, для пользовательского оборудования (UE), причем, по меньшей мере, один период бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема; и
средство определения назначения, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS), по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме; и
средство отправки назначения разрешенных субкадров и назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче к UE.
14. Устройство по п.13, содержащее также средство определения первого набора, по меньшей мере, из одного параметра для, по меньшей мере, одного интервала отсутствия сигнала при передаче на основе второго набора, по меньшей мере, из одного параметра для разрешенных субкадров.
15. Устройство по п.13, в котором, по меньшей мере, один интервал времени бездействия определен в соответствии с конфигурируемым смещением синхронизации выделенного физического канала (DPCH) второго режима.
16. Устройство по п.15, в котором, по меньшей мере, один интервал времени бездействия расширяется посредством включения, по меньшей мере, одного из разрешенных субкадров, который находится в активном времени, и попадает в, по меньшей мере, один интервал отсутствия сигнала при передаче.
17. Устройство по п.13, дополнительно содержащее средство определения мощности передачи для текущей передачи, по меньшей мере, одного из разрешенных субкадров на основании:
Р21ОL и AOL=OL1-OL2,
где P1 - мощность передачи для предшествующей передачи, Р2 - мощность передачи для текущей передачи, OL1 - первая оценка без обратной связи для предшествующей передачи, OL1 - вторая оценка без обратной связи для текущей передачи, и AOL - регулирование мощности на основе оценок без обратной связи.
18. Машиночитаемый носитель, содержащий коды для побуждения компьютера осуществлять способ по п.7.
19. Способ беспроводной связи, содержащий этапы, на которых: определяют назначение разрешенных субкадров для первого режима,
соответствующих выбранным из множества субкадров в первом радиокадре, для пользовательского оборудования (UE), причем, по меньшей мере, один период бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема;
определяют назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS), по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме; и
отправляют назначение разрешенных субкадров и назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче к UE.
20. Способ по п.19, дополнительно содержащий этап, на котором определяют первый набор, по меньшей мере, одного параметра для, по меньшей мере, одного интервала отсутствия сигнала при передаче на основании второго набора, по меньшей мере, одного параметра для разрешенных субкадров.
21. Способ по п.20, в котором первый набор, по меньшей мере, одного параметра, по меньшей мере, задает первую периодичность, по меньшей мере, одного интервала отсутствия сигнала при передаче; и второй набор, по меньшей мере, одного параметра, по меньшей мере, задает вторую периодичность разрешенных субкадров.
22. Способ по п.21, в котором первая периодичность является целочисленным кратным второй периодичности.
23. Способ по п.19, в котором, по меньшей мере, один интервал времени бездействия определен в соответствии с конфигурируемым смещением синхронизации выделенного физического канала (DPCH) второго режима.
24. Способ по п.19, в котором, по меньшей мере, один интервал времени бездействия расширяют посредством включения, по меньшей мере, одного из разрешенных субкадров, который находится в активном времени, и попадает в, по меньшей мере, один интервал отсутствия сигнала при передаче.
25. Способ по п.19 дополнительно содержит этап, на котором определяют мощность передачи для текущей передачи, по меньшей мере, одного из разрешенных субкадров на основании:
P2=P1+AOL и AOL=OL1-OL2,
где P1 - мощность передачи для предшествующей передачи, Р2 - мощность передачи для текущей передачи, OL1 - первая оценка без обратной связи для предшествующей передачи, OL2 - вторая оценка без обратной связи для текущей передачи, и AOL - регулирование мощности на основе оценок без обратной связи.
26. Машиночитаемый носитель, содержащий коды для побуждения компьютера осуществлять способ по п.19.
27. Устройство беспроводной связи, содержащее:
по меньшей мере, один процессор, выполненный с возможностью: получать назначение разрешенных субкадров, соответствующих выбранным из множества субкадров в первом радиокадре, для первого режима пользовательского оборудования (UE), причем, по меньшей мере, один период бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема; и
получают назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS); по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме.
28. Устройство по п.27, в котором, по меньшей мере, один процессор обменивается данными в течение разрешенных субкадров, не перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче, и пропускает обмены данными в течение разрешенных субкадров, перекрывающих, по меньшей мере, один интервал отсутствия сигнала при передаче.
29. Устройство по п.27, в котором, по меньшей мере, один процессор выполняет измерения сот в течение, по меньшей мере, одного интервала отсутствия сигнала при передаче.
30. Устройство по п.27, в котором, по меньшей мере, один интервал отсутствия сигнала при передаче начинается во время бездействия между последовательными разрешенными субкадрами.
31. Устройство по п.27, в котором, по меньшей мере, один процессор получает назначения, по меньшей мере, одной первой комбинации для разрешенных субкадров; и получает назначения, по меньшей мере, одной второй комбинации для интервалов отсутствия сигнала при передаче, причем каждая вторая комбинация в несколько раз превышает по длительности каждую первую комбинацию.
32. Устройство беспроводной связи, содержащее:
по меньшей мере, один процессор, выполненный с возможностью:
определять назначение разрешенных субкадров для первого режима, соответствующих выбранным из множества субкадров в первом радиокадре, для пользовательского оборудования (UE), причем, по меньшей мере, один период бездействия находится между, по меньшей мере, двумя разрешенными субкадрами, при этом первый режим представляет собой режим непрерывной пакетной передачи (СРС), причем разрешенные субкадры содержат субкадры для, по меньшей мере, одного из передачи или приема; и
определять назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче во втором радиокадре для второго режима UE, причем второй режим представляет собой сжатый режим в универсальной системе мобильных телекоммуникаций (UMTS), по меньшей мере, один интервал отсутствия сигнала при передаче во втором режиме совмещен с, по меньшей мере, одним интервалом времени бездействия в первом режиме; и
отправлять назначение разрешенных субкадров и назначение, по меньшей мере, одного интервала отсутствия сигнала при передаче к UE.
33. Устройство по п.32, в котором, по меньшей мере, один процессор определяет первый набор, по меньшей мере, одного параметра для, по меньшей мере, одного интервала отсутствия сигнала при передаче на основании второго набора, по меньшей мере, одного параметра для разрешенных субкадров.
34. Устройство по п.33, в котором первый набор, по меньшей мере, одного параметра, по меньшей мере, задает первую периодичность, по меньшей мере, одного интервала отсутствия сигнала при передаче; и второй набор, по меньшей мере, одного параметра, по меньшей мере, задает вторую периодичность разрешенных субкадров.
35. Устройство по п.34, в котором первая периодичность является целочисленным кратным второй периодичности.
36. Устройство по п.32, в котором, по меньшей мере, один интервал времени бездействия определен в соответствии с конфигурируемым смещением синхронизации выделенного физического канала (DPCH) второго режима.
37. Устройство по п.32, в котором, по меньшей мере, один интервал времени бездействия расширяется посредством включения, по меньшей мере, одного из разрешенных субкадров, который находится в активном времени, и попадает в, по меньшей мере, один интервал отсутствия сигнала при передаче.
38. Устройство по п.32, в котором, по меньшей мере, один процессор определяет мощность передачи для текущей передачи, по меньшей мере, одного из разрешенных субкадров на основании:
Р21ОL и AOL=OL1-OL2,
где P1 - мощность передачи для предшествующей передачи, Р2 - мощность передачи для текущей передачи, OL1 - первая оценка без обратной связи для предшествующей передачи, OL2 - вторая оценка без обратной связи для текущей передачи, и AOL - регулирование мощности на основе оценок без обратной связи.
RU2009119740/07A 2006-10-26 2007-10-26 Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме RU2469511C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US86312806P 2006-10-26 2006-10-26
US60/863,128 2006-10-26
US11/923,983 US8094554B2 (en) 2006-10-26 2007-10-25 Compressed mode operation and power control with discontinuous transmission and/or reception
US11/923,983 2007-10-25
PCT/US2007/082746 WO2008052201A2 (en) 2006-10-26 2007-10-26 Compressed mode (cm) with continuous packet connectivity (cpc)

