RU2468037C2 - Способ получения галобутилкаучука - Google Patents

Способ получения галобутилкаучука Download PDF

Info

Publication number
RU2468037C2
RU2468037C2 RU2010151801/04A RU2010151801A RU2468037C2 RU 2468037 C2 RU2468037 C2 RU 2468037C2 RU 2010151801/04 A RU2010151801/04 A RU 2010151801/04A RU 2010151801 A RU2010151801 A RU 2010151801A RU 2468037 C2 RU2468037 C2 RU 2468037C2
Authority
RU
Russia
Prior art keywords
iso
solution
butyl rubber
rubber
hydrogen halide
Prior art date
Application number
RU2010151801/04A
Other languages
English (en)
Other versions
RU2010151801A (ru
Inventor
Денис Александрович Максимов
Анастасия Сергеевна Новикова
Павел Сергеевич Лемпорт
Original Assignee
Открытое акционерное общество "СИБУР Холдинг" (ОАО "СИБУР Холдинг")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "СИБУР Холдинг" (ОАО "СИБУР Холдинг") filed Critical Открытое акционерное общество "СИБУР Холдинг" (ОАО "СИБУР Холдинг")
Priority to RU2010151801/04A priority Critical patent/RU2468037C2/ru
Publication of RU2010151801A publication Critical patent/RU2010151801A/ru
Application granted granted Critical
Publication of RU2468037C2 publication Critical patent/RU2468037C2/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение имеет отношение к способу получения галобутилкаучука. Способ включает смешение раствора бутилкаучука, раствора галогена в углеводородном растворителе в присутствии акцептора галогеноводорода и воды. В процессе смешения происходит галоидирование бутилкаучука, с последующим разделением полученной реакционной массы на органическую и водную фазы, водную фазу удаляют, а из органической фазы выделяют галобутилкаучук, последовательно подвергая органическую фазу нейтрализации, промывке, дегазации и сушке. В качестве акцептора галогеноводорода используют соединение общей формулы:
Figure 00000004
X = О, S, NH; R1, R2, R3, R4 = Н, Alk, Ar;
Alk = СН3, С2Н5, н-С3Н7, изо-C3H7, н-С4Н9, изо-C4H9, втор-С4Н9, трет-С4Н9, С5Н11, изо-C5H11, C6H13, изо-C6H13, С7Н15, изо-С7Н15, C8H17, изо-C8H17, C9H19, изо-С9Н19, С10Н21, изо-С10Н21, циклопентил, циклогексил и другие алифатические и алициклические заместители; Ar = С6Н5, С6Н5-СН2, С6Н4-СН3-о, С6Н4-СН3-м, С6Н4-СН3-n и др. ароматические заместители.
Технический результат - снижение количества используемого акцептора галогеноводорода, снижение температуры проведения процесса, а также увеличение степени содержания галогена в конечном продукте в виде экзо-галогенированной формы изопренильных звеньев, за счет исключения побочных реакций дегидрогалогенирования и изомеризации. 4 з.п. ф-лы, 1 табл., 9 пр.

