CA2741101C - Dynamic ratio speed increaser for windmills and similar applications - Google Patents

Dynamic ratio speed increaser for windmills and similar applications Download PDF

Info

Publication number
CA2741101C
CA2741101C CA2741101A CA2741101A CA2741101C CA 2741101 C CA2741101 C CA 2741101C CA 2741101 A CA2741101 A CA 2741101A CA 2741101 A CA2741101 A CA 2741101A CA 2741101 C CA2741101 C CA 2741101C
Authority
CA
Canada
Prior art keywords
generator
sun
annulus
epicyclic
assembly according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2741101A
Other languages
French (fr)
Other versions
CA2741101A1 (en
Inventor
Vladimir Scekic
Russell Turnbull
Daniel Popa
Soegi Hartono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drillform Technical Services Ltd
Original Assignee
MIVA ENGINEERING Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIVA ENGINEERING Ltd filed Critical MIVA ENGINEERING Ltd
Priority to CA2741101A priority Critical patent/CA2741101C/en
Publication of CA2741101A1 publication Critical patent/CA2741101A1/en
Application granted granted Critical
Publication of CA2741101C publication Critical patent/CA2741101C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

A fluid driven rotary prime mover assembly including a turbine, a first generator, a second generator and a speed increaser is provided. The gear assembly includes a first epicyclic and a second epicyclic. The first epicyclic includes a first carrier rotationally connected to the turbine, a first sun rotationally connected to the first generator, a first annulus, and a first planet in meshing engagement with the first sun and the first annulus. The second epicyclic includes a second carrier rotationally grounded, a second sun rotationally connected to the second generator, a second annulus connected to the first annulus, and a second planet in meshing engagement with the second sun and the second annulus.

Description

DYNAMIC RATIO SPEED INCREASER FOR WINDMILLS AND SIMILAR
APPLICATIONS
Technical Field [0001] This invention relates to speed increasing devices for fluid driven rotary prime movers such as windmills and similar applications.
Background
[0002] Modern day windmills convert wind energy into electricity. Tidal, current, and wave power installations convert the energy of tides, currents and waves into electricity. Fluid driven rotary prime movers such as turbines associated with these and similar applications rotate slowly relative to generator rotation speeds useful for producing electricity. Efficient and cost-effective speed increasers for increasing this slow speed to speeds useful for electricity generation are desirable.
Summary
[0003] The following embodiments and aspects thereof are described and illustrated in conjunction with apparatus and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
[0004] One aspect provides a fluid driven rotary prime mover assembly including a turbine, a first generator, a second generator and a speed increaser.
The speed increaser includes a first epicyclic and a second epicyclic. The first epicyclic includes a first carrier rotationally connected to the turbine, a first sun rotationally connected to the first generator, a first annulus, and a first planet in meshing engagement with the first sun and the first annulus. The second epicyclic includes a second carrier rotationally grounded, a second sun rotationally connected to the second generator, a second annulus connected to the first annulus, and a second planet in meshing engagement with the second sun and the second annulus.
[0005] The first annulus and the second annulus may be integral and form a common annulus. The first annulus and the second annulus may be rotationally connected. The first annulus and the second annulus may be rotationally connected by a gear train. A total geometric reduction ratio for each torque path from the turbine to each of the first generator and the second generator may provide for optimal turbine/generator matching with only one of the first generator or the second generator running. The first epicyclic and second epicyclic may be symmetrical, where key geometric values such as number of teeth of respective components between the two epicyclics are equal. A first braking means may be provided for preventing rotation of the first sun if the first generator is not running.
A second braking means may be provided for preventing rotation of the second sun if the second generator is not running. The first generator and the second generator may be operable in the same and opposite directions. The first epicyclic and the second epicyclic may be concentrically arranged. The second sun may be disposed on a hollow shaft and the first sun may be disposed on a first generator shaft extending through the hollow shaft.
[0006] A gear train may rotationally connect the second sun to the second generator. The gear train may include a proximal gear fixed to the hollow shaft and a distal gear fixed to a second generator shaft. The speed increaser may include a third epicyclic rotationally connecting the first carrier to the turbine, wherein the first carrier is in meshing engagement with a third sun of the third epicyclic. The second carrier may be fixed to a housing of the fluid driven rotary prime mover assembly.
[0007] In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions Brief Description of the Figures
[0008] Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein ate to be considered illustrative rather than restrictive.
[0009] Figure 1 is a graph plotting torque against rotational speed for various wind speeds and various loads.