Publications (2)

Publication Number Publication Date
RU2009119740A RU2009119740A (ru) 2010-12-10
RU2469511C2 true RU2469511C2 (ru) 2012-12-10

Family

ID=38959681

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119740/07A RU2469511C2 (ru) 2006-10-26 2007-10-26 Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме

Country Status (12)

Country Link
US (3) US8094554B2 (ru)
EP (1) EP2087763B1 (ru)
JP (4) JP5204114B2 (ru)
KR (1) KR101079401B1 (ru)
CN (1) CN101632320B (ru)
BR (1) BRPI0717725B1 (ru)
CA (2) CA2763015C (ru)
ES (1) ES2388312T3 (ru)
RU (1) RU2469511C2 (ru)
SG (1) SG160409A1 (ru)
TW (1) TWI360354B (ru)
WO (1) WO2008052201A2 (ru)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961595B2 (en) * 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en) * 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US8190163B2 (en) * 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
CA2516359C (en) * 2003-02-19 2013-03-19 Flarion Technologies, Inc. Methods and apparatus of enhanced coding in multi-user communications systems
US8593932B2 (en) * 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US7925291B2 (en) * 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
US8094595B2 (en) * 2005-08-26 2012-01-10 Qualcomm Incorporated Method and apparatus for packet communications in wireless systems
US9232537B2 (en) * 2006-02-07 2016-01-05 Qualcomm Incorporated Apparatus and method for fast access in a wireless communication system
US8014343B2 (en) * 2006-09-20 2011-09-06 Interdigital Technology Corporation Method for enhanced dedicated channel (E-DCH) transmission overlap detection for compressed mode gap slots
US8094554B2 (en) 2006-10-26 2012-01-10 Qualcomm Incorporated Compressed mode operation and power control with discontinuous transmission and/or reception
PT2515587T (pt) * 2007-01-11 2020-12-09 Qualcomm Inc Utilização de dtx e drx num sistema de comunicação sem fios
KR100934664B1 (ko) * 2007-02-02 2009-12-31 엘지전자 주식회사 이동 통신 시스템에서 제어 채널 송신 방법
EP2115921A4 (en) 2007-02-05 2013-11-13 Ericsson Telefon Ab L M ENHANCED L1 CONTROL SIGNALING FOR HSDPA UTRAN
US8169957B2 (en) * 2007-02-05 2012-05-01 Qualcomm Incorporated Flexible DTX and DRX in a wireless communication system
GB2447299A (en) * 2007-03-09 2008-09-10 Nec Corp Control of discontinuous Rx/Tx in a mobile communication system
RU2433541C2 (ru) 2007-07-16 2011-11-10 Самсунг Электроникс Ко., Лтд. Устройство и способ для передачи сигналов индикатора качества канала и подтверждения приема в системах связи sc-fdma
KR101570461B1 (ko) * 2007-07-16 2015-11-19 삼성전자주식회사 Sc- fdma 통신 시스템에서 채널 품질 지시자 및 응답 신호들의 전송을 위한 장치 및 방법
US8284706B2 (en) * 2007-09-20 2012-10-09 Qualcomm Incorporated Semi-connected operations for wireless communications
US8619601B2 (en) * 2007-10-05 2013-12-31 Blackberry Limited Proximity of user equipment to a home local network
US8089933B2 (en) * 2007-10-08 2012-01-03 Research In Motion Limited Inter-radio access technology measurement system and method
US8089942B2 (en) 2007-10-09 2012-01-03 Research In Motion Limited System and method for inter-radio access technology signal measurement
US8565151B2 (en) * 2007-10-31 2013-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement relating to communications network
KR101228962B1 (ko) * 2008-06-19 2013-02-01 인터디지탈 패튼 홀딩스, 인크 최적화된 서빙 듀얼 셀 변경
US8184599B2 (en) * 2008-06-23 2012-05-22 Qualcomm Incorporated Management of UE operation in a multi-carrier communication system
US20100054237A1 (en) * 2008-09-04 2010-03-04 Motorola, Inc. Synchronization for femto-cell base stations
US8107422B2 (en) * 2008-09-25 2012-01-31 Qualcomm Incorporated Method and apparatus for uplink and downlink channel alignments for 3GPP continuous packet data connection (CPC) channels