Description

Изобретение относится к производству галоидированных полимеров, например галоидированных бутилкаучуков, и может быть использовано в нефтехимической и химической промышленности.
Существует способ галоидирования бутилкаучука, описанный в патенте РФ №2272813 от 27.03.2006, в соответствии с которым галоидирование бутилкаучука осуществляют в три стадии. На первой стадии проводят интенсивное смешение раствора бутилкаучука и раствора галогена с получением реакционной массы, на второй стадии - интенсивное смешение реакционной массы с водой, разделение фаз и удаление водной фазы, на третьей - завершают взаимодействие бутилкаучука с галогеном. Этот способ позволяет получать каучук с меньшим содержанием солей.
Недостатком данного способа является неполное извлечение бромистого водорода водой из органического слоя на стадии взаимодействия раствора галогена с раствором бутилкаучука в инертном углеводородном растворителе. Следствием этого является значительная деструкция (от 13 до 19% по падению среднечисленной молекулярной массы) образующегося галобутилкаучука, который содержит также заметное количество солей кальция, образующихся в результате превращений стеарата кальция, присутствующего в исходном бутилкаучуке, на стадии галоидирования. Кроме того, галоидирование осуществляют постадийно, что в целом приводит к усложнению процесса получения галобутилкаучука.
Существует способ галоидирования бутилкаучука, описанный в патенте РФ №2373224 от 20.11.2009, заключающийся в постадийном взаимодействии бутилкаучука с галогеном в инертном растворителе в присутствии воды, в соответствии с которым в качестве раствора бутилкаучука в инертном растворителе используют раствор исходного бутилкаучука, содержащий воду в количестве 0,1-10 мас.%, галоидирование проводят в две стадии, при этом после проведения первой стадии осуществляют разделение фаз и отделяют нижний слой, представляющий собой раствор галогеноводорода, а на второй стадии в раствор частично галоидированного бутилкаучука вводят воду и раствор галогена, после чего также проводят разделение фаз и отделяют воду от раствора галоидированного бутилкаучука, при этом дозировку хлора на первой стадии выдерживают в пределах 0,1-0,3 мас.%, а брома 0,2-0,5 мас.% на каучук.
В качестве растворителя в процессе галогенирования используют алканы нормального или изостроения, слабополярные галогенсодержащие углеводороды и другие растворители, способные растворять бутилкаучук и инертные по отношению к хлору или брому в условиях настоящего способа.
Недостатком данного способа является необходимость использования дополнительного реактора на стадии галоидирования раствора бутилкаучука, что приводит к дополнительным затратам при осуществлении данного процесса в промышленности, а также к увеличению времени осуществления процесса. Кроме того, при осуществлении данного способа наблюдается снижение среднечисленной молекулярной массы в диапазоне от 10 до 19%.
Наиболее близким по технической сущности к предлагаемому способу является способ галоидирования бутилкаучука, описанный в патенте US №5087674, в соответствии с которым осуществляют смешение раствора бутилкаучука, раствора галогена в углеводородном растворителе и воды при температуре от 70 до 125°С в присутствии акцептора галогеноводорода. В процессе смешения происходит галоидирование бутилкаучука. Полученную после этого реакционную массу разделяют на водную и органическую фазы с последующим удалением водной фазы, а из органической фазы выделяют галобутилкаучук, последовательно подвергая органическую фазу нейтрализации, промывке, дегазации и сушке. При этом в качестве акцепторов галогеноводорода используют органические соединения, такие как эпоксидированные эфиры и глицериды жирных ненасыщенных C8-C20 кислот, либо неорганические соединения, такие как оксиды, гидроксиды, карбоксилаты щелочных и щелочноземельных металлов, неорганические соли слабых кислот и сильных оснований, либо смеси указанных выше органических и неорганических акцепторов галогеноводородов. Акцепторы галогеноводорода используются в количествах, достаточных для связывания выделяющегося галогеноводорода, либо в значительном избытке. Так, в одном из примеров используют 7,3 г акцептора на 271 г бутилкаучука (26,9 кг на 1 т, или 2,6 мас.%).