,
[0010] Figure 2 is a graph plotting torque against rotational speed and horsepower against rotational speed for continuous and intermittent conditions.
[0011] Figure 3 shows a cutaway perspective view of a speed increaser according to one embodiment of the invention.
[0012] Figure 4 shows a partially exploded perspective view of the speed increaser shown in Figure 3.
[0013] Figure 5 shows a partially exploded perspective view of the speed increaser shown in Figure 3.
[0014] Figure 6 shows a cutaway perspective view of a speed increaser according to one embodiment of the invention.
[0015] Figure 7 shows a schematic view of the speed increaser shown in Figure 6.
Detailed Description
[0016] The invention provides a dynamic ratio speed increaser for fluid driven rotary prime movers. The speed increaser of the invention in some embodiments features a two-generator design with paired epicyclical gear systems.
[0017] Generating electricity from rotary prime movers driven by non-uniform movement of fluids such as winds, tides, currents, waves and the like involves one or more of: (a) significant variability and frequent unpredictability of conditions, especially in the case of windmills; (b) a mismatch in performance characteristics between turbines or similar devices used to convert kinetic energy of moving fluid into rotary mechanical movement and generators used to convert the rotary mechanical movement into electricity; and (c) the requirement for reliable unmanned operation, often in remote areas with little or no access for maintenance.
[0018] For the purposes of illustration, the description herein will focus on the example of windmills, where the variability of conditions and mismatch in performance characteristics between turbines and generators in windmills is particularly pronounced. The invention applies not only to windmills but also to any "fluid driven rotary prime mover assembly", a term as used herein referring to any assembly that relies on non-uniform movement of fluids such as winds, tides, currents, and waves to drive a rotary prime mover. In some embodiments the non-uniform movement of fluids may be limited to naturally occurring movement of fluids. The term "rotationally connected" as used herein refers to both direct and indirect rotational connections. A direct connection may include, for example, meshing engagement between teeth of respective gears. An indirect rotational connection may include, for example, connection through a gear train or the like.
[0019] The ability of a typical windmill to convert wind speed into active rotational torque increases with increasing wind speeds and rotational speed of the windmill's turbine up to a predetermined maximum value. As shown by the plots in Figure 1, for any constant wind speed, the turbine's torque-generating capacity drops sharply with increasing rotational speed once the predetermined maximum value has been reached.
[0020] In order to extract the maximum amount of energy from the turbine in varying wind conditions, the generator will have to be operational at varying rotational speeds. Operating the generator at varying rotational speeds typically requires a variable frequency drive (VFD) control system. Adding a VFD control system involves considerable added capital costs, and significantly affects overall efficiency of the system. Modern VFDs feature average efficiencies in the 85 -95% range depending on operating conditions.
[0021] Figure 2 are plots of typical characteristics of a VFD controlled motor/generator. Special attention should be paid to the Torque vs. Shaft Rotational Speed curve (Torque Continuous line). A generator's ability to provide reactive torque is highest at low rotational speeds. At about synchronous design-speed, reactive torque starts dropping along a constant-power curve, then starts falling-off along a "diminishing return" line.
[0022] With increasing wind speeds, torque available at the turbine will also increase but at a higher rotational speed of the turbine. However, a generator's ability to absorb the torque drops with increased rotational speed, which may bring the windmill into unstable operating conditions where any disturbances are amplified rather than diminished. In extreme cases, high wind speeds may lead to a continuously accelerating system and ultimate failure. To avoid this scenario during high wind speeds, windmills must be shut down by engaging mechanical brakes. In other words, windmills are shut down during periods when most wind power is available for conversion into electricity.
[0023] The mismatch between a turbine's ability to produce torque and a generator's ability to absorb the torque can be partially corrected by use of a variable pitch turbine. Even with such an approach, typical windmill operating conditions remain very narrow; at wind speeds below and above the narrow operating range, the windmill has to be shut down and the turbine has to be restrained from rotation by means of mechanical braking.
[0024] Most high powered, modern windmill turbines are designed to efficiently operate in the range of about 16 ¨ 28 rpm. Most modern generators are designed to operate in the range of 600 ¨ 1500 rpm. A speed increaser is required between the turbine and the generator to bridge the gap in operating speeds between the two.
[0025] One object of this invention is to provide a speed increaser for a fluid driven rotary prime mover assembly that will allow for greater flexibility and better matching of performance characteristics between the turbine and the generator attached to the turbine, over a wider operating range. Another object is to provide a speed increaser for a fluid driven rotary prime mover assembly that will minimize or eliminate the need for VFD control under at least certain operating conditions.
[0026] Figures 3 to 5 shows a speed increaser 10 for a fluid driven rotary prime mover assembly of a windmill according to one embodiment of the =
invention. Speed increaser 10 includes a main epicyclic 20 and control epicyclic 30.
[0027] Main carrier 26 is rotationally connected to a turbine or similar device (not shown) of the fluid driven rotary prime mover assembly through pinion-like extension 27 of main carrier 26. Main sun 22 is meshingly engaged with main planets 24. Main sun 22 is also rotationally connected to a first generator (not shown) of the fluid driven rotary prime mover assembly. In the illustrated embodiment, this connection includes a main shaft 28 fixed to main sun 22.
Control carrier 36 is rotationally grounded or fixed, making control epicyclic 30 a de facto "star arrangement". Control carrier 36 may for example be fixed to a housing (not shown) of the fluid driven rotary prime mover assembly. Control sun 32 is meshingly engaged with control planets 34. Control sun 32 is also rotationally connected to a second generator (not shown) of the fluid driven rotary prime mover assembly. In the illustrated embodiment, this connection includes a hollow shaft 35 fixed to control sun 32. A control gear train 39 in rotational connection with the second generator is also fixed to hollow shaft 35.
