RU2464604C2 - Способ формирования мультифокальных контактных линз - Google Patents

Способ формирования мультифокальных контактных линз Download PDF

Info

Publication number
RU2464604C2
RU2464604C2 RU2010111776/28A RU2010111776A RU2464604C2 RU 2464604 C2 RU2464604 C2 RU 2464604C2 RU 2010111776/28 A RU2010111776/28 A RU 2010111776/28A RU 2010111776 A RU2010111776 A RU 2010111776A RU 2464604 C2 RU2464604 C2 RU 2464604C2
Authority
RU
Russia
Prior art keywords
lens
function
eye
lenses
design
Prior art date
Application number
RU2010111776/28A
Other languages
English (en)
Other versions
RU2010111776A (ru
Inventor
К. Бенджамин ВУЛИ (US)
К. Бенджамин ВУЛИ
Расселл Т. СПОЛДИНГ (US)
Расселл Т. СПОЛДИНГ
Сьюзан В. НИДЛ (US)
Сьюзан В. НИДЛ
Original Assignee
Джонсон Энд Джонсон Вижн Кэа, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Энд Джонсон Вижн Кэа, Инк. filed Critical Джонсон Энд Джонсон Вижн Кэа, Инк.
Publication of RU2010111776A publication Critical patent/RU2010111776A/ru
Application granted granted Critical
Publication of RU2464604C2 publication Critical patent/RU2464604C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