CA2679509C (en) * 2008-09-25 2014-08-05 Research In Motion Limited A method and apparatus for configuring compressed mode
US8279817B2 (en) * 2008-11-03 2012-10-02 Htc Corporation Method of managing discontinuous reception offset in a wireless communications system and related communication device
JP5531023B2 (ja) 2008-11-21 2014-06-25 インターデイジタル パテント ホールディングス インコーポレイテッド ワイヤレス通信でマルチキャリアを利用するための方法および装置
US8514732B2 (en) * 2009-03-17 2013-08-20 Qualcomm Incorporated System and method for effectuating a signal carrier configuration
JP5490105B2 (ja) * 2009-04-20 2014-05-14 パナソニック株式会社 無線通信端末装置及び無線通信方法
US8885577B2 (en) * 2009-06-23 2014-11-11 Motorola Mobility Llc Method of assigning and managing gaps for reading system information of neighboring cells
RU2526048C2 (ru) * 2009-07-23 2014-08-20 Телефонактиеболагет Лм Эрикссон (Пабл) Управление мобильным радиоприемником для приема сигналов, предназначенных для множества приемников
GB2474006B (en) * 2009-08-11 2012-05-02 Samsung Electronics Co Ltd Network element, wireless communication units and methods for scheduling communications
US8861384B2 (en) 2010-05-17 2014-10-14 Qualcomm Incorporated Control channel discontinuous reception (DRX) messaging for performing measurements to enable handover between wireless networks
CN102264079B (zh) * 2010-05-27 2016-03-30 中兴通讯股份有限公司 一种压缩模式的控制方法及系统
CN102316511A (zh) * 2010-07-06 2012-01-11 中兴通讯股份有限公司 启动压缩模式的方法、终端和通信系统
WO2012009850A1 (zh) * 2010-07-20 2012-01-26 中兴通讯股份有限公司 一种传输间隙样式序列的处理方法和系统
CN102347782B (zh) * 2010-07-28 2015-01-28 中兴通讯股份有限公司 一种实现连续性分组连接的方法及装置
US8600426B2 (en) 2010-09-01 2013-12-03 Qualcomm Incorporated Power control on a deactivated component carrier
WO2012042659A1 (ja) * 2010-10-01 2012-04-05 富士通株式会社 通信システム、サーバ、端末及び端末の制御方法
US8675554B2 (en) * 2010-11-08 2014-03-18 Intel Corporation Wireless communication device and method for performing neighbor cell analysis during continuous packet connectivity mode
US20120113826A1 (en) * 2010-11-08 2012-05-10 Heng Zhou Idle Interval Generation in Telecommunication Systems
US9612641B2 (en) * 2010-11-17 2017-04-04 International Business Machines Corporation Adjusting the connection idle timeout in connection pools
CN102014393B (zh) * 2010-11-22 2013-06-12 西安电子科技大学 蜂窝通信系统中多点协同传输的频率分配方法
CN102387532B (zh) 2011-01-10 2013-12-04 华为技术有限公司 频点信息处理方法和用户设备
US8738074B2 (en) * 2011-05-13 2014-05-27 Intel Mobile Communications GmbH Mobile communications radio receiver for multiple network operation
US9319177B2 (en) 2011-05-11 2016-04-19 Intel Deutschland Gmbh Radio communication devices and methods for controlling a radio communication device
IN2014KN00883A (ru) * 2011-09-26 2015-10-02 Ericsson Telefon Ab L M
US9686815B2 (en) 2011-11-02 2017-06-20 Qualcomm Incorporated Devices and methods for managing discontinuous transmission at a wireless access terminal
US8774074B2 (en) * 2011-11-02 2014-07-08 Qualcomm Incorporated Apparatus and method for adaptively enabling discontinuous transmission (DTX) in a wireless communication system
US8615227B2 (en) * 2011-12-12 2013-12-24 Broadcom Corporation Enhanced discontinuous mode operation with shared radio frequency resources
CN102833132B (zh) * 2012-08-30 2015-04-22 西安空间无线电技术研究所 一种星载数据复接器检测方法
US20140098725A1 (en) * 2012-10-10 2014-04-10 Qualcomm Incorporated Controlling transmission of protocol data units
US8971348B2 (en) * 2012-10-31 2015-03-03 Qualcomm Incorporated Allocation of voice idle time period for inter-RAT measurement
US9025576B2 (en) 2012-11-01 2015-05-05 Qualcomm Incorporated Apparatus and method for employing a tune-away operation to communicate simultaneously with a plurality of channels
GB2512611A (en) * 2013-04-03 2014-10-08 Sharp Kk Wireless telecommunication cell detection technique
