RU2460922C2 - Трансмиссия с изменяемым передаточным отношением - Google Patents

Трансмиссия с изменяемым передаточным отношением Download PDF

Info

Publication number
RU2460922C2
RU2460922C2 RU2009145286/11A RU2009145286A RU2460922C2 RU 2460922 C2 RU2460922 C2 RU 2460922C2 RU 2009145286/11 A RU2009145286/11 A RU 2009145286/11A RU 2009145286 A RU2009145286 A RU 2009145286A RU 2460922 C2 RU2460922 C2 RU 2460922C2
Authority
RU
Russia
Prior art keywords
speed
gear
power
transmission
gear ratio
Prior art date
Application number
RU2009145286/11A
Other languages
English (en)
Other versions
RU2009145286A (ru
Inventor
Рэймонд Джон ХИКС (GB)
Рэймонд Джон ХИКС
Фрэнк КАНЛИФФ (GB)
Фрэнк КАНЛИФФ
Original Assignee
Орбитал 2 Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Орбитал 2 Лимитед filed Critical Орбитал 2 Лимитед
Publication of RU2009145286A publication Critical patent/RU2009145286A/ru
Application granted granted Critical
Publication of RU2460922C2 publication Critical patent/RU2460922C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05B2220/70642Application in combination with an electrical generator of the alternating current (A.C.) type of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/104Power split variators with one end of the CVT connected or connectable to two or more differentials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)
  • Structure Of Transmissions (AREA)
  • Transmitters (AREA)
  • Control Of Fluid Gearings (AREA)
  • Retarders (AREA)
  • Vehicle Body Suspensions (AREA)
  • Materials For Medical Uses (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Изобретение относится к трансмиссиям с бесступенчато изменяемым передаточным отношением. Трансмиссия включает в себя главную дифференциальную зубчатую передачу (120), в которой передаточное отношение входной скорости к выходной скорости является изменяемым и в которой указанное передаточное отношение регулируется реактивным крутящим моментом, обеспечиваемым шестерней (150) управления скоростью внутри главного дифференциала (120). При этом трансмиссия включает в себя также вспомогательную дифференциальную зубчатую передачу (220), которая находится во вращательной связи с входом (50) через первый маршрут (115) и во вращательной связи с шестерней (150) управления скоростью через другой второй маршрут (125). Причем вспомогательная дифференциальная зубчатая передача включает в себя два параллельных пути мощности Р' и Р”. Первый путь включает в себя гидравлическую перепускную линию, имеющую два гидравлических устройства (180, 500), образующих гидравлический контур; передаваемая мощность и направление передачи мощности в гидравлическом контуре пути Р' с перепускной линией выборочно изменяются во время работы для изменения скорости в пути Р”, тем самым изменяя мощность во втором маршруте и изменяя реактивный крутящий момент шестерни управления скоростью и тем самым регулируя передаточное отношение. Трансмиссия использует первый и второй маршруты для всего диапазона входной скорости. Достигаются упрощение конструкции, уменьшение ее размера, веса и стоимости. 3 н. и 8 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение относится к трансмиссии с изменяемым передаточным отношением, имеющей бесступенчатое изменение передаточного отношения, например, обеспечивающей возможность первичному двигателю, такому как ветряная или приливная турбина, работающему на относительно низких, но бесступенчато изменяющихся скоростях, осуществлять плавный привод машины с постоянной скоростью, такой как синхронный генератор, без чрезмерных переходных крутящих моментов.
В частности, необходимость в повышающих трансмиссиях для ветряных турбин возникает из-за их относительно низкой скорости вращения в сравнении с предпочтительной скоростью вращения генератора, обычно 1500 оборотов в минуту. Низкая скорость турбины обуславливается тем фактом, что выработка энергии с помощью ветра является функцией ометаемой площади турбины и скорости конца лопасти. Таким образом, чем выше мощность, тем ниже скорость ротора. Фактически, мощность прямо пропорциональна величине диаметра ротора во второй степени, при этом скорость ротора обратно пропорциональна величине диаметра конца лопасти и/или корню квадратному от величины мощности ротора; например, турбина мощностью 3000 кВт будет работать на скорости 16 оборотов в минуту в сравнении со скоростью 44 оборотов в минуту для машины мощностью 400 кВт с той же скоростью конца лопасти. Так как вес ротора и крутящий момент прямо пропорциональны величине диаметра ротора в третьей степени, турбины большей мощности имеют не только больший повышающий коэффициент трансмиссии, но также более высокие входные крутящие моменты и тем самым более низкое соотношение мощность к весу. Например, хотя турбина мощностью 3000 кВт вырабатывает мощность в 7,5 раз больше, чем машина мощностью 400 кВт, ее крутящий момент и вес увеличиваются в 20,54 раза (т.е. 7,5 в степени 1,5), при этом ее передаточное отношение увеличивается в 2,74 раза, так как ее скорость уменьшается на корень квадратный от 7,5.