Изобретение относится к области офтальмологии и направлено на создание мультифокальных контактных линз, имеющих повышенную эффективность и комфортность при их использовании, что обеспечивается за счет того, что способ формирования пары мультифокальных контактных линз содержит этап обеспечения конструкции первой линзы для доминантного глаза носителя линзы и конструкции первой линзы для недоминантного глаза носителя линзы, этап выбора первой весовой функции которой является функция первой функции чувствительности неврального контраста, применимая к конструкции линзы для доминантного глаза, и второй весовой функции, которой является функция второй функции чувствительности неврального контраста, применимая к конструкции линзы для недоминантного глаза, этап использования первой весовой функции для конструкции первой линзы и второй весовой функции для конструкции второй линзы в моделях прогнозирования характеристик для каждой из конструкций первой и второй линзы, где модель прогнозирования характеристики связывает измеренные характеристики двух или большего количества конструкций линзы со спрогнозированной характеристикой для конструкции каждой - первой и второй линзы, и этап использования результатов, полученных на предыдущих этапах, включающий вычисление спрогнозированной визуальной характеристики с использованием модели прогнозирования сначала вычислением взвешенной площади оптической передаточной функции в соответствии с уравнением, приведенным в формуле изобретения. 4 н. и 9 з.п. ф-лы, 9 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к мультифокальным офтальмологическим линзам. В частности, данное изобретение обеспечивает пары мультифокальных контактных линз, при формировании которых принимается во внимание функция чувствительности неврального контраста.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
По мере своего индивидуального старения глаз имеет все меньшую способность аккомодировать или искривлять свою естественную линзу для фокусировки на предметах, которые расположены относительно близко к наблюдателю. Это состояние известно как пресбиопия. Подобным же образом у людей, у которых естественные линзы удалены, а в качестве замены вставлены внутриглазные линзы, возможность аккомодации отсутствует.
Среди способов, используемых для коррекции неспособности глаза аккомодироваться, является использование линз, которые имеют более чем одну оптическую силу. В частности, были разработаны мультифокальные контактные линзы и внутриглазные линзы, в которых имеются зоны «дальней», «ближней» и, - в некоторых случаях - «промежуточной» оптической силы.
Краткое описание чертежей
Фиг. 1 представляет собой вид в плане поверхности мультифокальной линзы.
Фиг. 2 представляет собой график ФЧНК.
Фиг. 3 представляет собой диаграмму оптической силы по радиальному сечению конструкции линзы для доминантного глаза.
Фиг. 4 представляет собой диаграмму оптической силы линзы по фиг. 3 по радиальному сечению после изменения ее конструкции в результате применения ФЧНК и вычисления прогнозируемой характеристики.
Фиг. 5 представляет собой график прогнозируемой характеристики для конструкции линзы по фиг. 4.
Фиг. 6 представляет собой диаграмму оптической силы по радиальному сечению линзы, используемой для недоминантного глаза.
Фиг. 7 представляет собой график ФЧНК, примененной к конструкции линзы по фиг. 6.
Фиг. 8 представляет собой диаграмму оптической силы конструкции линзы по фиг. 6 по радиальному сечению после изменения ее конструкции в результате применения ФЧНК и вычисления прогнозируемой характеристики.
Фиг. 9 представляет собой график остроты зрения в диапазоне изменения фокусного расстояния конструкции линзы по фиг. 8.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ И
ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ИСПОЛНЕНИЯ
Настоящее изобретение предлагает способы формирования контактных линз, контактные линзы, сформированные в соответствии с предложенным способом, и способы производства линз, при этом данные линзы обеспечивают улучшенную характеристику по сравнению с обычными линзами. Дополнительно, способ по данному изобретению обеспечивает повышенную эффективность конструкции линзы по сравнению с обычными способами, поскольку он сокращает продолжительность разработки конструкции. Открытием настоящего изобретения является то, что улучшенная характеристика и сокращенная продолжительность разработки конструкции могут быть достигнуты использованием в качестве части процесса конструирования линзы модели прогнозирования визуальной характеристики.
В одном варианте исполнения настоящее изобретение обеспечивает способ формирования пары мультифокальных линз, содержащий, включающий по существу, и состоящий из следующих этапов: (а) выполнение конструкции первой линзы для доминантного глаза носителя линзы и конструкции первой линзы для недоминантного глаза носителя линзы; (b) выбор первой весовой функции, которой является функция первой функции чувствительности неврального контраста, применимая к конструкции линзы для доминантного глаза, и второй весовой функции, которой является функция второй функции чувствительности неврального контраста, применимая к конструкции линзы для недоминантного глаза; (с) использование первой весовой функции для конструкции первой линзы и второй весовой функции для конструкции второй линзы в модели прогнозирования характеристики для каждой из конструкций первой и второй линзы, где модель прогнозирования характеристики связывает измеренные характеристики двух или большего количества конструкций линзы с прогнозированной характеристикой для конструкции каждой - первой и второй линзы, и (d) использование результатов, полученных на этапе (с), для оптимизации конструкции первой и второй линзы.
В способе по настоящему изобретению для прогнозирования характеристики конструкции линзы "в глазу" используется модель прогнозирования, исключая, таким образом, необходимость изготовления линзы и проверки ее вместе с глазом. Эта модель прогнозирования использует оптическую передаточную функцию (ОПФ) глаза, взвешенную функцией, которая сама является функцией чувствительности неврального контраста (ФЧНК) глаза.
В первом этапе способа по настоящему изобретению выполняется конструкция первой линзы для доминантного глаза носителя линзы и конструкции первой линзы для недоминантного глаза носителя линзы. Под "доминантным глазом" подразумевается тот глаз, который человек предпочитает использовать для выполнения задач, требующих дальнего видения. Конструкция для каждого глаза может быть любой желательной конструкцией и, предпочтительно, представляет собой мультифокальную конструкцию, более предпочтительно, эта конструкция содержит по меньшей мере две радиально симметричные зоны: первая зона, которая является центральной зоной, и вторая зона, которая является кольцевой зоной, которая окружает центральную зону. Конструкция линзы для доминантного глаза предпочтительно имеет такую центральную зону, которая является зоной дальнего видения, имея в виду зону, которая обеспечивает оптическую силу, необходимую для коррекции по существу остроты дальнего видения носителя этой линзы до желательной степени. Кольцевая зона предпочтительно является зоной ближнего видения, имея в виду зону, которая обеспечивает оптическую силу, необходимую для коррекции по существу остроты ближнего видения носителя этой линзы до желательной степени. В конструкции линзы для недоминантного глаза центральная зона предпочтительно является зоной ближнего видения, а кольцевая зона является зоной дальнего видения. В конструкцию может быть включено любое количество, эти зоны обеспечивают коррекцию одного или большего количества диапазонов дальнего или ближнего видения, или обладают промежуточной оптической силой, что означает корректирующую оптическую силу между оптической силой дальнего и ближнего видения. На фиг. 1 с иллюстративной целью показана линза 10. Оптическая зона линзы составлена из центральной зоны 15 дальнего видения и первой кольцевой зоны 16 ближнего видения.
