RU2462836C2 - Способ подтверждения местоположения абонента в системах обслуживания в закрытых конструкциях - Google Patents

Способ подтверждения местоположения абонента в системах обслуживания в закрытых конструкциях Download PDF

Info

Publication number
RU2462836C2
RU2462836C2 RU2010135625/07A RU2010135625A RU2462836C2 RU 2462836 C2 RU2462836 C2 RU 2462836C2 RU 2010135625/07 A RU2010135625/07 A RU 2010135625/07A RU 2010135625 A RU2010135625 A RU 2010135625A RU 2462836 C2 RU2462836 C2 RU 2462836C2
Authority
RU
Russia
Prior art keywords
mobile station
transceivers
location
delay
data packets
Prior art date
Application number
RU2010135625/07A
Other languages
English (en)
Other versions
RU2010135625A (ru
Inventor
Чжэнсян МА (US)
Чжэнсян МА
Теодор САЙЗЕР (US)
Теодор САЙЗЕР
Original Assignee
Алкатель-Лусент Ю-Эс-Эй Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алкатель-Лусент Ю-Эс-Эй Инк. filed Critical Алкатель-Лусент Ю-Эс-Эй Инк.
Publication of RU2010135625A publication Critical patent/RU2010135625A/ru
Application granted granted Critical
Publication of RU2462836C2 publication Critical patent/RU2462836C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области радиотехники, а именно к определению местоположения, и может быть использовано в системах обслуживания абонентов для определения местоположения мобильной станции. Технический результат заключается в обеспечении возможности определения местоположения мобильной станции в условиях закрытой конструкции. Для этого способ определения местоположения мобильной станции включает стадию, на которой создают множество пакетов данных, каждый из которых содержит множество кодированных сигналов сотовой связи; множество пакетов данных передают по сети передачи данных, которая соответствует по меньшей мере одному сектору, обслуживаемому множеством приемопередатчиков, при этом по меньшей мере один из множества приемопередатчиков осуществляет широковещательную передачу пакетов данных. Местоположение мобильной станции определяют на основании принимаемых многолучевых сигналов, соответствующих ответу мобильной станции на широковещательную передачу по меньшей мере одного из множества пакетов данных. 2 н. и 8 з.п. ф-лы, 7 ил.