Так как объем, вес и цена коробки передач обуславливается ее крутящим моментом и общим передаточным отношением, существует техническая задача по уменьшению веса путем уменьшения паразитических переходных перегрузочных крутящих моментов, которые обычно возникают (и которые учитываются) во всех трансмиссиях ветряных турбин с фиксированным передаточным отношением. Они создаются случайными изменениями скорости ветра, плотности воздуха и удельной аэродинамической энергии на большой ометаемой площади турбины. Такие изменения ведут к колебаниям скорости ступицы ротора турбины на входе в коробку передач, что может происходить неоднократно за один оборот. Дополнительно это усложняется, во-первых, плавными изменениями скорости ветра и, во-вторых, резкими изменениями при порывах ветра. Так как энергия ветра прямо зависит от величины скорости воздушного потока в третьей степени, при увеличении переходной скорости на 50% аэродинамическая мощность вырастет в 3 раза. Хотя часть этой мощности будет рассеиваться за счет низкого кпд и часть за счет увеличения скорости и кинетической энергии в турбине, это ведет к тому, что для трансмиссии с фиксированным передаточным отношением при попытках увеличить скорость генератора будут создаваться дополнительные крутящие моменты. Это обусловлено тем фактом, что полярный момент инерции генератора вокруг его оси, приведенный к оси ротора турбины, умножается на величину повышающего коэффициента трансмиссии во второй степени. Таким образом, генератор, для которого требуется повышающий коэффициент 80/1, имел бы приведенную инерцию в 6400 раз больше, чем вокруг его собственной оси. Угловое отклонение на 1 градус ступицы ротора турбины от ее средней скорости вращения будет поэтому приводить к колебанию генератора на 80 градусов в том же промежутке времени.
Асинхронный генератор может использовать регулирование мощности для получения плавной электрической мощности на выходе, но это скрывает имеющуюся проблему, так как для изменения его скорости все равно требуются механические ускоряющие моменты. Такие переходные ускоряющие моменты могут только быть уменьшены за счет энергии упругой деформации в пути механической трансмиссии, и поэтому более жесткие трансмиссии будут иметь более высокие крутящие моменты.
В трансмиссии с изменяемым передаточным отношением эта проблема устраняется путем изменения ее передаточного отношения соответствующим образом в той же степени, что и переходное изменение скорости турбины. При этом момент, скорость и фазовый угол генератора сохраняются постоянными за счет того, что турбина имеет возможность ускоряться и поглощать переходной избыток мощности в форме кинетической энергии.
Коробки передач с изменяемым передаточным отношением согласно предшествующему уровню техники, например, такие как описанные в публикации WO 2004/109157, применяются в различных областях, включая ветряные турбины. Однако их сложность, например, необходимость использовать дорогостоящие компоненты, такие как муфты и альтернативные маршруты передачи мощности, ведет к увеличению их размера, веса и стоимости изготовления. Было обнаружено, что имеется потребность в простой коробке передач с изменяемым передаточным отношением, которая, в вариантах воплощения, обеспечивает управление скоростью генератора и имеет простую конструкцию.
Согласно одному аспекту настоящего изобретения предлагается трансмиссия с изменяемым передаточным отношением для применения при выработке энергии на ветряных и приливных установках, выполненная с возможностью обеспечения по существу постоянной выходной скорости при входной скорости от источника движения, изменяющейся по величине, по меньшей мере, в пределах диапазона входной скорости, в котором имеет место вся выработка энергии, причем трансмиссия включает в себя главную дифференциальную зубчатую передачу, имеющую вход от источника движения и выход привода, в которой передаточное отношение входной скорости к выходной скорости является изменяемым и в которой передаточное отношение регулируется реактивным крутящим моментом, обеспечиваемым шестерней управления скоростью внутри главного дифференциала, причем трансмиссия включает в себя также вспомогательную дифференциальную зубчатую передачу, которая находится во вращательной связи с входом через первый маршрут и во вращательной связи с шестерней управления скоростью через другой второй маршрут, причем вспомогательная дифференциальная зубчатая передача включает в себя два параллельных пути мощности, один путь включает в себя гидравлическую перепускную линию, имеющую два гидравлических устройства, образующих гидравлический контур; передаваемая мощность и направление передачи мощности в гидравлическом контуре пути с перепускной линией выборочно изменяются во время работы для изменения скорости в другом пути, тем самым изменяя мощность во втором маршруте и изменяя реактивный крутящий момент шестерни управления скоростью и тем самым регулируя передаточное отношение, отличающаяся тем, что первый и второй маршруты используются для всего диапазона входной скорости.
Предпочтительно, первый и второй маршруты выполнены без муфт.