На другом этапе способа по настоящему изобретению выбирается весовая функция, которая сама является функцией ФЧНК глаза, для использования ее в конструкции линзы для доминантного глаза, а также другая весовая функция для использования ее в конструкции линзы для недоминантного глаза. ФЧНК выражается в виде логарифма, обратного порогу различимого контраста в функции пространственной частоты, освещения объекта и размера зрачка глаза. В качестве примера ФЧНК для усредненной популяции на фиг. 2 показан график контрастной чувствительности в зависимости от пространственной частоты как функция ретинальной освещенности. На приведенном графике функциональные максимумы приходятся на частоту около от 4 до 8 циклов на градус в зависимости от освещенности. Альтернативно, использованная в весовой функции ФЧНК, может быть усредненной по отдельному человеку, а не усредненной ФЧНК популяции вообще.
Открытием настоящего изобретения является то, что применением различных весовых функций к доминантному и недоминантному глазам носителя линз может быть достигнута улучшенная характеристика пары мультифокальных контактных линз. Доминантный глаз носителя линз будет использоваться преимущественно для дальнего видения и различения тонких деталей, а недоминантный глаз будет использоваться для решения визуальных задач ближнего и среднего видения, таких как чтение и работа с дисплеем компьютера. Тонкие детали объекта по существу соответствуют высокой пространственной частоте, в то время как задачи, решаемые ближним и средним видением, по существу соответствуют низкой и средней пространственным частотам. Таким образом, оптимальная конструкция пары линз не может быть получена использованием одной весовой функции в конструкции и для доминантного, и для недоминантного глаза. Предпочтительно, для каждой из этих конструкций следует применять различный набор весовых параметров. В предпочтительном варианте исполнения весовая функция, примененная к конструкции линзы для доминантного глаза, есть полная ФЧНК, что означает ее минимальное значение 0, а максимальное значение - 60 циклов на градус. Весовая функция, примененная к конструкции линзы для недоминантного глаза, есть усеченная ФЧНК, минимальное значение которой равно 0, а максимальное значение равно 12 циклов на градус.
В способе по настоящему изобретению в модели прогнозирования оптической характеристики используется весовая функция. Модель прогнозирования использует измеренные в клинических условиях параметры визуальной характеристики линзы, отличной от линзы или линз, которые предстоит сконструировать (формировать), и связывает измеренные параметры со спрогнозированной оптической характеристикой новой конструкции. Таким образом, эта модель позволяет прогнозировать клиническую характеристику создаваемой линзы без необходимости ее изготовления и проверки "на глазу". Одним из компонентов модели прогнозирования является модель "математического" глаза, которая включает в себя первую поверхность, которая имеет примерную форму роговицы глаза и имеет аберрации, подобные аберрациям человеческого глаза. Модель человеческого глаза может представлять усредненный по совокупности глаз популяции, такой как глаз Гюлластранда-ЛеГранда (Gullastrand-LeGrand) или глаз Луи-Бреннена (Liou-Brennen), или же это может быть модель какого-нибудь отдельно взятого глаза с измеренными параметрами формы роговицы вместе с измеренными аберрациями волнового фронта. Модель прогнозирования позволяет математически производить совмещение конструкции контактной линзы с моделью и вычислением оптической передаточной функции (ОПФ) в плоскости сетчатки.
Для расчета спрогнозированной визуальной характеристики с использованием модели прогнозирования сначала вычисляется взвешенная площадь ОПФ ("WAОПФ") в соответствии со следующим уравнением:
Figure 00000001
где
- макс. и мин. - определяют диапазон частоты, по которому производится интегрирование, и вместе с ФЧНК и N определяют взвешенную функцию;
- ОПФ есть оптическая передаточная функция, вычисленная для конструкции линзы в плоскости сетчатки;
- ν - пространственная частота, выраженная в количестве пар линий или циклов на градус угла (ц/град), стягиваемого впадиной в сетчатке глаза;
- D - диаметр зрачка глаза в миллиметрах;
- V - вергенция, определяющая расстояние до рассматриваемого объекта, выраженная в обратных метрах или в диоптриях;
- контраст объекта - величина, заключенная между 0 и 1, которая представляет собой контраст наблюдаемого объекта;
- ФЧНК - функция чувствительности неврального контраста;
- L - освещенность помещения, выраженная в кд/м2, и
- N - показатель степени со значением от 1 до -2, предпочтительно 1,5.
ОПФ для конструкции линзы может быть вычислена обычным способом, включая, без ограничения, использование существующих коммерческих программ расчета хода оптических лучей, таких как программное обеспечение CODE V™. Для конструкции линзы, которая не обладает вращательной симметрией, ОПФ может быть вычислена как среднее значение двухмерной ОПФ.
Вычисленное значение WAОПФ скоррелировано с измеренной визуальной характеристикой, что дает возможность вычислять и прогнозировать визуальную характеристику конструкции для использования ее с целью оптимизации характеристик этой конструкции линзы. Например, острота зрения VA в соответствии с испытательной таблицей LogMAR предпочтительно вычисляется в соответствии со следующим уравнением:
VA=-11+2,82×log10(WAОПФ)-0,136×log10(WAОПФ)2 (II)
Коэффициенты в уравнении (II) определяются корреляцией измеренной остроты зрения с вычисленным значением WAОПФ для конструкций линзы, используемых в клинических испытаниях.
Измеренные клинические характеристики, использованные в модели прогнозирования, основаны на двух или большем количестве линз, и, предпочтительно, чтобы информация собиралась по субъектам, которые имеют циклоплегию, с тем, чтобы их зрачок был расслаблен, а сами они были нечувствительны к фокусирующим раздражителям. Этим субъектам были вставлены опытные линзы, чтобы достичь плоскостного сверхпреломления. Острота зрения измерялась в испытательной лаборатории с регулируемым освещением с использованием испытательных таблиц с уровнем контрастности в 90 и 10%. Острота зрения измерялась как функция расфокусировки. При тщательном контроле условий испытаний, таких как размер зрачка, аккомодация, уровень освещенности и контраста, можно достичь высокой корреляции измеренных результатов с прогнозированными (r2>0,92). Таким образом, эта модель может быть использована для прогнозирования характеристики конструкции линзы.
Любые линзы могут быть использованы в целях получения измеренных клинических параметров. Предпочтительно, используемые линзы должны быть одинакового типа, например, монофокальные или мультифокальные, контактные линзы или внутриглазные, - как и те конструируемые линзы, для которых производится прогнозирование визуальной характеристики. Дополнительно и предпочтительно, чтобы эти линзы покрывали весь диапазон оптической силы, на который ориентируется разработчик линз. Например, если разработчик линз конструирует линзу для близоруких, то диапазон оптической силы, используемый в модели прогнозирования, - тот, который соответствует линзам для близоруких.