Description

В настоящее время существует несколько способов и устройств, обеспечивающих слежение за мобильными устройствами. Слежение позволяет в реальном времени определять местоположение устройства, находящегося в условиях открытого пространства. Например, местоположение устройства и абонента может определяться с помощью устройства глобальной системы определения местоположения с внешней поддержкой (AGPS, от английского - assisted global positioning system) или устройства, использующего метод триангуляции/трилатерации. Устройством может являться автономная система GPS, или система слежения может быть встроена в мобильную станцию, персональный цифровой ассистент (PDA), портативный компьютер и т.д. Для удобства в тексте описания предполагается, что "устройство" представляет собой мобильную станцию, но не ограничено ей.
В условия закрытой конструкции, такого как большое офисное здание, определение местоположения мобильной станции является более затруднительным, поскольку мобильной станцией могут не приниматься сигналы определения местоположения, например сигналы GPS. Кроме того, если обслуживание сотовой связью внутри здания обеспечивается находящимися на открытом пространстве базовыми станциями, из-за сложных условий распространения сигналов внутри здания снижается точность метода триангуляции/трилатерации. Помимо этого, если обслуживание сотовой связью внутри здания обеспечивается распределенной системой антенн (РСА или DAS, от английского - distributed antenna system), задержка в РСА может искажать результаты метода триангуляции/трилатерации и вызывать существенные погрешности.
В настоящем изобретении предложен способ определения местоположения мобильной станции, включающий создание множества пакетов данных, каждый из которых содержит множество кодированных сигналов сотовой связи;
передачу множества пакетов данных по сети передачи данных, связанной с по меньшей мере одним сектором, обслуживаемом множеством приемопередатчиков; ввод, посредством каждого из множества приемопередатчиков, уникальной задержки к показаниям буфера, связанного с каждым из приемопередатчиков, обеспечивающей задержку передач на подтверждение приема, связанных с каждым из приемопередатчиков;
осуществление широковещательной беспроводной передачи пакетов данных посредством по меньшей мере одного из множества приемопередатчиков; и определение местоположения мобильной станции на основании принимаемых многолучевых сигналов, соответствующих ответам мобильной станции на широковещательную передачу по меньшей мере одного из множества пакетов данных и характерным признакам задержки мобильной станции, связанных с уникальной задержкой.
В частных вариантах осуществления способа местоположение мобильной станции определяется путем идентификации одного преобладающего сигнала из принимаемых многолучевых сигналов.
Каждый приемопередатчик вводит уникальную задержку относительно передачи по нисходящему каналу, адресованной мобильной станции, или передачи по восходящему каналу от мобильной станции, и определяют, что мобильной станцией, расположенной ближе всего к приемопередатчику, является мобильная станция, имеющая задержку, соответствующую одному преобладающему сигналу из принимаемых многолучевых сигналов. И каждый приемопередатчик осуществляет уникальную задержку при широковещательной передаче множества пакетов данных относительно друг друга. Или каждый приемопередатчик осуществляет уникальную задержку при формировании ответа для передачи от мобильной станции по восходящему каналу. Может также осуществляться дополнительное уточнение установленного местоположения мобильной станции на основании мощности принимаемых многолучевых сигналов.
В настоящем изобретении также предлагается способ определения местоположения мобильной станции, включающий создание множества пакетов данных, каждый из которых содержит множество кодированных сигналов сотовой связи; передачу множества пакетов данных по сети передачи данных, связанной с по меньшей мере одним сектором, обслуживаемым множеством приемопередатчиков, ввод, посредством каждого из множества приемопередатчиков, уникальной задержки к показаниям буфера, связанного с каждым из приемопередатчиков, обеспечивающей задержку передач на подтверждение приема, связанных с каждым из приемопередатчиков;
осуществление широковещательной беспроводной передачи множества пакетов данных посредством по меньшей мере одного из множества приемопередатчиков; осуществление широковещательной передачи "маячных" пилот-сигналов (также называемых "сигнал-маяк" или "beacon-сигнал") от каждого из множества приемопередатчиков, так что по меньшей мере два из множества приемопередатчиков передают различные маячные пилот-сигналы; и определение местоположения мобильной станции на основании маячных пилот-сигналов, о приёме которых сообщает мобильная станция, и характерным признакам задержки мобильной станции, связанных с уникальной задержкой.
Различные маячные пилот-сигналы могут иметь различные сдвиги псевдошума или различные коды скремблирования. В частности, приемопередатчики из множества приемопередатчиков, осуществляющих широковещательную передачу одинаковых маячных пилот-сигналов, передают их с различными фазами. Могут также дополнительно приниматься указания о принимаемой мощности маячных пилот-сигналов, принимаемых мобильной станцией, и осуществляться определение местоположения мобильной станции на основании указаний о принимаемой мощности сигналов.
Настоящее изобретение будет более полно понятно из следующего далее его подробного описания и сопровождающих его чертежей, приведенных лишь в порядке иллюстрации и, следовательно, не ограничивающих настоящее изобретение, на которых представлено:
на фиг.1 - известная из уровня техники распределенная система антенн (РСА),
на фиг.2 - часть системы беспроводной связи согласно одному из вариантов осуществления настоящего изoбpeтeния,
на фиг.3 - профили распространения восходящих многолучевых сигналов согласно одному из примеров осуществления настоящего изобретения,
на фиг.4 - блок-схема способа определения местоположения мобильной станции согласно одному из примеров осуществления настоящего изобретения,
на фиг.5 - графическое представление смещений псевдошума и фаз маячных пилот-сигналов, принимаемых в одном из примеров РСА, в которую входит восемь выносных радиомодулей,
на фиг.6 - блок-схема способа определения местоположения мобильной станции согласно другому примеру осуществления настоящего изобретения,
на фиг.7 - часть системы беспроводной связи согласно другому варианту осуществления настоящего изобретения.
Используемая терминология служит лишь для описания частных вариантов осуществления и не ограничивает примеры осуществления изобретения. Подразумевается, что используемые формы единственного числа также включают формы множественного числа, если только из контекста ясно не следует иное. Также подразумевается, что используемые термины "содержит" и(или) "содержащий" означают присутствие указанных признаков, чисел, шагов, операций, элементов и(или) компонентов, но не исключают присутствие или добавление одного или нескольких других признаков, чисел, шагов, операций, элементов, компонентов и(или) их групп.
Примеры осуществления могут быть описаны со ссылкой на виды, которые могут представлять собой схематические иллюстрации идеализированных вариантов осуществления (и промежуточных структур). Таким образом, примеры осуществления не следует считать ограниченными конкретным местоположением и компоновками, которые проиллюстрированы в описании, и в них входят альтернативные варианты.
Если только не указано иное, все термины (включая технические и научные термины), используемые в описании, употребляются в значении, которое принято среди специалистов в данной области техники. Также подразумевается, что термины, как, например, термины, содержащиеся в общеупотребительных словарях, следует интерпретировать как имеющие значение, соответствующее их значению в контексте соответствующей области техники, а не в идеализированном или чрезмерно формальном смысле, если только это в прямой форме не оговорено в описании.
Используемый термин "мобильное устройство" может считаться синонимичным иногда используемым далее терминам мобильная установка, мобильная станция, мобильный пользователь, терминал доступа (ТД) абонентское оборудование (АО), абонент, пользователь, удаленная станция, приемник и т.д., и может означать удаленного пользователя радиоресурсов в системе беспроводной связи. Термин "базовая станция" может считаться синонимичным и(или) может именоваться базовой приемопередающей станцией (БППС), базовой станцией, NodeB и т.д. и может означать оборудование, которое обеспечивает возможность передачи данных и(или) речи между сетью одним или несколькими пользователями.
Как хорошо известно из уровня техники, как мобильное устройство, так и базовая станция могут обладать способностью осуществлять передачу и прием. Передача, осуществляемая от базовой станции мобильному устройству, именуется связью по нисходящему или прямому каналу. Передача, осуществляемая от мобильного устройства базовой станции, именуется связью по восходящему или обратному каналу.
Распределенная система антенн
Обслуживание беспроводной связью в закрытом помещении может обеспечиваться специализированной базовой приемопередающей станцией (БППС или BTS, от английского - Base Transceiver Station), также известной как сектор базовой станции, посредством распределенной системы антенн (РСА). БППС может находиться в закрытом помещении или вне закрытого помещения. Соответственно, если мобильная станция находится в закрытом помещении и не принимает соответствующие сигналы GPS или сопутствующие сигналы, единственной доступной информацией о местоположении является идентификатор сектора БППС. Если БППС обслуживает все помещение, местоположение мобильной станции ограничено помещением.
На фиг.1 проиллюстрирована известная из уровня техники распределенная система антенн (РСА). В РСА используется базовая станция и ретранслятор или усилитель мощности, который обычно расположен в помещении и ретранслирует внутри (на всем протяжении) помещения сигнал, принимаемый от внешней базовой станции.
Когда в обычной РСА, проиллюстрированной на фиг. 1, антенна 101 системы связи передает сигнал 103, его принимает антенна 113 за пределами помещения. Затем посредством соединения 104, которым может являться коаксиальный кабель, сигнал 103 передают компоненту 105, которым может являться радиорелейный ретранслятор. Ретранслятор 105 пересылает сигнал 103 усилителям 106а, 107а, 108а и 109а. Эти усилители 106а, 107а, 108а и 109а усиливают сигнал 103, который затем передают посредством соответствующих антенн 106, 107, 108 и 109. Мобильная станция 102 принимает сигнал 103, переданный антенной 113 посредством антенны 106. Сигнал 103 посредством проводного соединения 104 передают ретранслятору 105 и ретранслируют посредством антенн 106-109.