В одном варианте воплощения мощность передается между гидравлическими устройствами в одном направлении, когда входная скорость ниже заданной величины в диапазоне, и направление передачи мощности изменяется на обратное при достижении или превышении указанной скорости.
Предпочтительно, каждое гидравлическое устройство приводится на скорости, которая пропорциональна входной скорости.
Более предпочтительно, каждое гидравлическое устройство представляет собой поршневое устройство, имеющее изменяемый ход для изменения гидравлического объемного расхода или давления.
Предпочтительно, ход одного или обоих гидравлических устройств регулируется для изменения мощности, передаваемой в пути с перепускной линией.
В одном варианте воплощения главная и/или вспомогательная дифференциальные зубчатые передачи включают в себя планетарные зубчатые передачи. В этом случае главная и вспомогательная зубчатые передачи могут обе быть планетарными зубчатыми передачами, и может существовать любая одна или более из следующих планетарных компоновок: первым входом в главный дифференциал является водило главного дифференциала; выходом главного дифференциала является кольцевое зубчатое колесо главного дифференциала; шестерней управления скоростью главного дифференциала является солнечная шестерня главного дифференциала; два пути мощности второго дифференциала включают в себя водило и солнечную шестерню второго дифференциала.
Изобретение также относится к системе трансмиссии, включающей в себя (а) низкоскоростную повышающую ступень с фиксированным передаточным отношением, (б) ступень с изменяемым передаточным отношением, имеющую входной вал для приема бесступенчато изменяющейся входной скорости от ступени с фиксированным передаточным отношением и обеспечивающую постоянную выходную скорость на ее выходном валу, причем ступень с изменяемым передаточным отношением включает в себя или содержит передачу согласно любому из описанных выше аспектов.
Предпочтительно, ступень с фиксированным передаточным отношением включает в себя две планетарные ступени, соединенные последовательно. Изобретение также относится к источнику движения с гидроприводом, соединенным с возможностью передачи приводного усилия с генератором через описанную выше трансмиссию с изменяемым передаточным отношением.
Изобретение распространяется на любой описанный здесь новый признак и на любую новую комбинацию описанных здесь признаков, независимо от того, описана или нет здесь комбинация этих признаков. Например, изобретение может заключаться в трансмиссии с изменяемым передаточным отношением для применения при выработке энергии на ветряных и приливных установках, выполненной с возможностью обеспечения по существу постоянной выходной скорости при входной скорости от источника движения, изменяющейся по величине, по меньшей мере, в пределах диапазона входной скорости, в котором имеет место вся выработка энергии, причем трансмиссия включает в себя главную дифференциальную зубчатую передачу, имеющую вход от источника движения и выход привода, в которой передаточное отношение входной скорости к выходной скорости является изменяемым и в которой указанное передаточное отношение регулируется реактивным крутящим моментом, обеспечиваемым шестерней управления скоростью внутри главного дифференциала, при этом трансмиссия включает в себя также вспомогательную дифференциальную зубчатую передачу, которая находится во вращательной связи с входом через первый маршрут и во вращательной связи с шестерней управления скоростью через другой второй маршрут, причем вспомогательная дифференциальная зубчатая передача включает в себя два параллельных пути мощности, один путь включает в себя гидравлическую перепускную линию, имеющую два гидравлических устройства, образующих гидравлический контур; передаваемая мощность и направление передачи мощности в гидравлическом контуре пути с перепускной линией выборочно изменяются во время работы для изменения скорости в другом пути, тем самым изменяя мощность во втором маршруте и изменяя реактивный крутящий момент шестерни управления скоростью и тем самым регулируя передаточное отношение, характеризующееся тем, что первый и второй маршруты выполнены без муфт.
Изобретение может быть реализовано различными способами. Далее будет описан конкретный вариант воплощения со ссылкой на прилагаемые чертежи, на которых:
Фиг.1а - схематический вид в разрезе повышающей передачи для использования с передачей, показанной на фиг.1b;
Фиг.1b - схематический вид с частичным разрезом передачи и генератора в сборе;
Фиг.2-4 - виды передач с фиг.1b, иллюстрирующие передачу мощности при различных режимах работы;
Фиг.5 - график, показывающий соотношение степеней хода используемых гидравлических устройств и скорости одного из этих гидравлических устройств;
Фиг.6 - график, показывающий зависимость мощности ротора и крутящего момента, а также скорости гидравлического устройства от скорости ротора;
Фиг.7 - график, показывающий зависимость мощности в перепускной линии от скорости гидравлического устройства; и
Фиг.8 - таблица значений переменных.