[0028] In the illustrated embodiment, compact, axial alignment between main epicyclic 20 and control epicyclic 30 is achieved by having main shaft 28 extend through hollow shaft 35 which itself extends through control epicyclic 30.
[0029] Common annulus 40 rotationally connects main epicyclic 20 to control epicyclic 30 by meshing engagement with main planets 24 and control planets 34. In other embodiments each of the main epicyclic 20 and control epicyclic 30 may have corresponding annuli which in turn are rotationally connected to eaoh other.
[0030] Figures 6 and 7 show a speed increaser 100 of a fluid driven rotary prime mover assembly according to another embodiment of the invention. Speed increaser 100 is similar to speed increaser 10. Main sun 122, main planets 124, main carrier 126, pinion-like extension 127, main shaft 128, control sun 132, control planets 134, hollow shaft 135, and control carrier 136 have similar functions to corresponding components of speed increaser 10. Brake 123 may selectively engage main sun 122 and brake 133 may selectively engage control sun 132. Engagement of the respective brakes to the respective suns may for example be by direct mechanical engagement.
Brakes 123 and 133 may be connected to a housing of speed increaser 100. Speed increaser 100 also includes a gear train 139A, 139B, 139C, 139D and control shaft 138 for rotationally connecting control sun 132 to the second generator (not shown) of the fluid driven rotary prime mover assembly. Speed increaser 100 also includes an initial speed increasing epicyclic 150 for rotationally coupling main carrier 126 to a turbine or similar device (not shown). In particular, pinion-like extension 127 of main carrier 126 meshingly engages inner teeth of sun 152 of initial speed increasing epicyclic 150. Epicyclic 150 may be connected to the turbine through carrier 156 (if annulus 154 is fixed) or through annulus 154 (if carrier 156 fixed).
[0031] In the embodiments described above, the total geometric reduction ratio for respective torque paths from the turbine to the first generator and the turbine to the second generator provides optimal matching between turbine and generator with just one of either of the two generators running.
[0032] Some embodiments may have full and symmetrical redundancy, wherein the main epicyclic and control epicyclic possess identical key geometric values (e.g. number of teeth of respective components). Other embodiments may be asymmetrical.
[0033] According to the above-described embodiments, annulus rotational speed will be determined by the rotational speed of the control sun and will be equal to:
WA = Wsl * Nsl/Nal, where:
WA - is the rotational speed of the annulus, wsi - is the rotational speed of the control sun, Nal - is the number of teeth of annulus on the control epicyclic side and, Nsi - is the number of teeth of the control sun.
[0034] The dynamic reduction ratio of the main epicyclic, defined as the (rotational speed of the main sun) divided by the (rotational speed of the main carrier) can mathematically be described as follows:
imd = Ws2(Na2 Ns2) (Na2 * WA Ns2 * ws2), where:
iõd - is the dynamic reduction ratio relative to the main sun, ws2 - is the rotational speed of main sun, WA - is the rotational speed of the annulus, Na2 - is the number of teeth of annulus gear on the main epicyclic side, and Ns2 - is the number of teeth of main sun.
[0035] Combining the two equations, we come to the following simplified equation:
imd = Ws2(Na2 Ns2) / (WA * Na2 Ws2 * N52)=
[0036] The dynamic reduction ratio of the control epicyclic, defined as the (rotational speed of the control sun) divided by the (rotational speed of the main carrier), is a two-step process and can mathematically be described as follows:
icd = Nal / Nsl * WA * (Na2 Ns2 ) (Na2 * WA 4- Ns2 * Ws2), where:
ied - is the dynamic reduction ratio relative to the control sun, ws2 - is the rotational speed of main sun, WA - is the rotational speed of the annulus, Nai - is the number of teeth of annulus on control epicyclic side, Na2 - is the number of teeth of annulus on main epicyclic side, Ns1 - is the number of teeth of control sun, and Ns2 - is the number of teeth of main sun.
[0037] From the above we come to the following simplified equation:
icd = Wsl(Na2 Ns2) (Wsl* Ns1 ws2 * Ns2)
[0038] The two simplified equations above are universal equations. For the special case of "symmetrical" epicyclics where key geometric values such as number of teeth of respective components between the two epicyclics are equal, these equations become:
imd = W52 (Na + Ns) / ( Nw ( s ,--si ws2)), and, led = Wsl(Na Ns) / ( Ns (Ws1 Ws2)).
imd - is the dynamic reduction ratio relative to the main sun, jai - is the dynamic reduction ratio relative to the control sun, W52 - is the rotational speed of the main sun, wsi - is the rotational speed of the control sun, Na - is the number of teeth of the annulus, Ns - is the number of teeth of the main sun.
[0039] The above equations can be understood in simpler terms as follows.
If rotational speed of either sun is zero (0), the dynamic ratio defined as the (rotational speed of the other sun) divided by the (rotational speed of the main carrier), will be equivalent to a simple planetary design, i.e.:
i = 1\1, / Ns + 1
[0040] If rotational speed of the two suns is equal in both, magnitude and direction ( \ WS 1 = WS2)) the dynamic ratio defined as the (rotational speed of the main sun) divided by the (rotational speed of the main carrier), will be equivalent to one half (1/2) of a simple planetary design, i.e.:
i = (N, / Ns + 1) / 2
[0041] If rotational speed of the two suns is equal in intensity but opposite in direction (wsi = (-ws2)), the dynamic ratio defined as the (rotational speed of the main sun) divided by the (rotational speed of the main carrier), will be infinite (rotational speed of the main carrier will be zero (0).
[0042] The foregoing can be put in other terms as follows.
[0043] During high wind speeds, the high torque, high speed rotation of the turbine can be divided between the two generators such that each of them operates with high torque and power ratings, still within stable operating regime with high reserve of generator torque available.
[0044] During most operating conditions, generator torque can be manipulated such that only one of them is VFD controlled while the other one operates at synchronous speed and can be connected to the grid "across the lines"
thus improving overall generating efficiency.
[0045] During low wind speeds, one generator can function as a motor (through VFD controls) drawing energy from the grid in order to speed up the other generator thus bringing it up to optimum generating conditions. The gain in efficiency of the generator should be adequate to offset the energy draw from the grid used by the motor.
[0046] Overall, by implementing the present invention in windmills, the "window of opportunity" and generating capacity for producing electricity can be considerably increased for all (high, moderate and low) wind conditions.
[0047] While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.