Результат расчета остроты зрения VA обеспечивает прогнозирование характеристики для линзы рассматриваемой конструкции. В том случае, когда для данной конструкции необходимо получить улучшенную характеристику, по меньшей мере один параметр линзы может быть изменен, для измененной конструкции могут быть проведены те же самые вычисления и снова получено прогнозирование характеристики. Предпочтительно, чтобы для каждого глаза производилась оптимизация конструкции линзы, чтобы получить нужную визуальную характеристику. Например, для линзы мультифокальной конструкции конструкция может быть оптимизирована для получения нужных визуальных характеристик дальновидения, видения объектов на средних и на ближних расстояниях для зрачка с размерами, соответствующими низким, средним и высоким уровням освещенности. Параметры конструкции линзы, которые могут быть изменены, включают, без ограничения, радиус зоны, расстояние между ними, оптическую силу и т.п.
Хотя настоящее изобретение было проиллюстрировано со ссылками на конструкцию пар мультифокальных контактных линз, это изобретение может быть использовано для конструкции контактных линз любого типа или внутриглазных линз, включая, без ограничения, отдельные мультифокальные линзы, монофокальные линзы, монофокальные или мультифокальные тороидальные линзы и им подобные.
Контактные линзы, которые могут быть сконструированы в соответствии с настоящим изобретением, предпочтительно являются мягкими контактными линзами. Предпочтительно используются мягкие контактные линзы, выполненные из любого материала, подходящего для производства таких линз. Показательные материалы для формирования мягких контактных линз включают, без ограничения, кремниевые эластомеры, кремнийсодержащие макромеры, включая, без ограничения, те из них, которые раскрыты в патенте США №№ 5371147, 5314960 и 5075578, включенные в настоящее описание во всей своей полноте в качестве ссылки, гидрогели, кремнийсодержащие гидрогели и им подобные материалы, а также их комбинации. Более предпочтительно, поверхность является силоксановой или выполнена из материалов, которые обладают силоксановой функциональностью, включая, без ограничения, полидиметилсилоксановые макромеры, метакрилоксипропилполиалкилсилоксаны и их смеси, кремниевый гидрогель или такой гидрогель, как этафилкон А.
Предпочтительным материалом для формирования линз является полидигидроксиэтилметакрилатовые полимеры, имея в виду те из них, которые имеют максимальный молекулярный вес между примерно 25.000 и примерно 80.000 и полидисперсию от менее чем примерно 1,5 до менее чем примерно 3,5 соответственно, ковалентно связанные по меньшей мере с одной функциональной группой с возможностью образования поперечной связи. Этот материал описан в патенте США № 6846892, включенный в настоящее описание во всей своей полноте в качестве ссылки. Подходящие материалы для формирования внутриглазных линз включают, без ограничения, полиметилметакрилат, гидроксиэтилметакрилат, чистые инертные пластмассы, полимеры на основе кремния и им подобные, а также их комбинации.
Отверждение линзоформирующего материала производится любыми известными способами, включая, без ограничения, тепловое, лучевое, химическое, отверждение под воздействием электромагнитного излучения и им подобные способы, а также их комбинации. Предпочтительно линза изготавливается литьем, что выполняется с использованием ультрафиолетового излучения или с использованием всего спектра видимого света. Более конкретно, точные условия, пригодные для отверждения материала линзы, будут зависеть от выбранного материала и формируемой линзы.
Процессы полимеризации для офтальмологических линз, включая, без ограничения, контактные линзы, хорошо известны. Подходящие для этого процессы раскрыты в патенте США № 5540410, включенном в настоящее описание во всей своей полноте в качестве ссылки.
Настоящее изобретение может быть дополнительно пояснено рассмотрением следующих не ограничивающих примеров.
ПРИМЕРЫ
Пример 1
Выполнена конструкция линзы для доминантного глаза, эта конструкция имеет пять концентрических зон, расположенных на передней поверхности линзы. Оптическая сила самой центральной части, а также каждой второй следующей зоны при перемещении от центра линзы к ее периферии соответствует номинальной оптической силе дальнего видения линзы. Оптическая сила оставшихся зон соответствует номинальной оптической силе ближнего видения линзы. Профиль оптической силы для этой линзы показан на фиг. 3. Была выбрана ФЧНК, показанная на фиг. 2, а также пределы интегрирования: мин = 0 ц/град, макс. = 60 ц/град. Используя клинически измеренный по трем конструкциям параметр VA (монофокальная конструкция, непрерывная асферическая мультифокальная конструкция и бифокальная конструкция кольцевого типа), были определены коэффициенты уравнения (II), что позволяет использовать модель прогнозирования визуальных характеристик для оптимизации конструкции. Поскольку линза предназначена для доминантного глаза, требования визуальным характеристикам "на глазу" для данной конкретной конструкции были заданы для линзы, которая имеет очень малый допуск на удаленные объекты, но которой была придана определенная дополнительная оптическая сила для повышения способности ближнего видения. Эта линза была оптимизирована для обеспечения визуальной характеристики, спрогнозированной на фиг. 5, во всем диапазоне ее фокусного расстояния изменением разницы оптической силы между центральной и близлежащими зонами на 0,6 диоптрий, межзональной асферичностью внутри зон для введения избыточной коррекции сферической аберрации комбинации "линза на глазу" доведением сферической аберрации внутри ближней и дальней зон до значения -0,15 дптр/мм2, и смещением базовой оптической силы первой зоны дальнего видения на величину -0,1 дптр. Результирующий "профиль" оптической силы показан на фиг. 4.
Пример 2
Выполнена конструкция линзы для недоминантного глаза, эта конструкция имеет четыре зоны, расположенные на передней поверхности линзы. Оптическая сила самой центральной части, а также каждой второй следующей зоны при перемещении от центра линзы к ее периферии соответствует номинальной оптической силе ближнего видения линзы, а оптическая сила остальных зон - оптической силе дальнего видения, как показано на фиг. 6. Использованная ФЧНК, как показано на фиг. 7, была взвешена в пределах интегрирования по уравнению (I): мин= 0 ц/град, макс. = 12 ц/град. Используя для установления корреляции параметр остроты зрения, измеренный по трем конструкциям (монофокальная конструкция, непрерывная асферическая мультифокальная конструкция и бифокальная конструкция кольцевого типа), уравнение (II) преобразуется к виду:
VA=-11+2,9×log10(WAОПФ)-0,141×log10(WAОПФ)2
Поскольку линза предназначена для недоминантного глаза, характеристика этой линзы "на глазу" должна быть улучшена в области ближнего видения с возможностью большего компромисса по характеристике дальнего видения, чем в конструкции линзы, предназначенной для доминантного глаза. Эта конструкция была оптимизирована для обеспечения визуальной характеристики, прогнозированной на фиг. 9, во всем диапазоне фокусного расстояния изменением расположения зон, введением разницы в оптической силе между центральной и близлежащими зонами до 0,75 дптр и введением асферичности внутри зон до -0,15 дптр/мм2. Результирующий "профиль" оптической силы для этой конструкции показан на фиг. 8.