На фиг.1а показана повышающая передача, имеющая две планетарные зубчатые передачи 20 и 30, соединенные последовательно, которые преобразуют относительно медленное вращение входного вала 10 ветряной турбины в более быстрое вращение на сателлите 40. Так как передача на фиг.1а обеспечивает большое увеличение скорости вращения, из этого следует, что небольшие изменения скорости турбины на входном валу 10 ведут к большим изменениям скорости сателлита 40. Для привода синхронного генератора желательно иметь постоянную скорость, поэтому сателлит 40 соединен с входной шестерней 50 передачи с изменяемым передаточным отношением, показанной подробно на фиг.1b.
На фиг.1b показана входная шестерня 50, которая приводится в движение с переменными скоростями передачей, показанной на фиг.1а. Входная шестерня 50 приводит главный сателлит 100. Главный сателлит 100 в свою очередь соединен с водилом 110 главного планетарного дифференциала 120 и также приводит вспомогательный сателлит 200 вдоль первого маршрута 115 передачи мощности. Водило 110 приводит генератор 300 через кольцевое зубчатое колесо 140 главного планетарного дифференциала 120.
Во время работы используя реактивный крутящий момент солнечной шестерни 150 главного дифференциала можно управлять скоростью генератора 300. Во время работы, когда скорость на входе является низкой, солнечную шестерню 150 необходимо вращать в том же направлении, что и вход (водило 110) для увеличения эффективной скорости кольцевого зубчатого колеса 140 и тем самым генератора 300, и когда скорость на входе становится более высокой, солнечную шестерню 150 необходимо остановить или сместить в обратном направлении относительно входа для замедления кольцевого зубчатого колеса 140. Реактивный крутящий момент на солнечной шестерне 150 может использоваться для управления его скоростью, причем либо приводится кольцевое зубчатое колесо 140 более быстро, когда прилагается более высокий крутящий момент, либо оно приводится (смещается) в противоположном направлении, когда прилагается более низкий крутящий момент.
Реактивным крутящим моментом на солнечной шестерне управляют с помощью вспомогательной дифференциальной планетарной зубчатой передачи 220. Вспомогательный дифференциал имеет кольцевое зубчатое колесо 230, соединенное со вспомогательным сателлитом 200. Два пути мощности Р' и Р'' образованы водилом 210 и солнечной шестерней 250 вспомогательного дифференциала 220. Водило 210 находится во вращательной связи с одним из двух гидравлических устройств 180, а солнечная шестерня 250 находится во вращательной связи с другим гидравлическим устройством 500. В данном примере солнечная шестерня 250 соединена также с парой сателлитов 260, 265, которые принимают крутящий момент от или обеспечивают крутящий момент для солнечной шестерни 150 главного дифференциала 120 и образуют второй маршрут 125 передачи мощности.
Мощностью, передаваемой через гидравлическую перепускную линию, и направлением, в котором она течет, управляют путем изменения хода двух гидравлических устройств. Это в свою очередь приводит к изменению реактивного крутящего момента на солнечной шестерне 150 и, следовательно, изменяет выходную скорость главного дифференциала. Контроллер используется для отслеживания входной скорости и давления в гидравлической перепускной линии, а также для управления степенями хода в соответствующих гидравлических устройствах 500 и 180.
Передача имеет несколько режимов работы, которые описываются ниже.
Во-первых, как показано на фиг.2, когда входной вал вращается со скоростью, равной или ниже 11,5 оборотов в минуту, передача будет работать с фиксированным передаточным отношением. Гидравлическое устройство 180 будет настроено на почти максимальный ход, хотя оно будет вращаться относительно медленно, а гидравлическое устройство 500 будет настроено на почти минимальный ход, хотя оно будет вращаться относительно быстро, так, чтобы приводиться устройством 180. В результате этого мощность передается через гидравлическую перепускную линию и через передачу в направлении стрелок Р, и солнечная шестерня 150 обеспечивает максимально возможный большой крутящий момент в направлении вращения водила 110 для увеличения скорости генератора 300. Однако при этой входной скорости генератор не достигает желаемой скорости 1500 оборотов в минуту, и поэтому выходной скорости (скорости генератора) разрешено изменяться при изменении входной скорости, а генератор не соединен с энергосистемой, так как он не вращается с требуемой скоростью.
Во-вторых, как показано на фиг.3, когда скорость на входе находится в диапазоне от около 11,5 оборотов в минуту до около 17,3 оборотов в минуту, что является обычным диапазоном входной скорости, используется второй режим работы. В этом режиме генератор будет синхронизирован с энергосистемой и обеспечивает мощность для энергосистемы, и поэтому необходимо поддерживать его скорость постоянной. Следовательно, передача работает с изменяемым передаточным отношением, так как скорость входного вала будет изменяться при колебаниях скорости ветра и т.