WO2014184668A2 (en) * 2013-04-05 2014-11-20 Nokia Corporation Relaxed performance requirements for offloading measurements
BR112015025634A2 (pt) * 2013-04-16 2017-07-18 Ericsson Telefon Ab L M equipamento de usuário e método do mesmo para cancelamento de interferência de canal
US20140328225A1 (en) * 2013-05-03 2014-11-06 Qualcomm Incorporated Coexistence detection of wifi networks using idle intervals in a tdd system
WO2014190488A1 (zh) * 2013-05-28 2014-12-04 华为技术有限公司 非连续发送的方法、用户设备和网络侧设备
US20150003414A1 (en) 2013-06-26 2015-01-01 Cable Television Laboratories, Inc. Capacity sharing between wireless systems
US9161308B2 (en) * 2013-08-26 2015-10-13 Qualcomm Incorporated Devices and methods for facilitating autonomous discontinuous transmission in access terminals
CN105027605B (zh) * 2013-11-01 2020-02-14 华为技术有限公司 异系统测量方法、终端及网络设备
US9585064B2 (en) 2014-02-10 2017-02-28 Qualcomm Incorporated Method and apparatus for network cognizant uplink transmissions during IRAT handovers
US10004106B2 (en) * 2014-03-21 2018-06-19 Qualcomm Incorporated Continuous packet connectivity (CPC) with dedicated channel (DCH) enhancements
US9730196B2 (en) 2014-07-29 2017-08-08 Cable Television Laboratories, Inc. LTE control channel reservation in RF bands with competing communication systems
US9609598B2 (en) 2014-07-31 2017-03-28 Qualcomm Incorporated Power control performance for user equipment
US9374790B2 (en) 2014-10-16 2016-06-21 Qualcomm Incorporated Downlink power control adjustment based on lost frame portion determination
US10149255B2 (en) * 2015-05-01 2018-12-04 Qualcomm Incorporated Low latency uplink power control
KR20180008462A (ko) 2015-05-14 2018-01-24 케이블텔레비젼래버러토리즈,인코포레이티드 리슨 비포 토크 시스템에서의 하이브리드 자동 재송 요구
AU2017207200B2 (en) * 2016-01-11 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Data block repetitions with transmission gaps
US10206124B1 (en) 2016-09-14 2019-02-12 Mbit Wireless, Inc. Method and apparatus for bidirectional modem
US10182368B1 (en) * 2016-09-20 2019-01-15 Mbit Wireless, Inc. Method and apparatus for bidirectional applications
CN113133101A (zh) * 2019-12-31 2021-07-16 中兴通讯股份有限公司 降低干扰方法、接入网设备、通信终端和计算机可读介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2142672C1 (ru) * 1995-06-02 1999-12-10 Аирспан Коммьюникейшенс Корпорейшн, Корпорейшн Траст Компани Устройство и способ регулирования мощности и скорости передачи в беспроводных системах связи
WO2002058280A1 (en) * 2001-01-10 2002-07-25 Electronics And Telecommunications Research Institute Method for seamless inter-frequency hard handover in radio communication system
US20030026235A1 (en) * 2001-07-09 2003-02-06 Vayanos Alkinoos H. Method and apparatus for time-sharing channelization code in a CDMA communication system
US20030108027A1 (en) * 2001-11-28 2003-06-12 Samsung Electronics Co., Ltd Apparatus and method for minimizing a non-transmittable period due to a compressed mode in a mobile communication system supporting HSDPA
US20050213575A1 (en) * 2004-02-14 2005-09-29 Samsung Electronics Co., Ltd. Method for performing compressed mode-based HARQ in a mobile communication system supporting HSDPA
RU2262202C2 (ru) * 1999-11-29 2005-10-10 Самсунг Электроникс Ко., Лтд. Устройство и способ назначения общего пакетного канала в системе мобильной связи мдкр
RU2004117855A (ru) * 2001-11-13 2005-10-10 Квэлкомм Инкорпорейтед (US) Выбор комбинации транспортных форматов для режима сжатия в системе широкополосного множественного доступа с кодовым разделением каналов
US20060034245A1 (en) * 2004-08-10 2006-02-16 Nec Corporation Method and apparatus for wireless communication network operating in compressed mode
EP1670272A1 (en) * 2003-09-30 2006-06-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting downstream propagation path quality information in compressed mode