Claims (13)

1. Способ формирования пары мультифокальных контактных линз, содержащий этапы (а) обеспечения конструкции первой линзы для доминантного глаза носителя линзы и конструкции первой линзы для недоминантного глаза носителя линзы; (b) выбора первой весовой функции, которой является функция первой функции чувствительности неврального контраста, применимая к конструкции линзы для доминантного глаза, и второй весовой функции, которой является функция второй функции чувствительности неврального контраста, применимая к конструкции линзы для недоминантного глаза; (с) использования первой весовой функции для конструкции первой линзы и второй весовой функции для конструкции второй линзы в моделях прогнозирования характеристик для каждой из конструкций первой и второй линз, где модель прогнозирования характеристики связывает измеренные характеристики двух или большего количества конструкций линзы со спрогнозированной характеристикой для конструкции каждой - первой и второй линзы, и (d) использования результатов, полученных на этапе (с), для оптимизации конструкций первой и второй линз, при этом этап (с) дополнительно содержит:
(i) вычисление спрогнозированной визуальной характеристики с использованием модели прогнозирования сначала вычислением взвешенной площади оптической передаточной функции в соответствии со следующим уравнением:
Figure 00000002

где
- макс. и мин. определяют диапазон частоты, по которому производится интегрирование;
- ОПФ есть оптическая передаточная функция, вычисленная для конструкции линзы в плоскости сетчатки;
- ν - пространственная частота, выраженная в количестве пар линий или циклов на градус угла, стягиваемого впадиной в сетчатке глаза;
- D - диаметр зрачка, мм;
- V - вергенция;
- контраст объекта - величина, заключенная между 0 и 1, которая представляет собой контраст наблюдаемого объекта;
- ФЧНК - функция чувствительности неврального контраста;
- L - освещенность помещения, выраженная, кд/м2, и
- N - показатель степени со значением от 1 до -2; и
(ii) установление корреляции между WAОПФ и измеренными визуальными характеристиками двух или более линз.
2. Способ по п.1, в котором функции чувствительности неврального контраста, использованные на этапе (b) в любой или в обеих, первой и второй, весовых функциях, являются усредненными функциями чувствительности неврального контраста популяции.
3. Способ по п.1, в котором функции чувствительности неврального контраста, использованные на этапе (b) в любой или в обеих, первой и второй, весовых функциях, являются усредненными функциями чувствительности неврального контраста отдельного человека.
4. Способ по п.1, в котором модель глаза, использованная на этапе (с) в одной или в обеих из моделей прогнозирования характеристик, является усредненной моделью глаз популяции.
5. Способ по п.1, в котором модель глаза, использованная на этапе (с) в одной или в обеих из моделей прогнозирования характеристик, является моделью глаза отдельного человека.
6. Способ по п.1, в котором подэтап (ii) выполняется вычислением остроты зрения в соответствии с испытательной таблицей LogMAR по следующему уравнению:
VA=-11+2,82×log10(WAОПФ)-0,136×log10(WAОПФ)2,
в котором каждый из коэффициентов уравнения определяется корреляцией измеренной остроты зрения с вычисленным значением WAОПФ для двух или более линз.
7. Способ формирования контактной линзы, содержащий этапы (а) обеспечения конструкции линзы для глаза или носителя линзы; b) выбора весовой функции, которой является функция функции чувствительности неврального контраста, применимая к конструкции линзы; (с) использования весовой функции в модели прогнозирования характеристик для конструкции линзы, в котором модель прогнозирования характеристик связывает измеренные характеристики двух или большего количества конструкций линзы со спрогнозированными характеристиками для этих конструкций линзы, и (d) использование результатов, полученных на этапе (с), для оптимизации конструкций линзы, в котором этап (с) дополнительно содержит:
(i) вычисление спрогнозированной визуальной характеристики с использованием модели прогнозирования сначала вычислением взвешенной площади оптической передаточной функции в соответствии со следующим уравнением:
Figure 00000002