Существенным недостатком приведенного выше способа является использование значительных количеств эпоксидированных растительных масел (до нескольких эквивалентов по отношению к количеству образующегося галогеноводорода). Так как эпоксидированные растительные масла представляют собой соединения с длинными алифатическими фрагментами, они являются гидрофобными веществами, поэтому на стадии расслаивания не переходят в водную фазу, и в конечном итоге присутствуют в массе получаемого галобутилкаучука, что ухудшает физико-механические свойства последнего и свойства вулканизатов, получаемых на его основе. Кроме того, реакцию галогенирования по приведенному выше способу осуществляют в температурном интервале от 70 до 125°С, что связано с дополнительными энергозатратами на достижение повышенной температуры. В случае же использования оксидов и гидроксидов щелочных и щелочноземельных металлов в качестве акцепторов бромистого водорода увеличивается рН реакционной среды, что в свою очередь повышает вероятность протекания побочных реакций дегидрогалогенирования и изомеризации образующегося галобутилкаучука. Дегидрогалогенирование снижает общее содержание галогена в конечном продукте, а реакция изомеризации приводит к превращению экзо-галогенированной формы изопренильных звеньев галобутилкаучука в менее желательную галоген-метильную форму.
Задачей изобретения является разработка более эффективного и менее энергозатратного способа получения галобутилкаучука.
Технический результат состоит в снижении количества используемого акцептора галогеноводорода, снижении температуры проведения процесса. Также технический результат состоит в увеличении степени содержания галогена в конечном продукте в виде экзо-галогенированной формы изопренильных звеньев, за счет исключения побочных реакций дегидрогалогенирования и изомеризации.
Структура получаемых галобутилкаучуков достаточно хорошо известна и описана в работе [I.J. Gardner et al. / Halogenated butyl rubber // US Patent 4703091 (1987)] и других источниках. В галоидированном бутилкаучуке могут присутствовать следующие основные формы изопренильных звеньев (Рисунок 1, Х - галоген).
A)
Figure 00000001
Б)
Figure 00000002
В)
Figure 00000003
Рисунок 1 - Основные формы изопренильных звеньев в галобутилкаучуке:
A) изопреновое звено (негалоидированная форма);
Б) экзо-метиленовая форма;
B) бромметильная (эндо-) форма.
При этом форма Б является наиболее устойчивой к скорчингу, обеспечивает оптимальные показатели кинетики вулканизации и физико-механические показатели вулканизатов при использовании различных рецептур резиновых смесей.
Настоящее изобретение предполагает осуществление галоидирования бутилкаучука в углеводородном растворителе, выбранном из группы алканов нормального, разветвленного или циклического строения либо комбинации вышеназванных углеводородных растворителей. Используют концентрации бутилкаучука в растворителе от 5 до 20 мас.%. Реакцию галоидирования проводят в одну стадию при интенсивном смешении раствора бутилкаучука, раствора галогена в углеводородном растворителе с добавлением акцептора галогеноводорода в количестве от 0,001 до 0,025 мас.% по отношению к массе бутилкаучука, и воды с добавлением ускорителя расслаивания (неорганической соли) в количестве от 0,0001 до 0,5 мас.% по отношению к массе бутилкаучука и незамещенной либо N-алкилзамещенной мочевины в количестве от 0,001 до 0,5 мас.% по отношению к массе бутилкаучука. При этом в качестве акцептора галогеноводорода используют соединение общей формулы:
Figure 00000004
X = О, S, NH; R1, R2, R3, R4 = Н, Alk, Ar;
Alk = СН3, С2Н5, н-С3Н7, изо-C3H7, н-С4Н9, изо-C4H9, втор-С4Н9, трет-С4Н9, С5Н11, изо-C5H11, C6H13, изо-C6H13, С7Н15, изо-С7Н15, C8H17, изо-C8H17, C9H19, изо-С9Н19, С10Н21, изо-С10Н21, циклопентил, циклогексил и другие алифатические и алициклические заместители;
Ar = С6Н5, С6Н5-СН2, С6Н4-СН3-о, С6Н4-СН3-м, С6Н4-СН3-n и др. ароматические заместители.
Так, в качестве акцептора галогеноводорода могут быть выбраны гуанидины, например N-метилгуанидин, N-этилгуанидин, N-пропилгуанидин, N-бутилгуанидин, N-фенилгуанидин, 1,3-диметилгуанидин, 1,3-диэтилгуанидин, 1-метил-3-этилгуанидин, 1-метил-3-пропилгуанидин, 1-метил-3-фенилгуанидин, 1-этил-3-фенилгуанидин, 1-пропил-3-фенилгуанидин, 1,1-диметилгуанидин, 1-метил-1-фенилгуанидин, 1,1-дифенилгуанидин, 1,3-дифенилгуанидин и другие, или мочевины, например N-метилмочевина, N-этилмочевина, N-пропилмочевина, N-бутилмочевина, N-фенилмочевина, N,N'-диметилмочевина, N-диэтилмочевина, N-метил-N'-этилмочевина, N-метил-N-пропилмочевина, N-метил-N-фенилмочевина, N-этил-N'-фенилмочевина, N-пропил-N'-фенилмочевина, N,N-диметилмочевина, N-метил-N-фенилмочевина, N,N-дифенилмочевина, N,N'-дифенилмочевина, N,N,N',N'-тетраметилмочевина, N,N,N',N'-тетраэтилмочевина и другие; наиболее предпочтительно использование 1,3-дифенилгуанидина.