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US72612A (en) * 1867-12-24 John davis
US34245A (en) * 1862-01-28 Improvement in cases for railroad-tickets
US644140A (en) * 1899-12-16 1900-02-27 Nathaniel Mccaul Lent Overflow-alarm.
JPH0534555A (ja) * 1991-07-26 1993-02-12 Matsushita Electric Ind Co Ltd 投射レンズ装置
US5701302A (en) 1995-10-25 1997-12-23 Motorola, Inc, Method and apparatus for adaptively companding data packets in a data communication system
JP3001040B2 (ja) 1996-09-20 2000-01-17 日本電気株式会社 Cdmaセルラーシステム用閉ループ送信機電力制御ユニット
JP2001136123A (ja) 1999-08-20 2001-05-18 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、及び送信電力制御方法
JP4387001B2 (ja) 1999-08-27 2009-12-16 三菱電機株式会社 移動局および通信方法
FI112562B (fi) * 2000-02-29 2003-12-15 Nokia Corp Mittausaukkojen määrittäminen keskinäistaajuksien mittauksessa
US7230932B2 (en) 2000-08-18 2007-06-12 Nokia Mobile Phones Ltd. Method and apparatus for discontinuous reception scheme and power saving mode for user equipment in packet access mode
EP1248384B1 (fr) * 2001-04-02 2007-08-22 STMicroelectronics N.V. Procede de contrôle de la puissance d'émission
DE50101572D1 (de) * 2001-12-04 2004-04-01 Alcatel Sa Basisstation für UMTS zur Übertragung von Zeitschlitztypen
US6650691B2 (en) 2002-02-12 2003-11-18 Motorola, Inc. Power control in spread spectrum communications systems
JP3776877B2 (ja) * 2002-12-04 2006-05-17 埼玉日本電気株式会社 移動通信システム、無線基地局制御装置及びそれに用いる上り受信同期判定方法
US20060002323A1 (en) * 2002-12-19 2006-01-05 Uwe Hildebrand Assigning time slots during transmission gaps of a first protocol communication to a second protocol communication
JP2005034555A (ja) 2003-07-15 2005-02-10 Akira Handa 表面カバーの取り替えが出来る様にしたシザーケース(はさみ入れバック)。
US7822155B2 (en) 2003-11-04 2010-10-26 Telefonaktiebolaget L M Ericsson (Publ) Interference estimation in CDMA systems using alternative scrambling codes
DE60331269D1 (de) 2003-12-23 2010-03-25 Ericsson Telefon Ab L M Steuerung einer rekonfiguration in einem zellularen kommunikationssystem
JP4167629B2 (ja) 2004-06-30 2008-10-15 松下電器産業株式会社 通信端末装置
DE102004045118A1 (de) 2004-09-17 2006-03-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Datenübertragung
JP4720977B2 (ja) 2005-02-14 2011-07-13 日本電気株式会社 基地局制御装置、移動体通信システム、および近隣セルリストフィルタリング方法
US7649869B2 (en) * 2005-08-12 2010-01-19 Qualcomm, Incorporated Efficient cell measurements during transmission gaps in a compressed mode
US8094595B2 (en) * 2005-08-26 2012-01-10 Qualcomm Incorporated Method and apparatus for packet communications in wireless systems
WO2007060494A1 (en) * 2005-11-24 2007-05-31 Nokia Corporation Methodology, module, terminal, and system enabling scheduled operation of a radio frequency identification (rfid) subsystem and a wireless communication subsystem
US7986661B2 (en) * 2006-03-02 2011-07-26 Qualcomm Incorporated Efficient utilization of transmission gaps for cell measurements
US20080043681A1 (en) * 2006-08-21 2008-02-21 Nokia Corporation Gap and preamble parameters for control channel transmission
US8014343B2 (en) * 2006-09-20 2011-09-06 Interdigital Technology Corporation Method for enhanced dedicated channel (E-DCH) transmission overlap detection for compressed mode gap slots
US8068427B2 (en) * 2006-09-27 2011-11-29 Qualcomm, Incorporated Dynamic channel quality reporting in a wireless communication system
US8094554B2 (en) * 2006-10-26 2012-01-10 Qualcomm Incorporated Compressed mode operation and power control with discontinuous transmission and/or reception
TWI420934B (zh) * 2006-12-01 2013-12-21 Intel Corp 不連續傳送及接收控制方法及裝置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2142672C1 (ru) * 1995-06-02 1999-12-10 Аирспан Коммьюникейшенс Корпорейшн, Корпорейшн Траст Компани Устройство и способ регулирования мощности и скорости передачи в беспроводных системах связи
RU2262202C2 (ru) * 1999-11-29 2005-10-10 Самсунг Электроникс Ко., Лтд. Устройство и способ назначения общего пакетного канала в системе мобильной связи мдкр
WO2002058280A1 (en) * 2001-01-10 2002-07-25 Electronics And Telecommunications Research Institute Method for seamless inter-frequency hard handover in radio communication system
US20030026235A1 (en) * 2001-07-09 2003-02-06 Vayanos Alkinoos H. Method and apparatus for time-sharing channelization code in a CDMA communication system
RU2004117855A (ru) * 2001-11-13 2005-10-10 Квэлкомм Инкорпорейтед (US) Выбор комбинации транспортных форматов для режима сжатия в системе широкополосного множественного доступа с кодовым разделением каналов
US20030108027A1 (en) * 2001-11-28 2003-06-12 Samsung Electronics Co., Ltd Apparatus and method for minimizing a non-transmittable period due to a compressed mode in a mobile communication system supporting HSDPA
EP1670272A1 (en) * 2003-09-30 2006-06-14 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting downstream propagation path quality information in compressed mode
US20050213575A1 (en) * 2004-02-14 2005-09-29 Samsung Electronics Co., Ltd. Method for performing compressed mode-based HARQ in a mobile communication system supporting HSDPA
US20060034245A1 (en) * 2004-08-10 2006-02-16 Nec Corporation Method and apparatus for wireless communication network operating in compressed mode