Claims (19)

Claims WHAT IS CLAIMED IS:
1. A fluid driven rotary prime mover assembly comprising:
a turbine;
a first generator;
a second generator; and a speed increaser comprising a first epicyclic and a second epicyclic, the first epicyclic comprising:
a first carrier rotationally connected to the turbine;
a first sun rotationally connected to the first generator;
a first annulus;
a first planet in meshing engagement with the first sun and the first annulus;
the second epicyclic comprising:
a second carrier rotationally grounded;
a second sun rotationally connected to the second generator;
a second annulus connected to the first annulus; and a second planet in meshing engagement with the second sun and the second annulus.
2. An assembly according to claim 1 wherein the first annulus and the second annulus are integral and form a common annulus.
3. An assembly according to claim 2 wherein the first annulus and the second annulus are rotationally connected.
4. An assembly according to claim 3 wherein the first annulus and the second annulus are rotationally connected by a gear train.
5. An assembly according to claim 2 wherein a total geometric reduction ratio for each torque path from the turbine to each of the first generator and the second generator provides for optimal turbine/generator matching with only one of the first generator or the second generator running.
6. An assembly according to claim 5 wherein the first epicyclic and second epicyclic are symmetrical.
7. An assembly according to claim 6 further comprising first braking means for preventing rotation of the first sun if the first generator is not running, wherein the first braking means is connected to a housing of the assembly and engages the first sun by direct mechanical engagement.
8. An assembly according to claim 7 further comprising second braking means for preventing rotation of the second sun if the second generator is not running, wherein the first braking means is connected to a housing of the assembly and engages the first sun by direct mechanical engagement
9. An assembly according to claim 8 wherein the first generator and the second generator are operable in the same and opposite directions.
10. An assembly according to claim 9 wherein the first epicyclic and the second epicyclic are concentrically arranged.
11. An assembly according to claim 10 wherein the second sun is disposed on a hollow shaft and the first sun is disposed on a first generator shaft extending through the hollow shaft.
12. An assembly according to claim 11 comprising a gear train rotationally connecting the second sun to the second generator.
13. An assembly according to claim 12 wherein the gear train comprises a proximal gear fixed to the hollow shaft and a distal gear fixed to a second generator shaft.
14. An assembly according to claim 13 wherein the speed increaser further comprises a third epicyclic rotationally connecting the first carrier to the turbine, wherein the first carrier is in meshing engagement with a third sun of the third epicyclic, and wherein a third carrier or third annulus of the third epicyclic is connected to the turbine.
15. An assembly according to claim 14 wherein the second carrier is fixed to a housing of the assembly.
16. An assembly according to claim 15 wherein the assembly is a windmill.
17. An assembly according to claim 15 wherein the assembly is a tidal power installation.
18. An assembly according to claim 15 wherein the assembly is a current power installation
19. An assembly according to claim 15 wherein the assembly is a wave power installation.
CA2741101A 2011-05-24 2011-05-24 Dynamic ratio speed increaser for windmills and similar applications Active CA2741101C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2741101A CA2741101C (en) 2011-05-24 2011-05-24 Dynamic ratio speed increaser for windmills and similar applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA2741101A CA2741101C (en) 2011-05-24 2011-05-24 Dynamic ratio speed increaser for windmills and similar applications