На фиг.2 проиллюстрирована часть системы беспроводной связи согласно одному из вариантов осуществления настоящего изобретения. В этот вариант осуществления входит другой вариант осуществления распределенной системы антенн (РСА). Показано, что РСА 190 имеет интерфейс 200 базовой станции (ИБС или BSI, от английского - base station interface). ИБС 200 может заменять радиочастотный (РЧ) генератор в базовой приемопередающей станции (БППС), такой как используется в системе сотовой связи (например, сети многостанционного доступа с кодовым разделением каналов (CDMA)), или ИБС 200 может представлять собой внешнее по отношению к БППС 180 устройство, как показано на фиг.2. В случае нисходящих сигналов, когда ИБС 200 принимает кодированные модулирующие сигналы от процессора, такого как модем CDMA (CMU) в БППС 180, ИБС 200 накапливает в буфере модулирующие сигналы и периодически создает пакеты данных, каждый из которых содержит множество кодированных модулирующих сигналов. Затем ИБС 200 пересылает пакеты данных посредством высокоскоростной сети 210 передачи данных, такой как гигабитная сеть Ethernet (GEN), одному или нескольким коммутаторам 220, например гигабитному коммутатору. Коммутаторы 220 могут считаться частью GEN. Эти коммутаторы 220 копируют и маршрутизируют пакеты данных одному или нескольким конкретным портам, соответствующим сектору сотовой связи, который в свою очередь соответствует одному или нескольким приемопередающим радиоустройствам, известным как выносные радиомодули (ВРМ или RRH, от английского - remote radio head) 230-230n. Мобильная станция 102 принимает сигналы, передаваемые одним из ВРМ 230-230n по нисходящему каналу. Обычно ВРМ имеет радиус действия около 30-40 метров.
Например, в случае передаваемых по восходящему каналу сигналов ВРМ 230 принимает эти сигналы от мобильной станции 102. ВРМ 230 преобразует сигналы в цифровую форму, генерирует пакеты кодированных сигналов и пересылает их коммутатору 220. Коммутатор 220 по сети 210 передает пакеты данных ИБС 200. Далее пакеты данных передают БППС 180 для передачи предполагаемому получателю по традиционной сети беспроводной связи. Как подробнее описано далее, БППС 180 передает сообщение о принимаемых сигналах определяющему местоположение объекту 240, который определяет местоположение мобильной станции 102 согласно одному или нескольким вариантам осуществления настоящего изобретения, как подробно описано далее.
Обслуживание беспроводной связью в закрытом помещении может обеспечиваться ВРМ 230-230n, которые расположены по всему помещению. ВРМ 230-230n синхронизированы с ИБС 200, чтобы обеспечивать точную частоту и согласование по времени передачи радиосигнала. ВРМ 230-230n также могут снабжаться энергией по кабелю Ethernet, например кабелю питания через Ethernet (РОЕ), что устраняет необходимость в линии переменного тока и значительно снижает расходы на установку.
Сигнал одной БППС 180 может одновременно передаваться ВРМ 230-230n. Поскольку более экономично поддерживать меньшее число несущих сотовой связи на ВРМ, при необходимости увеличить пропускную способность сверх пропускной способности отдельной БППС, ВРМ могут быть объединены во множество групп, каждая из которых соответствует определенному сектору. В данном случае термин "сектор" может означать все здание, несколько этажей здания, отдельный этаж здания или конкретное местоположение на этаже. Например, многоэтажное офисное здание может быть поделено на два или более секторов, при этом каждому сектору соответствует определенная группа ВРМ, и он обслуживает конкретную зону здания. Как показано на фиг.2, ВРМ 230n и 230n-1 могут входить в группу сектора 1, а ВРМ 230 и 2301 могут входить в группу сектора 2. Сектор 1 может обслуживать этажи с 1 по 5, а сектор 2 может обслуживать этажи с 6 по 10.
Изначально общее местоположение мобильной станции 102 может быть определено с помощью идентификатора сектора БППС. Однако идентификатор сектора БППС не способен определять местоположение мобильной станции 102 на конкретном этаже или точное местоположение внутри здания.
Далее со ссылкой на фиг.2-4 будет описан один из примеров осуществления настоящего изобретения. ВРМ, используемый в РСА, имеет буфер дрожаний. В буфере дрожаний временно хранят принимаемые пакеты, чтобы свести к минимуму колебания времени задержки. Показания буфера дрожаний регулируют, чтобы точно определять задержку сигнала в нисходящем канале. Процесс пакетирования данных для передачи по восходящему каналу связан с завершением передачи данных по нисходящему каналу, и в нем повторно используется временная отметка пакетов, переданных по нисходящему каналу. При передаче пакетов по восходящему каналу потоки пакетов из ВРМ, относящихся к одному сектору БППС, объединяют в единый поток пакетов. При объединении определяют взвешенную сумму выборок данных в потоках пакетов. В процессе объединения объединяют пакеты из ВРМ с одинаковой временной отметкой. Тем самым гарантируется, что сигналы, передаваемые по восходящему каналу из ВРМ, будут иметь одинаковую задержку передачи вследствие процесса объединения, даже несмотря на то, что объединение может осуществляться на множестве стадий, и каждый отдельный поток пакетов может подвергаться объединению на различном числе стадий.
Путем регулирования показаний буфера дрожаний, что влияет на задержку в нисходящем канале, или путем регулирования процесса пакетирования данных для передачи по восходящему каналу, что влияет на задержку в восходящем канале, или путем их сочетания каждому из ВРМ может быть присвоено уникальное время задержки на подтверждение приема, т.е. время искусственной задержки, необходимое сигналу из RHH для достижения мобильной станции и прохождения в обратном направлении. Для некоторых радиоинтерфейсов, таких как CDMA/UMTS, может быть желательным поддерживать одинаковую задержку в нисходящем канале для всех ВРМ с тем, чтобы сохранялась ортогональность нисходящих сигналов, принимаемых мобильными станциями, даже при поступлении нисходящих сигналов от множества ВРМ.
Обычно ВРМ передает кадр данных мобильной станции по восходящему каналу, например, каждые 10 миллисекунд (мс). Мобильная станция также каждые 10 мс передает кадр данных по нисходящему каналу. Если каждый из ВРМ прибавляет уникальное время задержки к сигналу сотовой связи, БППС 180 будет принимать от мобильной станции 102 многолучевые сигналы, соответствующие различным ВРМ.
БППС 180 сообщает характерный признак или профиль этого уникального времени задержки определяющему местоположение объекту 240. Исходя из характерного признака или профиля уникального времени задержки, определяющий местоположение объект 240 устанавливает, к какому из ВРМ ближе всего находится мобильная станция 120. В частности, как только конкретному ВРМ присвоено уникальное время задержки, может быть установлено, что мобильная станция 102 находится в зоне обслуживания конкретного ВРМ, которому соответствует время задержки преобладающего многолучевого сигнала. Поскольку местоположение ВРМ известно, таким способом преимущественно определяют местоположение мобильной станции 120.
Как показано на фиг.3, профиль восходящих многолучевых сигналов, принимаемых БППС 180 от ВРМ 2301-2308, различается для соответствующих мобильных станций 102А и 102В в зависимости от местоположения мобильной станции 102А или 102В.
На фиг.3 показаны восемь (8) ВРМ 2301-2308. Каждый из восьми (8) ВРМ 2301-2308 может образовывать отдельные сектора, а восемь (8) ВРМ 2301-2308 в целом могут образовывать единый сектор, или восемь (8) ВРМ 23011-2308 могут образовывать от 1 до 8 секторов. Каждому из ВРМ 2301-2308 может быть присвоено уникальное время задержки τ18 соответственно.
Задержки τ18, показанные на фиг.3, являются по большей части искусственными задержками, созданными с использованием одного или нескольких описанных выше механизмов. Фактические задержки при распространении сигнала от мобильной станции 102А, 102В до одного из ВРМ 2301-2308 могут быть существенно меньшими вследствие малого радиуса действия ВРМ 2301-2308. Задержка на преобладающем пути распространения может использоваться для идентификации ВРМ, которая обеспечивает преобладающее обслуживание мобильной станции 102А, 102В, и, следовательно, для определения местоположения мобильной станции. Различия в задержке между ВРМ 2301-2308 могут быть определены на основании возможностей стандарта радиоинтерфейса устранять задержку при многолучевом распространении сигналов и точности синхронизации мобильной станции. Например, в системе CDMA БППС 180 обладает способностью устранять задержки при многолучевом распространении сигналов, которые отстоят друг от друга на 1 микрокадр или 0,8 µм. Как показано на фиг.3, мобильная станция 102А имеет преобладающий путь распространения (например, с наиболее высокой мощностью), которому соответствует задержка τ1, и, соответственно, БППС 180 сообщит определяющему местоположение объекту 240, что τ1 является преобладающим путем распространения. В качестве альтернативы БППС 180 может сообщать о принимаемой мощности при каждой задержке τ18, а определяющий местоположение объект 240 определяет, какой задержке соответствует преобладающая принимаемая мощность. В любом случае определяющий местоположение объект 240 ведет данные о том, какому ВРМ соответствует каждая задержка, и идентифицирует мобильную станцию 102А или 102В как расположенную ближе всего к ВРМ, которому соответствует преобладающий путь многолучевого распространения.
Если весь профиль путей многолучевого распространения доступен для БППС 180 и сообщен определяющему местоположение объекту 240, может быть дополнительно уточнено местоположение мобильной станции 102А, 102В, определенное определяющим местоположение объектом 240. Если временное разрешение профиля путей многолучевого распространения достаточно для предоставления различным ВРМ данных о задержке при распространении восходящего сигнала, определяющий местоположение объект 240 может дополнительно использовать метод трилатерации, чтобы с более высокой точностью определить местоположение мобильной станции.