д. Реактивный крутящий момент, обеспечиваемый солнечной шестерней 150, должен быть достаточным для увеличения скорости генератора, но он должен постепенно уменьшаться, когда входная скорость увеличивается от около 11,5 оборотов в минуту до около 17,3 оборотов в минуту. Для этого изменяется величина мощности, передаваемой через гидравлическую перепускную линию. Потоком мощности через перепускную линию можно управлять путем регулирования хода одного или обоих гидравлических устройств. В этом режиме ход устройства 180 остается максимальным или почти максимальным, а ход устройства 500, вначале минимальный, увеличивается в соответствии с увеличением давления в перепускной линии, как функция входной скорости. Вследствие компоновки вспомогательного дифференциала уменьшенная мощность, текущая через перепускную линию, уменьшает в целом величину реактивного крутящего момента, создаваемого солнечной шестерней 150, что поддерживает выходную скорость к генератору постоянной при увеличении входной скорости. Когда входная скорость начинает приближаться к 17,3 оборотов в минуту, ход устройства 180 уменьшается, а ход устройства 500 увеличивается до максимума.
Когда входная скорость составляет около 17,3 оборотов в минуту, то через перепускную линию не передается никакой мощности, так как ход устройства 180 равен нулю и скорость устройства 500 равна нулю. На этой скорости величина реактивного крутящего момента, требующегося для солнечной шестерни 150, равна тому значению, которое требуется для остановки ее движения. Это является расчетной средней скоростью вращения для турбины.
Третий режим работы используется, когда скорость ротора превышает 17,3 оборотов в минуту, но не превышает 19 оборотов в минуту. Этот режим проиллюстрирован на фиг.4. Генератор все еще вырабатывает мощность на желаемой скорости вращения. Солнечной шестерне 150 обеспечивается возможность двигаться в противоположном направлении относительно водила 110, так что она эффективно приводится для замедления выхода к генератору 300. Для этого ход устройства 500 остается максимальным, а ход устройства 180 изменяется на обратный, так что мощность передается в противоположном направлении. Направление вращения двух устройств также изменяется на обратное. Компоновка вспомогательного дифференциала такова, что мощность передается в направлении стрелок Р. Когда скорость ротора увеличивается от около 17,3 оборотов в минуту до около 19 оборотов в минуту, ход гидравлического устройства 180 в обратном направлении все больше увеличивается, в результате чего больше мощности передается пути P' с перепускной линией. Это ведет к еще большему смещению солнечной шестерни 150 для дальнейшего замедления выхода.
Чтобы не допустить передачи через перепускную линию слишком большого объема мощности, тормоза 130 и/или 245 используются для замедления системы, когда скорость ротора превышает 19 оборотов в минуту. Тормоза также используются в целях обеспечения безопасности, например, во время технического обслуживания или в случае поломки какого-либо компонента.
На практике скорость ротора на входе будет изменяться постоянно и поэтому степени хода гидравлических устройств 180 и 500 будут регулироваться согласно фиг.5 для обеспечения необходимого реактивного крутящего момента на солнечной шестерне 150. На фиг.6 показано соотношение между мощностью ротора и скоростью гидравлического устройства 180. Скорость устройства 180 увеличивается, когда увеличивается скорость ротора. На фиг.7 показано, как управляется мощность в перепускной линии, когда скорость гидравлического устройства 180 (и значит скорость ротора) увеличивается. На фиг.8 представлена таблица, в которой приведены переменные системы трансмиссии и изменение каждой из них при увеличении скорости ротора. Соответствующие ходы устройств 180 и 500 могут изменяться достаточно быстро для изменения передаточного отношения и точного управления выходной скоростью. Очень высокая инерция турбины обеспечивает то, что она не будет изменять скорость быстро, и поэтому входным крутящим моментом можно очень точно управлять путем изменения передаточного отношения.
В данной области применения конкретное преимущество использования гидравлической передачи для перепуска мощности состоит в практически незначительной ее инерции в сравнении с генератором. Следует отметить, что общая инерция зубчатых колес также незначительна с практической точки зрения. Перекрестно управляемый предохранительный клапан может использоваться для отклика на любые самые внезапные колебания скорости/момента, которые потенциально могут опережать время реагирования для управления ходом устройств.
Применение здесь двух разных маршрутов 115 и 125 мощности к вспомогательному дифференциалу, используемых во всем диапазоне входных скоростей выработки мощности (второй и третий режимы выработки мощности), упрощает конструкцию трансмиссии и уменьшает ее стоимость и вес. Применение двух маршрутов означает, что не требуются муфты и т.п. для, например, изменения пути мощности.
Выше был описан и проиллюстрирован один конкретный вариант воплощения, однако специалистам в данной области техники понятно, что возможно множество вариантов, модификаций и альтернатив, не выходящих за пределы объема формулы изобретения. Например, здесь были описаны и проиллюстрированы планетарные дифференциальные зубчатые передачи, однако для получения полезного эффекта могут использоваться другие дифференциальные механизмы.