где
- макс. и мин. определяют диапазон частоты, по которому производится интегрирование;
- ОПФ есть оптическая передаточная функция, вычисленная для конструкции линзы в плоскости сетчатки;
- ν - пространственная частота, выраженная в количестве пар линий или циклов на градус угла, стягиваемого впадиной в сетчатке глаза;
- D - диаметр зрачка, мм;
- V - вергенция;
- контраст объекта - величина, заключенная между 0 и 1, которая представляет собой контраст наблюдаемого объекта;
- ФЧНК - функция чувствительности неврального контраста;
- L - освещенность помещения, выраженная, кд/м2, и
- N - показатель степени со значением от 1 до -2; и
(ii) установление корреляции между WAОПФ и измеренными визуальными характеристиками двух или более линз.
8. Способ по п.7, в котором функция чувствительности неврального контраста, использованная на этапе (b), является усредненной функцией чувствительности неврального контраста популяции.
9. Способ по п.7, в котором функция чувствительности неврального контраста, использованная на этапе (b), является усредненной функцией чувствительности неврального контраста отдельного человека.
10. Способ по п.7, в котором модель глаза, использованная на этапе (с) в модели прогнозирования характеристик, является усредненной моделью глаз популяции.
11. Способ по п.7, в котором модель глаза, использованная на этапе (с) в модели прогнозирования характеристик, является моделью глаза отдельного человека.
12. Пара линз, сформированная в соответствии со способом по одному из пп.1-6.
13. Линза, сформированная в соответствии со способом по одному из пп.7-11.
RU2010111776/28A 2007-08-28 2008-08-26 Способ формирования мультифокальных контактных линз RU2464604C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/845,967 US7625086B2 (en) 2007-08-28 2007-08-28 Method of designing multifocal contact lenses
US11/845,967 2007-08-28

Publications (2)