На фиг. 4 проиллюстрирована блок-схема способа определения местоположения мобильной станции согласно одному из примеров осуществления настоящего изобретения. Показано, что на шаге S100 ИБС 200 принимает модулирующие сигналы от БППС 180, помещает модулирующие сигналы в буфер и создает пакеты данных. Пакеты данных по сети 210 Ethernet передают коммутатору 220. На шаге S110 коммутатор 220 маршрутизирует пакеты данных множеству ВРМ 230-230n. На шаге S120 каждый из множества ВРМ 230-230n осуществляет широковещательную передачу пакетов данных с уникальной задержкой относительно друг друга. Мобильная станция 102 принимает переданный пакет данных по меньшей мере от одного из множества ВРМ 230-230n и передает ответ. На шаге S130 ВРМ принимают ответ и пересылают ответы БППС 180. На основании принимаемых ответов БППС 180 определяет профиль путей многолучевого распространения для мобильной станции 120. В частности, на шаге S140 БППС 180 генерирует сообщение о принимаемой мощности при каждой задержке, соответствующей ВРМ, и передает сообщение определяющему местоположение объекту 240. В качестве альтернативы БППС 180 сообщает только о задержке преобладающего многолучевого сигнала, а именно сообщает, при какой задержке, соответствующей ВРМ, принимаемая мощность является максимальной. На шаге S150 определяющий местоположение объект 240 идентифицирует ВРМ с соответствующей задержкой, при которой принимаемая мощность является максимальной, как ВРМ, ближе всего к которому находится мобильная станция.
Многолучевое распространение
В другом примере осуществления настоящего изобретения для уточнения местоположения мобильной станции внутри помещения может использоваться мощность многолучевых сигналов В условиях закрытого помещения при малом радиусе действия ВРМ происходит значительное затухание мощности сигнала в зависимости от расстояния. Например, если исходить из распространения на открытом пространстве на расстоянии 30 метров, при перемещении мобильной станции 102 на 10 метров (от 25 до 35 м) изменение уровня принимаемой мощности составляет 3 дБ, а при перемещении мобильной станции 102 на 10 метров на расстояния 1000 метров изменение составляет менее 0,1 дБ, что несущественно с точки зрения различимости. При более реалистичных моделях распространения изменение средней мощности сигналов в зависимости от расстояния может быть даже еще более резким. Соответственно, относительную мощность многолучевых сигналов можно преобразовывать в приблизительные относительные расстояния от ВРМ и использовать для более точного определения местоположения мобильной станции.
"Маячные" пилот-сигналы
В другом примере осуществления настоящего изобретения к радиосигналу ВРМ может быть добавлен радиоотпечаток, а мобильная станция 102 может измерять его и сообщать результаты. Результаты измерений, осуществляемых мобильной станцией 102, могут зависеть от радиоинтерфейса. В случае стандартов CDMA/UMTS ВРМ 230-230n могут локально генерировать дополнительные пилот-сигналы малой мощности на той же частоте, что и сигнал несущей частоты, но с отличающимися сдвигами псевдошума (ПШ) (в случае CDMA) или отличающимися кодами скремблирования (в случае UMTS) плюс временная компенсация, и передавать их вместе с сигналом несущей частоты. Сдвиги ПШ или коды скремблирования добавляемых пилот-сигналов могут вноситься в список соседей БППС с тем, чтобы мобильная станция 102 отслеживала добавляемые пилот-сигналы и сообщала о них. Как только мобильная станция 102 устанавливает активное соединение с БППС, мобильная станция 102 сообщает о принимаемых дополнительных пилот-сигналах. Поскольку каждый из ВРМ 230-230n имеет уникальный сдвиг ПШ или код скремблирования, БППС известно, какой из ВРМ 230-230n передает пакет данных. Следовательно, БППС также будет известно, к какому из ВРМ 230-230n ближе всего находится мобильная станция 102.
Во время активного соединения мобильная станция 102 время от времени (например, каждые 5 секунд) или в ответ на триггер события (например, критерий мощности сигнала) передает БППС сообщение с указанием измеренной мощности пилот-сигнала. Сообщение с указанием измеренной мощности пилот-сигнала может содержать фазу сдвига ПШ и величину сдвига ПШ для одного из ВРМ 230-230n. Измеренную фазу и величину сдвига ПШ в ВРМ 230-230n используют для определения местоположения мобильной станции 102 относительно одного из ВРМ 230-230n.
Желательно использовать как можно меньше различных сдвигов ПШ или кодов скремблирования, чтобы свести к минимуму размер списка соседей, который ведет мобильная станция 102. Добавляемые пилот-сигналы также должны поддерживаться на низком уровне, чтобы свести к минимуму помехи сигналу несущей частоты.
На фиг.5 наглядно проиллюстрированы сдвиги ПШ и фазы маячных пилот-сигналов, принимаемых в одном из примеров РСА с восемью ВРМ. Как показано на фиг.5, два (2) сдвига ПШ используются восемью ВРМ 2301-2308, которые обеспечивают обслуживание одного сектора БППС. Следует учесть, что могут использоваться более двух (2) сдвигов ПШ. В частности, ВРМ 2301, 2304, 2305 и 2308 присвоен сдвиг ПШ1, а ВРМ 2302, 2303, 2306 и 2307 присвоен сдвиг ПШ2. Каждому ВРМ из тех, которые используют одинаковый сдвиг ПШ, присваивают отличающуюся задержку по фазе или времени. Например, маячным пилот-сигналам ВРМ 2301, 2304, 2305 и 2308 присваивают соответственно фазы θ1-θ4, а маячным пилот-сигналам ВРМ 2302, 2303, 2306 и 2307 присваивают соответственно фазы θ1-θ4.
Как показано на фиг.3, мобильная станция 102А измеряет ПШ1 и ПШ2 и указывает θ1 и θ2 как их соответствующие фазы. На основании этой информации и относительной величины ПШ1 и ПШ2, которая обозначена кружком вокруг мобильной станции 102А, можно определить, что местоположение мобильной станции 102А находится где-то между ВРМ 2301 и 2302, ближе к ВРМ 2301.
Кроме того, ВРМ 2301-2308 могут передавать маячные пилот-сигналы периодически (в течение 300 мс с интервалом 700 мс), при этом время передачи ВРМ 2301-2308 может быть согласовано, что позволяет идентифицировать один из ВРМ 2301-2308 на основании времени, когда мобильная станция 102 сообщает о результатах измерений пилот-сигнала. И в этом случае для дополнительного уточнения местоположения мобильной станции 102 может использоваться относительная мощность маячных пилот-сигналов, измеренная в различные моменты времени. Тем самым также сводятся к минимуму помехи системе, генерируемые маячными сигналами. Во избежание неоднозначности результатов измерений фаз и для сведения к минимуму числа используемых сдвигов ПШ этот способ может сочетаться по меньшей мере с одним из других способов. Существуют также дополнительные способы конфигурирования добавляемых пилот-сигналов. Например, в системе CDMA может использоваться концепция псевдопилот-сигналов, согласно которой каждый ВРМ передает множество сдвигов ПШ с различными фазами.
На фиг.6 представлена блок-схема способа определения местоположения мобильной станции согласно одному из примеров осуществления настоящего изобретения. Как показано, ИБС 200 принимает модулирующие сигналы БППС 180. На шаге S200 ИБС 200 помещает модулирующие сигналы в буфер и создает пакеты данных. Пакеты данных по сети 210 Ethernet передают коммутатору 220. На шаге S210 коммутатор 220 маршрутизирует пакеты данных множеству ВРМ 230-230n. На шаге S220 каждый из множества ВРМ 230-230n добавляет уникальный маячный пилот-сигнал или множество маячных пилот-сигналов с различными сдвигами псевдошума (ПШ) (в случае CDMA) или различными кодами скремблирования (в случае UMTS) и осуществляет широковещательную передачу пакетов данных. Как только мобильная станция 102 принимает переданный пакет данных от одного из множества ВРМ 230-230n, на шаге S230 мобильная станция 102 периодически или в ответ на триггер события передает сообщение о маячных пилот-сигналах. В сообщении о маячных пилот-сигналах указана принимаемая мощность различных маячных пилот-сигналах (т.е. различные сдвиги ПШ) с различными фазовыми сдвигами. На шаге S240 ВРМ принимают эти сообщения и передают их БППС 180. На шаге S250 БППС 180 определяет местоположение мобильной станции 102 на основании сообщений мобильных станций 102, как это описано со ссылкой на фиг.5. В качестве альтернативы БППС 180 пересылает сообщения определяющему местоположение объекту 240, который определяет местоположение мобильной станции 102, как это описано со ссылкой на фиг.5.
Прослушивание сигналов ВРМ
В другом примере осуществления настоящего изобретения может использоваться показанный на фиг.7 блок 250 (объект) управления местоположением, который принимает пакеты данных по восходящим каналам и затем осуществляет рассчитанное на радиоинтерфейс полное декодирование, чтобы определить мобильные станции 102, активно ведущие передачу по восходящим каналам в пределах радиуса действия конкретного ВРМ 230-230n. На фиг.7 проиллюстрирована часть системы беспроводной связи согласно другому варианту осуществления настоящего изобретения. Поскольку в этот вариант осуществления входит вариант осуществления распределенной системы антенн (РСА), который описан выше со ссылкой на фиг.2, для краткости будут описаны только различия между вариантами осуществления, показанными на фиг.7 и 2.
Рассмотрим запрос данных о местоположении конкретной мобильной станции 102. Сети известен сектор (т.е. БППС), в котором находится мобильная станция 102, но не конкретный ВРМ 230-230n. В одном из примеров осуществления настоящего изобретения в момент запроса местоположения мобильной станции коммутатор 220 дополнительно передает пакеты данных, поступающие по восходящим каналам от конкретного ВРМ, рассчитанному на радиоинтерфейс монитору 250 слежения за местоположением. Рассчитанный на радиоинтерфейс монитор 250 слежения за местоположением способен отслеживать передачу, осуществляемую конкретным ВРМ, и, следовательно, может определять местоположение активных мобильных станций 102 в пределах радиуса действия отслеживаемого ВРМ, например ВРМ 230. После того как это сделано, система может перейти к отслеживанию следующего ВРМ 2301 и так далее, пока за один короткий временной интервал (около 10 секунд для отслеживания всего сектора) не будут отслежены все ВРМ.
Это может осуществляться как непрерывно, так и на основе транзакций с предоставлением данных в псевдореальном времени. Например, в случае приема экстренного вызова службы "911" будут доступны идентификационные данные абонента. Кроме того, сети известен конкретный сектор БППС. Затем идентификационные данные абонента могут использоваться, чтобы установить, какие из нескольких ВРМ, которые в данный момент относятся к конкретной БППС, обслуживают конкретную мобильную станцию 102. В другие моменты времени местоположение мобильной станции 102 может отображаться для всех ВРМ и всех секторов в конкретном здании.
Этот способ без необходимости в каких-либо изменениях может применяться к обслуживающей БППС или сети, поскольку единственной требуемой информацией являются идентификационные данные абонента.
Хотя примеры осуществления настоящего изобретения описаны применительно к определению местоположения мобильной станции в здании, следует учесть, что примеры осуществления настоящего изобретения применимы к определению местоположения мобильной станции в условиях любого закрытого помещения или структуры (природной или искусственной), например подземного сооружения, гаража в подвале здания, туннеля, станции метро и т.д.
Ясно, что в описанные примеры осуществления настоящего изобретения могут быть внесены различные изменения. Такие изменения не следует рассматривать как отступление от идей изобретения, и все они считаются входящими в объем изобретения.