Claims (11)

1. Трансмиссия с изменяемым передаточным отношением для применения при выработке энергии на ветряных и приливных установках, выполненная с возможностью обеспечения по существу постоянной выходной скорости при входной скорости от источника движения, изменяющейся по величине, по меньшей мере, в пределах диапазона входной скорости, в котором имеет место вся выработка энергии, причем трансмиссия включает в себя главную дифференциальную зубчатую передачу, имеющую вход от источника движения и выход привода, при этом передаточное отношение входной скорости к выходной скорости является изменяемым, и передаточное отношение регулируется реактивным крутящим моментом, обеспечиваемым шестерней управления скоростью внутри главного дифференциала, причем трансмиссия включает в себя также вспомогательную дифференциальную зубчатую передачу, которая находится во вращательной связи с входом через первый маршрут и во вращательной связи с шестерней управления скоростью через другой второй маршрут, отличающаяся тем, что вспомогательная дифференциальная зубчатая передача включает в себя два параллельных пути мощности, при этом один путь включает в себя гидравлическую перепускную линию, имеющую два гидравлических устройства, образующих гидравлический контур; передаваемая мощность и направление передачи мощности в гидравлическом контуре пути с перепускной линией выборочно изменяются во время работы для изменения скорости в другом пути, тем самым изменяя мощность во втором маршруте и изменяя реактивный крутящий момент шестерни управления скоростью и тем самым регулируя передаточное отношение, причем первый и второй маршруты используются для всего диапазона входной скорости.
2. Трансмиссия по п.1, отличающаяся тем, что первый и второй маршруты выполнены без муфт.
3. Трансмиссия по п.1, отличающаяся тем, что мощность передается между гидравлическими устройствами в одном направлении, когда входная скорость ниже заданной величины в диапазоне, и направление передачи мощности изменяется на обратное при достижении или превышении указанной скорости.
4. Трансмиссия по п.1, отличающаяся тем, что каждое гидравлическое устройство приводится на скорости, пропорциональной входной скорости.
5. Трансмиссия по п.4, отличающаяся тем, что каждое гидравлическое устройство представляет собой поршневое устройство, имеющее изменяемый ход для изменения объемного расхода или давления.
6. Трансмиссия по п.5, отличающаяся тем, что ход одного или обоих устройств регулируется для изменения мощности, передаваемой в обходном пути.
7. Трансмиссия по п.1, отличающаяся тем, что главная и/или вспомогательная дифференциальные зубчатые передачи включают в себя планетарные зубчатые передачи.
8. Трансмиссия по п.7, отличающаяся тем, что главная и вспомогательная зубчатые передачи обе являются планетарными зубчатыми передачами, и может существовать любая одна или более из следующих планетарных компоновок: входом от источника движения в главный дифференциал является водило главного дифференциала; выходом главного дифференциала является кольцевое зубчатое колесо главного дифференциала; шестерней управления скоростью главного дифференциала является солнечная шестерня главного дифференциала; два пути мощности второго дифференциала включают в себя водило и солнечную шестерню второго дифференциала.
9. Система трансмиссии, включающая в себя (а) низкоскоростную повышающую ступень с фиксированным передаточным отношением, (б) ступень с изменяемым передаточным отношением, имеющую входной вал для приема бесступенчато изменяемой входной скорости от ступени с фиксированным передаточным отношением и обеспечивающую постоянную выходную скорость на ее выходном валу, причем ступень с изменяемым передаточным отношением включает в себя или содержит трансмиссию по любому из пп.1-8.
10. Система по п.9, в которой ступень с фиксированным передаточным отношением включает в себя две планетарные ступени, соединенные последовательно.
11. Источник движения с гидравлическим приводом, соединенный с возможностью передачи приводного усилия с генератором через трансмиссию с изменяемым передаточным отношением по любому из пп.1-8 или систему трансмиссии по п.9 или 10.
RU2009145286/11A 2007-06-08 2008-06-06 Трансмиссия с изменяемым передаточным отношением RU2460922C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US94267507P 2007-06-08 2007-06-08
GB0711043.0 2007-06-08
US60/942,675 2007-06-08
GBGB0711043.0A GB0711043D0 (en) 2007-06-08 2007-06-08 Variable radio transmission