Publication Number Publication Date
RU2010111776A RU2010111776A (ru) 2011-10-10
RU2464604C2 true RU2464604C2 (ru) 2012-10-20

Family

ID=39998992

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010111776/28A RU2464604C2 (ru) 2007-08-28 2008-08-26 Способ формирования мультифокальных контактных линз

Country Status (15)

Country Link
US (1) US7625086B2 (ru)
EP (2) EP2717084A1 (ru)
JP (1) JP5405470B2 (ru)
KR (1) KR101482539B1 (ru)
CN (1) CN101796451B (ru)
AR (1) AR068125A1 (ru)
AU (1) AU2008296504B2 (ru)
BR (1) BRPI0816077B1 (ru)
CA (1) CA2697751C (ru)
DK (1) DK2183640T3 (ru)
ES (1) ES2524466T3 (ru)
HK (2) HK1142138A1 (ru)
RU (1) RU2464604C2 (ru)
TW (1) TWI444699B (ru)
WO (1) WO2009032626A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753521B2 (en) * 2008-03-31 2010-07-13 Johnson & Johnson Vision Care, Inc. Lenses for the correction of presbyopia and methods of designing the lenses
US9089419B2 (en) 2008-10-15 2015-07-28 Novartis Ag System to reduce surface contact between optic and haptic areas
JP5414752B2 (ja) * 2011-08-08 2014-02-12 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、および、画像処理プログラム
DE102011120974A1 (de) 2011-12-13 2013-06-13 Rodenstock Gmbh Helligkeitsabhängige Anpassung eines Brillenglases
GB2514053A (en) 2012-02-03 2014-11-12 Coopervision Int Holding Co Lp Multifocal contact lenses and related methods and uses to improve vision of presbyopic subjects
HUE063017T2 (hu) 2012-02-03 2023-12-28 Coopervision Int Ltd Multifokális kontaktlencsék, valamint kapcsolatos eljárások és felhasználások idõskori távollátók látásának javítására
CN104204912B (zh) 2012-02-03 2016-08-24 库柏维景国际控股公司 用于改善老花者视力的多焦点隐形眼镜以及相关方法和用途
CN104204910B (zh) 2012-02-03 2016-03-09 库柏维景国际控股公司 用于改善老花者视力的多焦点隐形眼镜以及相关方法和用途
TWI588560B (zh) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
US9827250B2 (en) 2012-07-31 2017-11-28 Johnson & Johnson Vision Care, Inc. Lens incorporating myopia control optics and muscarinic agents
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
TWI600418B (zh) 2012-10-17 2017-10-01 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
TWI507763B (zh) * 2012-11-22 2015-11-11 Control the growth of the optical axis of the lens
US9016859B2 (en) * 2013-03-14 2015-04-28 Johnson & Johnson Vision Care, Inc. Presbyopia lens with pupil size correction based on level of refractive error
ES2556263B1 (es) * 2014-07-09 2016-11-03 Joseba GORROTXATEGI SALABERRIA Procedimiento, sistema, sistema informático y producto de programa informático para diseñar al menos una lente oftálmica progresiva, y lente oftálmica progresiva
US10061143B2 (en) * 2014-08-29 2018-08-28 Johnson & Johnson Vision Care, Inc. Multifocal lens design for preventing and/or slowing myopia progression
WO2016040331A1 (en) * 2014-09-09 2016-03-17 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
WO2017156077A1 (en) 2016-03-09 2017-09-14 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
US9977257B2 (en) * 2016-03-22 2018-05-22 Johnson & Johnson Vision Care, Inc. Multifocal lens design and method for preventing and/or slowing myopia progression
KR102560250B1 (ko) 2018-08-17 2023-07-27 스타 서지컬 컴퍼니 나노 구배의 굴절률을 나타내는 중합체 조성물
SG11202104593TA (en) * 2018-12-12 2021-06-29 Essilor Int Method and apparatus for evaluating efficacy of ophthalmic lens in controlling sightedness impairment
TWI741902B (zh) * 2020-12-07 2021-10-01 春秋光學股份有限公司 用於減緩或預防近視進展之鏡片
TWI799975B (zh) * 2021-08-31 2023-04-21 永勝光學股份有限公司 多焦點眼用鏡片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806694A2 (en) * 1996-05-09 1997-11-12 JOHNSON & JOHNSON VISION PRODUCTS, INC. Neural network analysis for multifocal contact lens design
RU2186417C2 (ru) * 2000-02-22 2002-07-27 Институт автоматики и электрометрии СО РАН Дифракционная интраокулярная линза
EP1754992A1 (en) * 2000-05-03 2007-02-21 Advanced Medical Optics, Inc. Binocular lens systems