Claims (10)

1. Способ определения местоположения мобильной станции (120), в котором:
создают (S100) множество пакетов данных, каждый из которых содержит множество кодированных сигналов сотовой связи,
передают (S110) множество пакетов данных по сети передачи данных, связанной с по меньшей мере одним сектором, обслуживаемом множеством приемопередатчиков,
вводят (S120), посредством каждого из множества приемопередатчиков, уникальную задержку к показаниям буфера, связанного с каждым из приемопередатчиков, обеспечивающую задержку передач на подтверждение приема, связанных с каждым из приемопередатчиков;
осуществляют широковещательную беспроводную передачу (S120) пакетов данных посредством по меньшей мере одного из множества приемопередатчиков; и
определяют (S130, S140, S150) местоположение мобильной станции на основании принимаемых многолучевых сигналов, соответствующих ответам мобильной станции на широковещательную передачу по меньшей мере одного из множества пакетов данных и характерным признакам задержки мобильной станции, связанных с уникальной задержкой.
2. Способ по п.1, в котором местоположение мобильной станции определяют путем идентификации одного преобладающего сигнала из принимаемых многолучевых сигналов.
3. Способ по п.1, в котором каждый приемопередатчик вводит уникальную задержку относительно передачи по нисходящему каналу, адресованной мобильной станции, или передачи по восходящему каналу от мобильной станции, и определяют, что мобильной станцией, расположенной ближе всего к приемопередатчику, является мобильная станция, имеющая задержку, соответствующую одному преобладающему сигналу из принимаемых многолучевых сигналов.
4. Способ по п.3, в котором каждый приемопередатчик осуществляет уникальную задержку при широковещательной передаче множества пакетов данных относительно друг друга.
5. Способ по п.3, в котором каждый приемопередатчик осуществляет уникальную задержку при формировании ответа для передачи от мобильной станции по восходящему каналу.
6. Способ по п.3, в котором дополнительно уточняют установленное местоположение мобильной станции на основании мощности принимаемых многолучевых сигналов.
7. Способ определения местоположения мобильной станции (120), в котором:
создают (S200) множество пакетов данных, каждый из которых содержит множество кодированных сигналов сотовой связи;
передают (S210) множество пакетов данных по сети передачи данных, связанной с по меньшей мере одним сектором, обслуживаемым множеством приемопередатчиков;
вводят (S120), посредством каждого из множества приемопередатчиков, уникальную задержку к показаниям буфера, связанного с каждым из приемопередатчиков, обеспечивающую задержку передач на подтверждение приема, связанных с каждым из приемопередатчиков;
осуществляют широковещательную беспроводную передачу множества пакетов данных (S220) посредством по меньшей мере одного из множества приемопередатчиков;
осуществляют широковещательную передачу маячных пилот-сигналов (S230) от каждого из множества приемопередатчиков, так что по меньшей мере два из множества приемопередатчиков передают различные маячные пилот-сигналы; и
определяют (S240, S250) местоположение мобильной станции на основании маячных пилот-сигналов, о приёме которых сообщает мобильная станция, и характерным признакам задержки мобильной станции, связанных с уникальной задержкой.
8. Способ по п.7, в котором различные маячные пилот-сигналы имеют различные сдвиги псевдошума или различные коды скремблирования.
9. Способ по п.8, в котором приемопередатчики из множества приемопередатчиков, осуществляющих широковещательную передачу одинаковых маячных пилот-сигналов, передают их с различными фазами.
10. Способ по п.9, в котором дополнительно принимают указания о принимаемой мощности маячных пилот-сигналов, принимаемых мобильной станцией, и определяют местоположение мобильной станции на основании указаний о принимаемой мощности сигналов.
RU2010135625/07A 2008-01-29 2009-01-26 Способ подтверждения местоположения абонента в системах обслуживания в закрытых конструкциях RU2462836C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/010,668 US8666428B2 (en) 2008-01-29 2008-01-29 Method to support user location in in-structure coverage systems
US12/010,668 2008-01-29