Поскольку галогеноводород может образовываться уже на стадии приготовления галогенирующего раствора, добавление малых количеств азотсодержащего органического акцептора позволяет предотвращать попадание галогеноводорода в реактор галоидирования, сводя, таким образом, к минимуму степень деструкции и изомеризации конечного продукта и делая весь процесс более безопасным ввиду уменьшения накапливающихся в процессе галоидирования и приготовления галогенирующего раствора абсорбционных газов.
Галогенирующий раствор перед введением в реактор осуществления галоидирования готовят отдельно последовательным растворением в углеводородном растворителе органического акцептора (из расчета от 10 до 250 г на 1 т исходного бутилкаучука) и молекулярного галогена. Молекулярный галоген берут в количестве из расчета от 5 до 75 кг на 1 т исходного бутилкаучука, предпочтителен интервал от 5 до 60 кг на 1 т бутилкаучука. Количество подаваемого органического акцептора определяется температурой приготовления галогенирующего раствора. На приготовление галогенирующего раствора для галоидирования 1 т бутилкаучука расходуется от 200 до 800 л углеводородного растворителя, предпочтителен интервал от 350 до 700 л, предпочтительным углеводородным растворителем для приготовления раствора является н-гексан, хотя возможно использование и других алифатических углеводородов нормального или разветвленного строения, либо их смеси. Температура в установке для приготовления галогенирующего раствора может находиться в интервале от 0 до 70°С, предпочтительно от 10 до 30°С.
Непосредственно перед добавлением галогенирующего раствора в реактор галоидирования бутилкаучука подают водную фазу, представляющую собой раствор неорганической соли щелочного металла и/или вещества, выбранного из класса N-алкилзамещенных мочевин либо незамещенной мочевины в воде. Предпочтительно использование незамещенной мочевины (карбамида). Мочевина позволяет более эффективно выводить производные гуанидина из органической фазы в водную фазу, а также может служить акцептором галогеноводорода, образующегося в ходе галогидирования бутилкаучука. Количество используемого карбамида либо N-алкилзамещенной мочевины может варьироваться в пределах от 10 г до 5 кг на 1 т исходного бутилкаучука, причем предпочтительно количество в пределах от 500 г до 2 кг на 1 т исходного бутилкаучука.
В качестве ускорителя расслаивания водной и органической фазы могут быть использованы фториды, хлориды, бромиды, иодиды, сульфаты, фосфаты и другие соли лития, натрия или калия, а также всевозможные смеси этих веществ в различных пропорциях. Предпочтительно использование фторидов, бромидов и хлоридов лития, натрия и калия. Количество используемого ускорителя расслаивания может использоваться в количестве от 1 г до 5 кг на 1 т бутилкаучука, предпочтительно от 100 г до 5 кг на 1 т галоидируемого бутилкаучука. Для приготовления водной фазы используется вода в количестве от 10 л до 1 м3, предпочтительно от 100 л до 500 л на 1 т исходного полимера.
Галоидирование можно проводить с использованием в одном процессе и производных гуанидина, и мочевины, и неорганической соли, либо какого-либо одного из перечисленных выше признаков, либо любой их комбинации. Галоидирование осуществляют в течение от 0,1 до 15 минут, предпочтительно от 1 до 10 минут при интенсивном перемешивании органической и неорганической фаз. Затем реакционную смесь подвергают нейтрализации разбавленным раствором гидроксида натрия или калия. После разделения фаз органическую фазу отделяют, дополнительно промывают водой, операцию отмывки водой повторяют, после чего раствор галобутилкаучука подвергают дегазации, сушат выделившийся галобутилкаучук. Готовый галобутилкаучук подвергают цинкоксидной вулканизации согласно стандартной рецептуре ASTM D 3958-00.
Основные показатели процесса и свойства галобутилкаучука и вулканизатов на его основе приведены в таблице 1 в сравнении с показателями для промышленного образца ББК-232 производства ОАО «Нижнекамскнефтехим».
Настоящее изобретение иллюстрируется следующим примерами:
Пример 1 (бромирование в присутствии 1,3-дифенилгуанидина):