Publications (2)

Publication Number Publication Date
RU2009145286A RU2009145286A (ru) 2011-06-20
RU2460922C2 true RU2460922C2 (ru) 2012-09-10

Family

ID=38318986

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145286/11A RU2460922C2 (ru) 2007-06-08 2008-06-06 Трансмиссия с изменяемым передаточным отношением

Country Status (13)

Country Link
US (1) US8545360B2 (ru)
EP (1) EP2162642B1 (ru)
JP (1) JP5334963B2 (ru)
KR (1) KR101294501B1 (ru)
CN (1) CN101743414B (ru)
AT (1) ATE537383T1 (ru)
CA (1) CA2689235C (ru)
DK (1) DK2162642T3 (ru)
ES (1) ES2379161T3 (ru)
GB (1) GB0711043D0 (ru)
NZ (1) NZ581669A (ru)
RU (1) RU2460922C2 (ru)
WO (1) WO2008149109A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504818A1 (de) 2004-07-30 2008-08-15 Windtec Consulting Gmbh Triebstrang einer windkraftanlage
EP2107238A1 (en) 2008-03-31 2009-10-07 AMSC Windtec GmbH Variable ratio gear
EP2107237A1 (en) 2008-03-31 2009-10-07 AMSC Windtec GmbH Wind energy converter comprising a superposition gear
CN101970871A (zh) * 2009-03-20 2011-02-09 美国超导威德泰克有限公司 风能转换器的操作方法、风能转换器用控制装置以及风能转换器
AT508411B1 (de) 2009-07-02 2011-06-15 Hehenberger Gerald Dipl Ing Differenzialgetriebe für energiegewinnungsanlage und verfahren zum betreiben
US20100119370A1 (en) * 2009-11-17 2010-05-13 Modi Vivendi As Intelligent and optimized wind turbine system for harsh environmental conditions
WO2011138724A2 (en) * 2010-05-02 2011-11-10 Iqwind Ltd. Wind turbine with discretely variable diameter gear box
WO2013095162A1 (en) * 2011-12-20 2013-06-27 Windflow Technology Limited Power generating system and hydraulic control system
AU2013252964B2 (en) * 2012-04-24 2016-06-23 Ebo Group, Inc. Wind turbine torque limiting clutch system
DE102014223958A1 (de) 2014-11-25 2016-05-25 Zf Friedrichshafen Ag Windkraftgetriebe mit primärgekoppeltem Variator und mehreren Leistungspfaden