Publications (2)

Publication Number Publication Date
RU2010135625A RU2010135625A (ru) 2012-03-10
RU2462836C2 true RU2462836C2 (ru) 2012-09-27

Family

ID=40469966

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010135625/07A RU2462836C2 (ru) 2008-01-29 2009-01-26 Способ подтверждения местоположения абонента в системах обслуживания в закрытых конструкциях

Country Status (12)

Country Link
US (1) US8666428B2 (ru)
EP (1) EP2238467A1 (ru)
JP (4) JP5490022B2 (ru)
KR (1) KR101261394B1 (ru)
CN (1) CN101925832B (ru)
AU (1) AU2009209344B2 (ru)
BR (1) BRPI0907460A2 (ru)
IL (1) IL206883A0 (ru)
MX (1) MX2010007970A (ru)
RU (1) RU2462836C2 (ru)
TW (1) TWI452918B (ru)
WO (1) WO2009097237A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634305C1 (ru) * 2016-06-29 2017-10-25 Акционерное Общество "Конструкторское Бюро "Луч" Способ определения взаимного местоположения подвижных объектов в полносвязной радиосети
RU2695510C2 (ru) * 2014-06-13 2019-07-23 Филипс Лайтинг Холдинг Б.В. Локализация, основанная на сети из беспроводных узлов
RU2718960C2 (ru) * 2016-02-12 2020-04-15 Сони Корпорейшн Устройство и способ
RU2718963C1 (ru) * 2016-11-02 2020-04-15 Телефонактиеболагет Лм Эрикссон (Пабл) Сетевой узел радиодоступа, узел позиционирования и способы, реализуемые указанными устройствами для позиционирования мобильной станции

