RU2458179C1 - Жаропрочная сталь - Google Patents

Жаропрочная сталь Download PDF

Info

Publication number
RU2458179C1
RU2458179C1 RU2011130586/02A RU2011130586A RU2458179C1 RU 2458179 C1 RU2458179 C1 RU 2458179C1 RU 2011130586/02 A RU2011130586/02 A RU 2011130586/02A RU 2011130586 A RU2011130586 A RU 2011130586A RU 2458179 C1 RU2458179 C1 RU 2458179C1
Authority
RU
Russia
Prior art keywords
content
steel
vanadium
boron
molybdenum
Prior art date
Application number
RU2011130586/02A
Other languages
English (en)
Inventor
Алексей Владимирович Дуб (RU)
Алексей Владимирович Дуб
Владимир Николаевич Скоробогатых (RU)
Владимир Николаевич Скоробогатых
Изабелла Алексеевна Щенкова (RU)
Изабелла Алексеевна Щенкова
Людмила Георгиевна Ригина (RU)
Людмила Георгиевна Ригина
Павел Александрович Козлов (RU)
Павел Александрович Козлов
Владимир Алексеевич Дуб (RU)
Владимир Алексеевич Дуб
Original Assignee
Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") filed Critical Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ")
Priority to RU2011130586/02A priority Critical patent/RU2458179C1/ru
Application granted granted Critical
Publication of RU2458179C1 publication Critical patent/RU2458179C1/ru