Галоидирующий раствор готовят в затемненной колбе при 20°С растворением 20 мг 1,3-дифенилгуанидина в 50 мл гексана, добавляют 4,1 г молекулярного брома Br2. Этот раствор единовременно добавляют к энергично перемешиваемой смеси раствора 100 г БК-1675Н (производство ОАО «Нижнекамскнефтехим») в 800 мл гексана и 45 мл дистиллированной воды. Реакцию ведут в затемненной колбе при комнатной температуре в течение 5 минут, затем реакционную смесь перемещают в разбавленный раствор КОН. Нейтрализацию осуществляют в течение 15 минут, после чего водный и органический слои разделяют, раствор галобутилкаучука в гексане дважды промывают дистиллированной водой. Тщательно промытый раствор галобутилкаучука заправляют эпоксидированным соевым маслом (1,3 г на 100 г ББК), 0,05 мас.% Irganox 1076 и стеаратом кальция (1,3 г на 100 г ББК). Галобутилкаучук выделяют методом безводной дегазации. Затем сушат продукт при пониженном давлении и температуре 70°С. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 2 (бромирование в присутствии карбамида):
Галоидирующий раствор готовят в затемненной колбе при 0°С из 50 мл гексана и 4,1 г молекулярного брома Br2. Этот раствор единовременно добавляют к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 200 мг карбамида (мочевины) в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 3 (бромирование в присутствии хлорида натрия):
Галоидирующий раствор готовят в затемненной колбе при 0°С из 50 мл гексана и 4,1 г молекулярного брома Br2. Этот раствор единовременно добавляют к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 1 г хлористого натрия NaCl в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 4 (бромирование в присутствии 1,3-дифенилгуанидина и карбамида):
Кремирующий раствор, приготовленный в затемненной колбе при 20°С растворением 15 мг 1,3-дифенилгуанидина в 50 мл гексана с последующим добавлением 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 150 мг карбамида (мочевины) в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 5 (бромирование в присутствии 1,3-дифенилгуанидина и хлорида натрия):
Бромирующий раствор, приготовленный в затемненной колбе при 20°С растворением 15 мг 1,3-дифенилгуанидина в 50 мл гексана с последующим добавлением 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 500 мг хлорида натрия в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевьм маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 6 (бромирование в присутствии мочевины и хлорида натрия):
Бромирующий раствор, приготовленный в затемненной колбе при 0°С из 50 мл гексана и 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 100 мг карбамида (мочевины) и 500 мг хлорида натрия в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 7 (бромирование в присутствии 1,3-дифенилгуанидина, мочевины и хлорида натрия):
Бромирующий раствор, приготовленный в затемненной колбе при 15°С растворением 10 мг 1,3-дифенилгуанидина в 50 мл гексана с последующим добавлением 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 100 мг карбамида (мочевины) и 100 мг хлорида натрия в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бронированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 8 (бромирование в присутствии 1-фенил-3-гексилгуанидина и хлорида натрия):
Бромирующий раствор, приготовленный в затемненной колбе при 20°С растворением 30 мг 1-фенил-3-гексилгуанидина в 50 мл гексана с последующим добавлением 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 250 мг хлорида натрия в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Пример 9 (бромирование в присутствии 1,3-диоктилгуанидина и бромида натрия):
Бромирующий раствор, приготовленный в затемненной колбе при 20°С растворением 45 мг 1,3-диоктилгуанидина в 50 мл гексана с последующим добавлением 4,1 г молекулярного брома Br2, единовременно добавили к энергично перемешиваемой смеси раствора 100 г БК-1675Н в 800 мл гексана и раствора 250 мг бромида натрия в 45 мл дистиллированной воды. Реакцию галогенирования, стадию нейтрализации, отмывку и заправку раствора галобутилкаучука эпоксидированным соевым маслом, Irganox и стеаратом кальция проводят, как описано в Примере 1. Получают продукт, содержащий бром исключительно в виде экзо-формы бромированных изопренильных фрагментов. Некоторые характеристики конечного продукта и результаты физико-механических испытаний вулканизатов на его основе приведены в таблице.
Сравнительные данные некоторых показателей бромбутилкаучуков
Пример Содержание Br2, мас.% Br в экзо-форме, мол.% Вязкость Муни (1+8, 125°С), ед. f100, МПа f300, МПа fp, МПа εp, % Твердость по Шору А, ед.
1 2,4 >95 46,8 1,4 5,4 11,5 550 46
2 2,4 >95 45,7 1,5 5,6 11,0 540 46
3 2,4 >95 45,2 1,5 5,3 11,2 540 46
4 2,4 >95 47,3 1,4 5,8 11,0 520 46
5 2,4 >95 47,0 1,5 5,5 11,2 550 46
6 2,4 >95 46,4 1,5 5,3 11,4 570 46
7 2,4 >95 47,6 1,5 5,8 11,5 570 47
8 2,4 >95 47,4 1,4 5,4 11,3 560 46
9 2,4 >95 47,1 1,4 5,6 11,4 560 46
ББК-232 (сравн.) 2,0 80 44,0 1,4 4,9 11,0 570 45