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
JP4788905B2 (ja) * 2006-05-01 2011-10-05 日本電気株式会社 移動通信システム及び基地局アンテナ近接状況判断方法
US8529313B2 (en) * 2006-06-13 2013-09-10 Boaz Barry Groman Powder blasting device, method and system for dental applications
KR20100014339A (ko) 2006-12-26 2010-02-10 달리 시스템즈 씨오. 엘티디. 다중 채널 광대역 통신 시스템에서의 기저 대역 전치 왜곡 선형화를 위한 방법 및 시스템
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
US20100048163A1 (en) * 2008-08-20 2010-02-25 Parr Mark H Mobile device location system for wireless e911 services
US11294136B2 (en) 2008-08-29 2022-04-05 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US8452148B2 (en) 2008-08-29 2013-05-28 Corning Cable Systems Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
EP2221932B1 (en) 2009-02-24 2011-11-16 CCS Technology Inc. Holding device for a cable or an assembly for use with a cable
US8687604B2 (en) * 2009-03-13 2014-04-01 Qualcomm Incorporated Method and apparatus for improved cell acquisition with reduced frequency error impact
US8699838B2 (en) 2009-05-14 2014-04-15 Ccs Technology, Inc. Fiber optic furcation module
US8538226B2 (en) 2009-05-21 2013-09-17 Corning Cable Systems Llc Fiber optic equipment guides and rails configured with stopping position(s), and related equipment and methods
US9075216B2 (en) 2009-05-21 2015-07-07 Corning Cable Systems Llc Fiber optic housings configured to accommodate fiber optic modules/cassettes and fiber optic panels, and related components and methods
ES2793952T3 (es) 2009-06-19 2020-11-17 Corning Optical Communications LLC Aparato de fibra óptica de ancho de banda y densidad altos
CA2765830A1 (en) 2009-06-19 2010-12-23 Corning Cable Systems Llc High fiber optic cable packing density apparatus
US8712206B2 (en) 2009-06-19 2014-04-29 Corning Cable Systems Llc High-density fiber optic modules and module housings and related equipment
US8326156B2 (en) 2009-07-07 2012-12-04 Fiber-Span, Inc. Cell phone/internet communication system for RF isolated areas
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
ITPD20090293A1 (it) * 2009-10-09 2011-04-10 Synaps Technology S R L Apparato di localizzazione
US8224233B2 (en) 2009-10-09 2012-07-17 At&T Mobility Ii Llc Regulation of service in restricted telecommunication service area
US8625950B2 (en) 2009-12-18 2014-01-07 Corning Cable Systems Llc Rotary locking apparatus for fiber optic equipment trays and related methods
KR101700956B1 (ko) * 2010-01-29 2017-01-31 삼성전자주식회사 통신 시스템에서 단말의 위치를 식별하는 방법 및 장치
US8593828B2 (en) 2010-02-04 2013-11-26 Corning Cable Systems Llc Communications equipment housings, assemblies, and related alignment features and methods
US8913866B2 (en) 2010-03-26 2014-12-16 Corning Cable Systems Llc Movable adapter panel
WO2011123336A1 (en) * 2010-03-31 2011-10-06 Corning Cable Systems Llc Localization services in optical fiber-based distributed communications components and systems, and related methods
KR101565418B1 (ko) * 2010-04-07 2015-11-13 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 방법
AU2011265751B2 (en) 2010-04-16 2015-09-10 Corning Optical Communications LLC Sealing and strain relief device for data cables
EP2381284B1 (en) 2010-04-23 2014-12-31 CCS Technology Inc. Under floor fiber optic distribution device
US8660397B2 (en) 2010-04-30 2014-02-25 Corning Cable Systems Llc Multi-layer module
US9075217B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Apparatuses and related components and methods for expanding capacity of fiber optic housings
US9519118B2 (en) 2010-04-30 2016-12-13 Corning Optical Communications LLC Removable fiber management sections for fiber optic housings, and related components and methods
US9632270B2 (en) 2010-04-30 2017-04-25 Corning Optical Communications LLC Fiber optic housings configured for tool-less assembly, and related components and methods
US9720195B2 (en) 2010-04-30 2017-08-01 Corning Optical Communications LLC Apparatuses and related components and methods for attachment and release of fiber optic housings to and from an equipment rack
US8705926B2 (en) 2010-04-30 2014-04-22 Corning Optical Communications LLC Fiber optic housings having a removable top, and related components and methods
US8879881B2 (en) 2010-04-30 2014-11-04 Corning Cable Systems Llc Rotatable routing guide and assembly
US8774109B2 (en) 2010-06-17 2014-07-08 Kathrein-Werke Kg Mobile communications network with distributed processing resources
US8649354B2 (en) 2010-06-17 2014-02-11 Kathrein-Werke Kg Handover in mobile communications networks
US20110310941A1 (en) * 2010-06-17 2011-12-22 Peter Kenington Remotely located radio transceiver for mobile communications network
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
CN103180844B (zh) 2010-08-17 2017-10-03 大力系统有限公司 用于分布式天线系统的中性主机架构
EP2606571A4 (en) * 2010-08-17 2018-01-03 Dali Systems Co. Ltd. Remotely reconfigurable distributed antenna system and methods
US8718436B2 (en) 2010-08-30 2014-05-06 Corning Cable Systems Llc Methods, apparatuses for providing secure fiber optic connections
CN105208083B (zh) 2010-09-14 2018-09-21 大力系统有限公司 用于发送信号的系统和分布式天线系统
US9279951B2 (en) 2010-10-27 2016-03-08 Corning Cable Systems Llc Fiber optic module for limited space applications having a partially sealed module sub-assembly
US8662760B2 (en) 2010-10-29 2014-03-04 Corning Cable Systems Llc Fiber optic connector employing optical fiber guide member
US9116324B2 (en) 2010-10-29 2015-08-25 Corning Cable Systems Llc Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules
AU2011336747A1 (en) 2010-11-30 2013-06-20 Corning Cable Systems Llc Fiber device holder and strain relief device
US20120189074A1 (en) * 2011-01-21 2012-07-26 Cisco Technology, Inc. Diversity for Digital Distributed Antenna Systems
WO2012106518A2 (en) 2011-02-02 2012-08-09 Corning Cable Systems Llc Optical backplane extension modules, and related assemblies suitable for establishing optical connections to information processing modules disposed in equipment racks
US9258718B2 (en) * 2011-02-22 2016-02-09 Qualcomm Incorporated Positioning location for remote radio heads (RRH) with same physical cell identity (PCI)
US8909295B2 (en) * 2011-02-25 2014-12-09 Fujitsu Limited Transceiver set selection and communication scheme for a distributed antenna system
WO2012148938A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods
US9008485B2 (en) 2011-05-09 2015-04-14 Corning Cable Systems Llc Attachment mechanisms employed to attach a rear housing section to a fiber optic housing, and related assemblies and methods
CN103649805B (zh) 2011-06-30 2017-03-15 康宁光电通信有限责任公司 使用非u宽度大小的外壳的光纤设备总成以及相关方法
US8953924B2 (en) 2011-09-02 2015-02-10 Corning Cable Systems Llc Removable strain relief brackets for securing fiber optic cables and/or optical fibers to fiber optic equipment, and related assemblies and methods
CA2790465A1 (en) * 2011-10-03 2013-04-03 Cellular Specialties, Inc. Pilot beacon system for indoor positioning
US9312941B2 (en) 2011-10-14 2016-04-12 Qualcomm Incorporated Base stations and methods for facilitating dynamic simulcasting and de-simulcasting in a distributed antenna system
US8634323B2 (en) 2011-10-14 2014-01-21 Qualcomm Incorporated Apparatuses and methods for facilitating simulcasting and de-simulcasting with a plurality of base stations
US9276685B2 (en) * 2011-10-14 2016-03-01 Qualcomm Incorporated Distributed antenna systems and methods of wireless communications for facilitating simulcasting and de-simulcasting of downlink transmissions
US8688131B2 (en) 2011-10-14 2014-04-01 Qualcomm Incorporated Apparatus and methods for facilitating simulcasting and de-simulcasting in a distributed antenna system
US9038832B2 (en) 2011-11-30 2015-05-26 Corning Cable Systems Llc Adapter panel support assembly
CN102740350B (zh) * 2011-12-28 2015-11-25 华为技术有限公司 一种室内定位方法、设备及系统
WO2013116229A1 (en) * 2012-01-30 2013-08-08 Dali Systems Co. Ltd. Frequency translation in a virtualized distributed antenna system
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US20130294418A1 (en) * 2012-05-04 2013-11-07 Nokia Siemens Networks Oy Switching Between Remote Radio Heads
CN102711240B (zh) * 2012-05-18 2015-11-25 华为技术有限公司 室内定位方法、数据采集方法及系统
WO2013181247A1 (en) 2012-05-29 2013-12-05 Corning Cable Systems Llc Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
WO2014005108A1 (en) * 2012-06-29 2014-01-03 Airsage, Inc. Mobile device location estimation using data of a wireless network
US9250409B2 (en) 2012-07-02 2016-02-02 Corning Cable Systems Llc Fiber-optic-module trays and drawers for fiber-optic equipment
KR101222617B1 (ko) 2012-09-28 2013-01-16 주식회사 엘지유플러스 무선 통신 시스템에서 벤더 식별자를 이용한 적응적 위치측정 방법 및 이를 위한 시스템
WO2014056183A1 (en) * 2012-10-12 2014-04-17 Intel Corporation Location estimation based on adjusted distance values for a wireless device
ES2551077T3 (es) 2012-10-26 2015-11-16 Ccs Technology, Inc. Unidad de gestión de fibra óptica y dispositivo de distribución de fibra óptica
KR101502139B1 (ko) * 2012-12-11 2015-03-12 주식회사 케이티 인빌딩의 유무선 통합 장치, 그리고 이의 자원 할당 방법
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US8937861B1 (en) * 2013-01-23 2015-01-20 Sprint Communications Company L.P. Adding different channel pseudo-noise codes of different carriers for a wireless communication device
US8985862B2 (en) 2013-02-28 2015-03-24 Corning Cable Systems Llc High-density multi-fiber adapter housings
US9247519B2 (en) * 2013-04-26 2016-01-26 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for obtaining information of user equipment
EP2844027A1 (en) * 2013-08-30 2015-03-04 Alcatel Lucent Interconnecting a radio device with a base station
KR102116539B1 (ko) * 2013-09-06 2020-05-29 주식회사 케이엠더블유 원격 무선 장비
WO2016048370A1 (en) * 2014-09-26 2016-03-31 Adc Telecommunications, Inc. Systems and methods for location determination
US9077321B2 (en) 2013-10-23 2015-07-07 Corning Optical Communications Wireless Ltd. Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (DC) offset variation, and related devices, systems, and methods
US9374799B2 (en) * 2013-12-23 2016-06-21 Cellco Partnership Mobile device locating using long term evolution signals
US9504003B2 (en) * 2014-06-18 2016-11-22 Broadcom Corporation Arrival-delta position determination
CN106576391B (zh) * 2014-06-23 2021-02-02 意大利电信股份公司 集中式无线电接入网络中的前传载荷动态减少
US9351172B2 (en) * 2014-07-31 2016-05-24 Viavi Solutions Uk Limited Techniques for estimating a coverage area for a distributed antenna system (DAS) or a repeater system
CN105635980A (zh) * 2014-10-31 2016-06-01 华为技术有限公司 一种上行信号处理方法、设备和系统
CN105657820B (zh) * 2014-11-14 2019-01-29 上海诺基亚贝尔股份有限公司 一种用于定位室内的目标用户设备的方法及装置
EP3284227B1 (en) 2015-04-16 2023-04-05 Andrew Wireless Systems GmbH Uplink signal combiners for mobile radio signal distribution systems using ethernet data networks
WO2016192764A1 (en) * 2015-05-29 2016-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Communication between base stations in a radio access network
CN107852691B (zh) * 2015-06-28 2021-02-19 瑞典爱立信有限公司 使用远程无线电头端来确定无线装置的位置
EP3345439A1 (en) 2015-09-04 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Timing based ue positioning in shared cell environment
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
CN108363054B (zh) * 2018-02-07 2021-07-02 电子科技大学 用于单频网络和多路径传播的被动雷达多目标跟踪方法
CN109951867B (zh) * 2019-03-29 2020-09-08 腾讯科技(深圳)有限公司 一种事件处理方法和设备以及系统
CN114915919B (zh) * 2022-04-29 2024-02-27 合肥中感微电子有限公司 无线通信的连接方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1448008A1 (en) * 2003-02-13 2004-08-18 Telefonaktiebolaget LM Ericsson (publ) Indoor positioning of mobile terminals
WO2006076600A1 (en) * 2005-01-11 2006-07-20 Qualcomm Incorporated Method and system for determining mobile station position based on base station information and repeater discriminants
RU2308810C2 (ru) * 2001-04-24 2007-10-20 Квэлкомм Инкорпорейтед Способ и устройство для оценки местоположения терминала на основании идентифицирующих кодов для источников передач