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP GROUP RADIO ACCESS NETWORKS, Physical layer procedures, (FDD), 3G TS 25.214 version 3.0.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), TECHNICAL SPECIFICATION, 1 October 1999. *
HAMALAINEN S et al, Network Effects of WCDMA Compressed Mode, 57th IEEE Vehicular Technology Conference (VTC), Vol.2, April 2003, abstract. *
SIEMENS, Interaction of compressed mode with HSDPA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), TSG-RAN Working Group 1 #24, R1-02-0279, Orlando, Florida, 18-22 February, 2002. *
SIEMENS, Interaction of compressed mode with HSDPA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), TSG-RAN Working Group 1 #24, R1-02-0279, Orlando, Florida, 18-22 February, 2002. 3GPP GROUP RADIO ACCESS NETWORKS, Physical layer procedures, (FDD), 3G TS 25.214 version 3.0.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), TECHNICAL SPECIFICATION, 1 October 1999. HAMALAINEN S et al, Network Effects of WCDMA Compressed Mode, 57th IEEE Vehicular Technology Conference (VTC), Vol.2, April 2003, abstract. YING W. et al, Comparison between the periodic and event-triggered compressed mode, VTC Spring 2002, IEEE 55th, vol.3, 6-9 May 2002, abstract. *
YING W. et al, Comparison between the periodic and event-triggered compressed mode, VTC Spring 2002, IEEE 55th, vol.3, 6-9 May 2002, abstract. *