Claims (5)

1. Способ получения галобутилкаучука, включающий смешение раствора бутилкаучука, раствора галогена в углеводородном растворителе в присутствии акцептора галогеноводорода и воды, при этом в процессе смешения происходит галоидирование бутилкаучука, с последующим разделением полученной реакционной массы на органическую и водную фазы, водную фазу удаляют, а из органической фазы выделяют галобутилкаучук, последовательно подвергая органическую фазу нейтрализации, промывке, дегазации и сушке, отличающийся тем, что в качестве акцептора галогеноводорода используют соединение общей формулы:
Figure 00000005

X = О, S, NH; R1, R2, R3, R4 = Н, Alk, Ar;
Alk = СН3, С2Н5, н-С3Н7, изо-C3H7, н-С4Н9, изо-C4H9, втор-С4Н9, трет-С4Н9, С5Н11, изо-C5H11, C6H13, изо-C6H13, С7Н15, изо-С7Н15, C8H17, изо-C8H17, C9H19, изо-С9Н19, С10Н21, изо-С10Н21, циклопентил, циклогексил и другие алифатические и алициклические заместители;
Ar = С6Н5, С6Н5-СН2, С6Н4-СН3-о, С6Н4-СН3-м, С6Н4-СН3-n и др. ароматические заместители.
2. Способ по п.1, отличающийся тем, что перед смешением добавляют ускоритель расслаивания фаз.
3. Способ по п.2, отличающийся тем, что в качестве ускорителя расслаивания фаз используют неорганические соли щелочных металлов в количестве от 0,0001 до 0,5 мас.% по отношению к массе бутилкаучука.
4. Способ по п.2, отличающийся тем, что в качестве ускорителя расслаивания фаз используют мочевину в количестве от 0,001 до 0,5 мас.% по отношению к массе бутилкаучука.
5. Способ по п.1, отличающийся тем, что акцептор галогеноводорода используют в количестве от 0,001 до 0,025 мас.% по отношению к массе бутилкаучука.
RU2010151801/04A 2010-12-16 2010-12-16 Способ получения галобутилкаучука RU2468037C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010151801/04A RU2468037C2 (ru) 2010-12-16 2010-12-16 Способ получения галобутилкаучука

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010151801/04A RU2468037C2 (ru) 2010-12-16 2010-12-16 Способ получения галобутилкаучука

Publications (2)

Publication Number Publication Date
RU2010151801A RU2010151801A (ru) 2012-06-27
RU2468037C2 true RU2468037C2 (ru) 2012-11-27

Family

ID=46681497

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010151801/04A RU2468037C2 (ru) 2010-12-16 2010-12-16 Способ получения галобутилкаучука

Country Status (1)