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US6507741B1 (en) * 1997-12-17 2003-01-14 Nortel Networks Limited RF Repeater with delay to improve hard handoff performance
US6716101B1 (en) * 2000-06-28 2004-04-06 Bellsouth Intellectual Property Corporation System and method for monitoring the location of individuals via the world wide web using a wireless communications network
US6999778B2 (en) * 2002-07-03 2006-02-14 Denso Corporation Multipath assistance for pilot phase measurement processes
US6785558B1 (en) * 2002-12-06 2004-08-31 Lgc Wireless, Inc. System and method for distributing wireless communication signals over metropolitan telecommunication networks
US7130642B2 (en) * 2003-03-03 2006-10-31 Qualcomm Incorporated Method and apparatus for performing position determination in a wireless communication network with repeaters
CN1778135A (zh) 2003-03-03 2006-05-24 高通股份有限公司 在带中继器的无线通信网络中进行位置确定的方法和设备
JP2005017069A (ja) 2003-06-25 2005-01-20 Cresco Ltd 位置検出システム
US20050143091A1 (en) * 2003-09-02 2005-06-30 Yair Shapira Indoor location identification system
SE526741C2 (sv) * 2003-10-02 2005-11-01 Ericsson Telefon Ab L M Positionsbestämning av mobilstationer
US20050157675A1 (en) * 2004-01-16 2005-07-21 Feder Peretz M. Method and apparatus for cellular communication over data networks
US7929487B2 (en) * 2004-01-16 2011-04-19 Alcatel-Lucent Usa Inc. Method and apparatus for cellular communication over data networks
KR100573203B1 (ko) * 2004-03-17 2006-04-24 에스케이 텔레콤주식회사 지피에스 전파 음영 지역에서 위치 탐색기를 이용하여단말기의 위치를 측위하는 방법 및 시스템
JP2006023267A (ja) * 2004-06-09 2006-01-26 Ntt Docomo Inc マルチパス遅延成分を用いた位置測定装置および位置測定方法
US7233800B2 (en) * 2004-10-14 2007-06-19 Qualcomm, Incorporated Wireless terminal location using apparatus and methods employing carrier diversity
TW200718241A (en) * 2005-06-24 2007-05-01 Qualcomm Inc Apparatus and method for determining WLAN access point position
JP2007019807A (ja) * 2005-07-07 2007-01-25 Fujitsu Ltd 無線通信システム並びに中継装置及び遠隔無線基地局装置
US7315523B2 (en) * 2005-10-12 2008-01-01 Motorola, Inc. Apparatus and method for neighbor assisted combining for multicast services
TW200731709A (en) * 2006-02-14 2007-08-16 Color City Entpr Co Ltd Automatic positioning system of Wireless Local Area Network (WLAN) communication system
US7680075B2 (en) * 2006-05-17 2010-03-16 Alcatel-Lucent Usa Inc. Identification of base stations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2308810C2 (ru) * 2001-04-24 2007-10-20 Квэлкомм Инкорпорейтед Способ и устройство для оценки местоположения терминала на основании идентифицирующих кодов для источников передач
EP1448008A1 (en) * 2003-02-13 2004-08-18 Telefonaktiebolaget LM Ericsson (publ) Indoor positioning of mobile terminals
WO2006076600A1 (en) * 2005-01-11 2006-07-20 Qualcomm Incorporated Method and system for determining mobile station position based on base station information and repeater discriminants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695510C2 (ru) * 2014-06-13 2019-07-23 Филипс Лайтинг Холдинг Б.В. Локализация, основанная на сети из беспроводных узлов
RU2718960C2 (ru) * 2016-02-12 2020-04-15 Сони Корпорейшн Устройство и способ
RU2634305C1 (ru) * 2016-06-29 2017-10-25 Акционерное Общество "Конструкторское Бюро "Луч" Способ определения взаимного местоположения подвижных объектов в полносвязной радиосети
RU2718963C1 (ru) * 2016-11-02 2020-04-15 Телефонактиеболагет Лм Эрикссон (Пабл) Сетевой узел радиодоступа, узел позиционирования и способы, реализуемые указанными устройствами для позиционирования мобильной станции
US10705174B2 (en) 2016-11-02 2020-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Radio access network node, positioning node, and methods therein for handling positioning of a mobile station

Also Published As

Publication number Publication date
US20090191891A1 (en) 2009-07-30
JP2019062553A (ja) 2019-04-18
KR101261394B1 (ko) 2013-05-07
AU2009209344B2 (en) 2012-09-13
EP2238467A1 (en) 2010-10-13
MX2010007970A (es) 2010-08-04
JP5770867B2 (ja) 2015-08-26
JP2015228660A (ja) 2015-12-17
TW200939833A (en) 2009-09-16
BRPI0907460A2 (pt) 2015-07-14
JP2011514715A (ja) 2011-05-06
TWI452918B (zh) 2014-09-11
CN101925832A (zh) 2010-12-22
WO2009097237A1 (en) 2009-08-06
IL206883A0 (en) 2010-12-30
JP2014112872A (ja) 2014-06-19
CN101925832B (zh) 2014-03-19
KR20100107065A (ko) 2010-10-04
US8666428B2 (en) 2014-03-04
AU2009209344A1 (en) 2009-08-06
RU2010135625A (ru) 2012-03-10
JP5490022B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
RU2462836C2 (ru) Способ подтверждения местоположения абонента в системах обслуживания в закрытых конструкциях
JP5665545B2 (ja) 無線アクセスシステムにおける位置決定のシステム及び方法
AU2010204891B2 (en) Systems and methods for mobile phone location with digital distributed antenna systems
US20120302254A1 (en) Apparatus and method for determining a location of wireless communication devices
JP4549603B2 (ja) Cdmaセルラーシステムにおける移動局の位置測定を行うシステム及び方法
US8619672B2 (en) Apparatus and method for multi-sector velocity mobile velocity and doppler estimate for synchronous communication systems
US20070229355A1 (en) Method and System for Determining Position of Terminal By Using Location Detector in Gps Satellite-Invisible Area
US20030157943A1 (en) Method and apparatus for auxiliary pilot signal for mobile phone location
US8620355B2 (en) Method and apparatus for determining the position of a wireless terminal based on propagation delay taps of base stations
KR100683906B1 (ko) 주파수 옵셋을 이용한 위치 탐지 서비스 제공 방법 및시스템
KR101051752B1 (ko) 협력통신 기반의 측위 방법
JP2004214754A (ja) 基地局間非同期システムでの測位における基準タイミング差調整方法、その方法を行う装置
KR100345027B1 (ko) 전파측정방법 및 그 장치
AU2003209433A1 (en) Method and apparatus for auxiliary pilot signal for mobile phone location

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160127