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1211449A1 (ru) * 1984-04-02 1986-02-15 Chernopyatov Boris Ветроэнергетическа установка
US4774855A (en) * 1982-08-17 1988-10-04 Vickers Shipbuilding And Engineering Limited Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input
RU2122146C1 (ru) * 1993-04-15 1998-11-20 Торотрак (Дивелопмент) Лимитед Усовершенствования в или относящиеся к трансмиссиям с постоянно изменяемым передаточным отношением
WO2004109157A1 (en) * 2003-06-10 2004-12-16 Hicks Raymond J Variable ratio gear
JP2006522281A (ja) * 2003-03-31 2006-09-28 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー 可変のパワーを伝達するためのドライブトレイン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE419113B (sv) 1979-11-14 1981-07-13 Allmaenna Ingbyran Vindkraftverk for huvudsakligen mekanisk transmission av ett variabelt turbinvarvtal till ett synkront utgaende varvtal
US4613760A (en) 1984-09-12 1986-09-23 The English Electric Company Limited Power generating equipment
GB2225616A (en) * 1988-11-30 1990-06-06 Wind Energy Group Limited Power generating system including gearing allowing constant generator torque
GB9012925D0 (en) 1990-06-09 1990-08-01 Hicks Transmissions Ltd R J Improvements relating to epicyclic gear trains
JPH11125331A (ja) * 1997-10-24 1999-05-11 Honda Motor Co Ltd 車両用油圧式無段変速機のリリーフ圧制御装置
FI110812B (fi) * 2000-06-21 2003-03-31 Prorauta Muuttuvavälityksinen planeettavaihteisto
US6440026B1 (en) * 2000-09-26 2002-08-27 Deere & Company Hydro-mechanical transmission
JP3822100B2 (ja) * 2001-12-21 2006-09-13 株式会社小松製作所 風力発電装置
JP2005003091A (ja) * 2003-06-12 2005-01-06 Yanmar Co Ltd 走行作業機における動力伝達装置
DE10357292B4 (de) * 2003-12-05 2006-02-02 Voith Turbo Gmbh & Co. Kg Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung
DE10361443B4 (de) * 2003-12-23 2005-11-10 Voith Turbo Gmbh & Co. Kg Regelung für eine Windkraftanlage mit hydrodynamischem Getriebe
DE102004028619A1 (de) * 2004-06-12 2006-01-05 Voith Turbo Gmbh & Co. Kg Drehzahlgeregeltes Getriebe für eine Energieerzeugungsanlage
US7588509B1 (en) * 2006-03-14 2009-09-15 John David Marsha Infinitely variable gear transmission with parallel hydraulic ratio control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774855A (en) * 1982-08-17 1988-10-04 Vickers Shipbuilding And Engineering Limited Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input
SU1211449A1 (ru) * 1984-04-02 1986-02-15 Chernopyatov Boris Ветроэнергетическа установка
RU2122146C1 (ru) * 1993-04-15 1998-11-20 Торотрак (Дивелопмент) Лимитед Усовершенствования в или относящиеся к трансмиссиям с постоянно изменяемым передаточным отношением
JP2006522281A (ja) * 2003-03-31 2006-09-28 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー 可変のパワーを伝達するためのドライブトレイン
WO2004109157A1 (en) * 2003-06-10 2004-12-16 Hicks Raymond J Variable ratio gear

Also Published As

Publication number Publication date
RU2009145286A (ru) 2011-06-20
KR101294501B1 (ko) 2013-08-07
EP2162642A1 (en) 2010-03-17
JP5334963B2 (ja) 2013-11-06
KR20100030637A (ko) 2010-03-18
CA2689235A1 (en) 2008-12-11
EP2162642B1 (en) 2011-12-14
ATE537383T1 (de) 2011-12-15
CA2689235C (en) 2014-04-15
JP2010529378A (ja) 2010-08-26
NZ581669A (en) 2012-11-30
US20100279813A1 (en) 2010-11-04
CN101743414A (zh) 2010-06-16
DK2162642T3 (da) 2012-04-10
ES2379161T3 (es) 2012-04-23
US8545360B2 (en) 2013-10-01
WO2008149109A1 (en) 2008-12-11
CN101743414B (zh) 2014-02-19
GB0711043D0 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
RU2460922C2 (ru) Трансмиссия с изменяемым передаточным отношением
EP1631758B1 (en) Variable ratio gear
KR101166224B1 (ko) 발전설비를 위한 가변 속도 변속기
RU2471087C2 (ru) Приводной механизм электрогенератора (варианты), способ регулирования частоты вращения приводного механизма электрогенератора, турбина (варианты)
JP3822100B2 (ja) 風力発電装置
US8206262B2 (en) Differential gear on a wind power plant and method for changing or switching the power range of said differential gear
KR102014567B1 (ko) 발전 시스템 및 유압 제어 시스템
KR20050054824A (ko) 속력 가이던스, 파워 충격 감소와 단기 에너지 저장을갖는 유체 흐름 파워 엔진을 위한 드라이브 라인
KR20110087282A (ko) 풍력발전소
AU2009301621A1 (en) Differential for a wind power station
US8968133B2 (en) Dynamic ratio speed increaser for windmills and similar applications
US8432054B2 (en) Wind turbine with hydrostatic transmission
JP2007051584A (ja) 風力発電装置
CN206130029U (zh) 一种新型双涡轮双导轮导叶可调式液力变矩器
WO2007042847A1 (en) Speed stabilizing gear drive system for generating electric power
CN103256168A (zh) 一种离网型混合传动海流发电装置及其控制方法
WO2018007567A2 (en) Variable speed transmission with auxiliary driver and system using same
CA2741101C (en) Dynamic ratio speed increaser for windmills and similar applications
KR20180064165A (ko) 유압제어형 유동막 제어기술 가변속 토크컨버터
KR20180064138A (ko) 판형구동소자 유동막 제어기술 가변속 토크컨버터
CN106321771A (zh) 一种新型双涡轮双导轮导叶可调式液力变矩器
Zhu et al. Modeling and Control of an Infinitely Variable Speed Converter With Application to Wind Turbines

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140607