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314960A (en) 1990-04-10 1994-05-24 Permeable Technologies, Inc. Silicone-containing polymers, oxygen permeable hydrophilic contact lenses and methods for making these lenses and treating patients with visual impairment
US5057578A (en) 1990-04-10 1991-10-15 E. I. Du Pont De Nemours And Company Silicone-containing block copolymers and macromonomers
US5371147A (en) 1990-10-11 1994-12-06 Permeable Technologies, Inc. Silicone-containing acrylic star polymers, block copolymers and macromonomers
US5822091A (en) 1993-02-22 1998-10-13 Baker; Kenneth M. Extreme depth-of-field optical lens and holographic projector system for its production
US5540410A (en) 1994-06-10 1996-07-30 Johnson & Johnson Vision Prod Mold halves and molding assembly for making contact lenses
US5835192A (en) 1995-12-21 1998-11-10 Johnson & Johnson Vision Products, Inc. Contact lenses and method of fitting contact lenses
US6089711A (en) 1997-11-05 2000-07-18 Blankenbecler; Richard Radial gradient contact lenses
US6554859B1 (en) 2000-05-03 2003-04-29 Advanced Medical Optics, Inc. Accommodating, reduced ADD power multifocal intraocular lenses
ATE334623T1 (de) * 2000-10-10 2006-08-15 Univ Rochester Bestimmung der okularen refraktion mittels wellenfrontaberrationsdaten
US6554425B1 (en) * 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
CA2445706C (en) * 2001-04-26 2007-09-25 Hoya Corporation Spectacle lens designing method and spectacle lens
JP2002350785A (ja) 2001-05-28 2002-12-04 Menicon Co Ltd 眼用レンズの設計方法
US6846892B2 (en) 2002-03-11 2005-01-25 Johnson & Johnson Vision Care, Inc. Low polydispersity poly-HEMA compositions
JP4861009B2 (ja) 2002-12-06 2012-01-25 ヴィズイクス・インコーポレーテッド 患者のデータを使用した老眼矯正
US20050041203A1 (en) 2003-08-20 2005-02-24 Lindacher Joseph Michael Ophthalmic lens with optimal power profile
CN101297230B (zh) 2005-10-28 2010-05-19 庄臣及庄臣视力保护公司 结合有高阶像差校正的用于校正老视的眼镜片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806694A2 (en) * 1996-05-09 1997-11-12 JOHNSON & JOHNSON VISION PRODUCTS, INC. Neural network analysis for multifocal contact lens design
RU2186417C2 (ru) * 2000-02-22 2002-07-27 Институт автоматики и электрометрии СО РАН Дифракционная интраокулярная линза
EP1754992A1 (en) * 2000-05-03 2007-02-21 Advanced Medical Optics, Inc. Binocular lens systems

Also Published As

Publication number Publication date
KR101482539B1 (ko) 2015-01-14
CA2697751C (en) 2016-03-22
CN101796451A (zh) 2010-08-04
HK1142960A1 (en) 2010-12-17
AR068125A1 (es) 2009-11-04
CN101796451B (zh) 2012-02-29
BRPI0816077A2 (pt) 2015-02-24
AU2008296504A1 (en) 2009-03-12
EP2717084A1 (en) 2014-04-09
JP5405470B2 (ja) 2014-02-05
TWI444699B (zh) 2014-07-11
AU2008296504B2 (en) 2013-05-16
BRPI0816077B1 (pt) 2019-04-24
US7625086B2 (en) 2009-12-01
WO2009032626A1 (en) 2009-03-12
ES2524466T3 (es) 2014-12-09
HK1142138A1 (en) 2010-11-26
KR20100061509A (ko) 2010-06-07
EP2183640A1 (en) 2010-05-12
RU2010111776A (ru) 2011-10-10
TW200925698A (en) 2009-06-16
CA2697751A1 (en) 2009-03-12
EP2183640B1 (en) 2014-09-24
DK2183640T3 (da) 2014-11-03
US20090059167A1 (en) 2009-03-05
JP2010538325A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
RU2464604C2 (ru) Способ формирования мультифокальных контактных линз
JP5214592B2 (ja) 瞳孔アポダイゼイションを用いた多焦点コンタクトレンズ設計
US10437078B2 (en) Lens having an optical add power progression
RU2559518C2 (ru) Линзы для коррекции пресбиопии и способы конструирования линз
RU2568961C2 (ru) Линза для пресбиопии с коррекцией размера зрачка в зависимости от уровня рефракционной аномалии
RU2575951C2 (ru) Система линз для пресбиопии
RU2429511C2 (ru) Способ конструирования мультифокальных контактных линз
AU2003290532A1 (en) Pupil regulated multifocal contact lenses
JP2006516760A (ja) 多焦点コンタクトレンズペア
CA2733007C (en) Fitting method for multifocal lenses