Publications (2)

Publication Number Publication Date
CA2741101A1 CA2741101A1 (en) 2012-11-24
CA2741101C true CA2741101C (en) 2014-10-07

Family

ID=47215853

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2741101A Active CA2741101C (en) 2011-05-24 2011-05-24 Dynamic ratio speed increaser for windmills and similar applications

Country Status (1)

Country Link
CA (1) CA2741101C (en)

Also Published As

Publication number Publication date
CA2741101A1 (en) 2012-11-24

Similar Documents

Publication Publication Date Title
US20120074712A1 (en) Multi-rotor fluid turbine drive with speed converter
US8968133B2 (en) Dynamic ratio speed increaser for windmills and similar applications
US7936078B2 (en) Variable speed wind turbine having a constant speed generator
EP1756423B1 (en) Energy generation installation with an adjustable-speed gear
CN102483043B (en) Wind power plant and method for controlling the operation of a wind power plant
RU2460922C2 (en) Variable gear ratio transmission
EP2276924B1 (en) Method for operating a wind energy converter, control device for a wind energy converter, and wind energy converter
US20030222456A1 (en) Distributed powertrain that increases electric power generator density
WO2011011682A2 (en) Wind turbine drive system
JP2000337246A (en) Power transmission used for wind power generating device
US9562512B2 (en) Dual rotor wind or water turbine
US20100244447A1 (en) Continuously Variable Transmission Ratio Device with Optimized Primary Path Power Flow
US9903347B2 (en) Wind turbine gearbox
US8933576B2 (en) Hybrid friction wheel gearbox drivetrain for wind turbine applications
WO2007042847A1 (en) Speed stabilizing gear drive system for generating electric power
WO2011067633A1 (en) Gear tooth profile for a wind turbine
CA2741101C (en) Dynamic ratio speed increaser for windmills and similar applications
DE102011084573A1 (en) Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed
GB2491488A (en) Electromechanical driveline with power splitting device
WO2019122224A1 (en) Electromechanical system and superimposed gearing for transferring rotational energy
JP4546097B2 (en) Wind power generator
JP2006144598A (en) Step-up gear device for wind turbine device
KR101215481B1 (en) Gear Train for Aerogenerator
JP7240777B1 (en) wind turbine
Hwang et al. Kinematical analysis of a novel transmission mechanism with steady-speed output for variable speed wind turbines

Legal Events

Date Code Title Description
EEER Examination request