Also Published As

Publication number Publication date
ES2388312T3 (es) 2012-10-11
CA2664518C (en) 2015-02-03
JP2013157989A (ja) 2013-08-15
JP5678108B2 (ja) 2015-02-25
CA2763015C (en) 2015-02-03
KR20090083405A (ko) 2009-08-03
JP5632024B2 (ja) 2014-11-26
JP5635140B2 (ja) 2014-12-03
SG160409A1 (en) 2010-04-29
CA2664518A1 (en) 2008-05-02
BRPI0717725B1 (pt) 2019-12-24
US8971181B2 (en) 2015-03-03
CN101632320B (zh) 2013-03-27
WO2008052201A3 (en) 2008-06-19
JP2010508727A (ja) 2010-03-18
TW200828844A (en) 2008-07-01
EP2087763B1 (en) 2012-05-16
US8094554B2 (en) 2012-01-10
CN101632320A (zh) 2010-01-20
EP2087763A2 (en) 2009-08-12
US9888492B2 (en) 2018-02-06
WO2008052201A2 (en) 2008-05-02
KR101079401B1 (ko) 2011-11-02
JP2013157990A (ja) 2013-08-15
BRPI0717725A2 (pt) 2013-10-29
TWI360354B (en) 2012-03-11
JP2013157991A (ja) 2013-08-15
US20120082054A1 (en) 2012-04-05
US20080102880A1 (en) 2008-05-01
US20150023240A1 (en) 2015-01-22
JP5204114B2 (ja) 2013-06-05
CA2763015A1 (en) 2008-05-02
RU2009119740A (ru) 2010-12-10

Similar Documents

Publication Publication Date Title
RU2469511C2 (ru) Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме
RU2419207C1 (ru) Способ и устройство для управления мощностью при работе в режиме dtx
JP5290462B2 (ja) マルチキャリア通信システムにおけるueオペレーションの管理
US20150049690A1 (en) Method and system for early termination of transmissions in response to ack of early decoding