Country Link
RU (1) RU2468037C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603192C1 (ru) * 2015-06-03 2016-11-27 Публичное Акционерное Общество "Нижнекамскнефтехим" Способ получения бромбутилкаучука

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087674A (en) * 1984-10-01 1992-02-11 Exxon Research & Engineering Acid scavenged polymer halogenation
RU95120001A (ru) * 1993-02-10 1997-09-27 Прессиндустрия АГ. Непрерывный способ и устройство для галогенирования эластомеров
RU2272813C1 (ru) * 2004-06-29 2006-03-27 Открытое акционерное общество "Нижнекамскнефтехим" Способ галоидирования бутилкаучука
EP2119729A1 (en) * 2008-05-15 2009-11-18 The Goodyear Tire & Rubber Company Rubber composition and pneumatic tire
RU2373224C1 (ru) * 2008-02-19 2009-11-20 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") Способ галоидирования бутилкаучука

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270944B (it) * 1993-02-10 1997-05-26 Pressindustria A G Procedimento continuo e impianto di alogenazione di elastomeri.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087674A (en) * 1984-10-01 1992-02-11 Exxon Research & Engineering Acid scavenged polymer halogenation
RU95120001A (ru) * 1993-02-10 1997-09-27 Прессиндустрия АГ. Непрерывный способ и устройство для галогенирования эластомеров
RU2272813C1 (ru) * 2004-06-29 2006-03-27 Открытое акционерное общество "Нижнекамскнефтехим" Способ галоидирования бутилкаучука
RU2373224C1 (ru) * 2008-02-19 2009-11-20 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") Способ галоидирования бутилкаучука
EP2119729A1 (en) * 2008-05-15 2009-11-18 The Goodyear Tire & Rubber Company Rubber composition and pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603192C1 (ru) * 2015-06-03 2016-11-27 Публичное Акционерное Общество "Нижнекамскнефтехим" Способ получения бромбутилкаучука

Also Published As

Publication number Publication date
RU2010151801A (ru) 2012-06-27

Similar Documents

Publication Publication Date Title
CN110229254B (zh) 一种丁基橡胶的溴化方法以及溴化丁基橡胶
CN102770461B (zh) 用于生产高分子量溴化橡胶的共用溶剂方法
CN1301210C (zh) 非危险溴化试剂的制备
RU2468037C2 (ru) Способ получения галобутилкаучука
CN105622821B (zh) 一种卤化丁基橡胶的制备方法
WO2015153132A1 (en) A method to produce 1,1,2,3-tetrachloropropene with high yield
RU2393175C2 (ru) Способ получения поли-3,3-бис(азидометил)оксетана
DE1817193C3 (de) Verfahren zur gleichzeitigen Herstellung von symmetrischem und unsymmetrischem Tetrachloräthan
RU2309935C1 (ru) Способ совместного получения хлороформа и алкиленкарбонатов
US2494049A (en) Methods of producing fumaric acid
CN102906069B (zh) 二环己基二硫化物的制造方法
RU2320672C1 (ru) Способ получения хлорбутилкаучука
JPH045262A (ja) ベンジルアミン類の製造方法
US5396002A (en) Process to produce vinylidene chloride using phase transfer catalyst
US2223364A (en) Method of producing higher alkyl aromatic sulphonates
JPH1112200A (ja) パーフルオロカーボンの製造方法
EP1284253B1 (de) Verfahren zur Herstellung von Monochlorkohlenwasserstoffen mit hoher Isomerenreinheit
US2097726A (en) Process for the manufacture of sulphonic acids from aryl ethylenes and the products thereof
RU2180337C1 (ru) Способ получения бромбутилкаучука
RU2272813C1 (ru) Способ галоидирования бутилкаучука
CN114380688B (zh) 一种酸敏感光刻胶树脂单体的制备方法
CN1037894A (zh) 合成芳基磺酰基烷基酰胺的方法
RU2487140C1 (ru) Способ получения поли-3,3-бис(азидометил)оксетана
RU2156258C2 (ru) Способ получения хлорбутилкаучука
JPH0482880A (ja) グリシジル化合物の製造方法