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к области металлургии, а именно к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°С. Сталь содержит, мас.%: углерод 0,01-0,02, кремний 0,05-0,10, марганец 0,2-0,4, хром 8,5-9,5, молибден 0,4-0,6, ванадий 0,15-0,30, ниобий 0,04-0,09, церий 0,02-0,05, кальций 0,005-0,05, азот 0,04-0,07, фосфор не более 0,015, сера не более 0,010, вольфрам 1,8-3,0, кобальт 2,5-4,0, алюминий не более 0,015, никель не более 0,2, лантан 0,005-0,05, бор 0,003-0,01, свинец не более 0,006, олово не более 0,006, мышьяк не более 0,006, железо - остальное. Суммарное содержание углерода, бора и азота составляет 0,05-0,08, отношение содержания ванадия и ниобия составляет 1:4, содержание вольфрама и молибдена удовлетворяет соотношению 2[Mo]+[W]=3±0,5, а разность между хромовым и никелевым эквивалентами удовлетворяет неравенству: 09·Creq-Nieq≤7,0, где Creq=[Cr]+2[Si]+1,5[Mo]+5[V]+5,5[Al]+1,75[Nb]+0,75[W], а Nieq=[Ni]+[Co]+0,5[Mn]+25[N]+30[C]. Сталь обладает требуемым уровнем длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°С и длительной пластичности не менее 10%. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°С.
Известна сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор и серу при следующем соотношении компонентов, мас.%:
углерод 0,08-0,12
кремний 0,17-0,37
марганец 0,3-0,6
хром 8,0-10,0
молибден 0,6-2,0
ванадий 0,15-0,35
ниобий 0,10-0,20
церий 0,02-0,05
кальций 0,005-0,05
азот 0,03-0,07
фосфор не более 0,03
серы не более 0,015
железо остальное.
(RU 2229532, С22С 38/26, опубликовано 10.02.2004).
Эта сталь имеет опыт эксплуатации в теплоэнергетике в качестве материала трубопроводов и других элементов, работающих при температурах до 580°С включительно.
Одной из базовых проблем при создании тепловых энергоблоков с суперсверхкритическими параметрами уровня температур 650°С и давлении пара от 30 до 35 МПа является необходимость разработки более жаропрочных и относительно экономичных конструкционных материалов, в том числе для пароперегревателей и паропроводов.
Задачей изобретения и ее техническим результатом является создание жаропрочной стали, обеспечивающей требуемый уровень длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°С и длительной пластичности не менее 10%.
Технический результат достигается тем, что жаропрочная сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор, серу, вольфрам, кобальт, алюминий, никель, лантан, бор, свинец, олово, мышьяк и железо остальное при следующем соотношении компонентов, мас.%:
углерод 0,01-0,02
кремний 0,05-0,10
марганец 0,2-0,4
хром 8,5-9,5
молибден 0,4-0,6
ванадий 0,15-0,30
ниобий 0,04-0,09
церий 0,02-0,05
кальций 0,005-0,05
азот 0,04-0,07
фосфор не более 0,015
сера не более 0,010
вольфрам 1,8-3,0
кобальт 2,5-4,0
алюминий не более 0,015
никель не более 0,2
лантан 0,005-0,05
бор 0,003-0,01
свинец не более 0,006
олово не более 0,006
мышьяк не более 0,006
железо остальное,
при этом разность между хромовым и никелевым эквивалентами удовлетворяет неравенству: 09·Creq-Nieq≤7,0, где
Creq=[Cr]+2[Si]+1,5[Mo]+5[V]+5,5[Al]+1,75[Nb]+0,75[W],
Nieq=[Ni]+[Co]+0,5[Mn]+25[N]+30[C], a
[Cr], [Si], [Mo], [V], [Al], [Nb], [W], [Ni], [Co], [Mn], [N], [С] - концентрация в мас.% хрома, кремния, молибдена, ванадия, алюминия, ниобия, вольфрама, никеля, кобальта, марганца, азота и углерода, суммарное содержание углерода, бора и азота составляет 0,05-0,08, а отношение содержания ванадия и ниобия составляет 1:4.
Технический результат также достигается тем, что содержание вольфрама и молибдена в стали удовлетворяет критерию суммы: 2[Mo]+[W]=3±0,5.
Жаропрочная сталь по изобретению, легированная основными легирующими элементами: молибденом, вольфрамом, кобальтом, ванадием, ниобием, алюминием, никелем, кремнием, и микролегированная кальцием, церием, лантаном, азотом и бором, фосфором, серой, никелем, оловом, свинцом и мышьяком, обеспечивает достижение поставленного технического результата: длительной прочности
Figure 00000001
,
Figure 00000002
и длительной пластичности
Figure 00000003
Повышение разности эквивалентов хрома и никеля более 7% приводит к появлению в стали ферритной фазы, что существенно снижает ударную вязкость и сопротивление ползучести.
Нитридно-боридное упрочнение стали по изобретению обеспечивает требуемый уровень длительной прочности при сохранении необходимого уровня пластичности при рабочих температурах порядка 650°С. При содержании азота менее 0,04% образования в стали нитридов не наблюдается, при содержании азота более 0,07 (т.е. выше предела его растворимости в стандартных условиях) может привести к образованию раковин и пузырей. Кроме того, превышение содержания азота выше 0,07% может привести к образованию нежелательных нитридов хрома и потери прочностных свойств.
Снижение содержания углерода в стали по изобретению до 0,01%-0,02% при содержании азота 0,04%-0,07% и бора от 0,003% до 0,01% обеспечивает требуемый уровень заданных свойств. Содержание углерода более 0,02% не обеспечивает необходимого уровня длительной прочности, так как при рабочих температурах 650°С карбиды коагулируют, сильно увеличиваясь в размерах, тем самым разупрочняя материал. Выполнение условия - суммарное содержание углерода, бора и азота 0,05-0,08 - гарантирует получение заданной длительной прочности стали. Если суммарное содержание углерода, бора и азота ниже 0,05%, то желаемого эффекта не достигается. Если же оно выше 0,08%, то, во-первых, возможно образование крупных карбонитридов бора, и, как следствие, потеря прочностных свойств, а во-вторых, возможно выделение Z-фазы, что также приводит к потере прочностных свойств.
Введение бора в количестве от 0,003% до 0,01% повышает длительную прочность и длительную пластичность за счет растворения бора, как поверхностно-активного элемента, в граничных зонах, упрочняя границы зерен и замедляя протекание диффузионных процессов в этих участках. Содержание бора ниже 0,003% неэффективно, а выше 0,01% может привести к образованию боридов, которые ухудшают пластичность стали.
Получить содержание углерода менее 0,01% для сегодняшнего уровня развития техники - задача очень сложная и дорогостоящая. Снижение содержания углерода в стали до уровня 0,01-0,02% приводит к смещению термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-С-O в сторону увеличения содержания кислорода (до 0,025%). Это приведет к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению длительной прочности. Поэтому необходимо ввести такое количество раскислителей, которое позволило снизить содержание кислорода по крайней мере до 0,001-0,0015%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. Однако в нашем случае, вследствие ограниченного содержания алюминия и кремния, необходим дополнительный эффективный раскислитель - лантан. Он обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Лантан в количестве от 0,005% до 0,05% способствует эффективному раскислению. Введение его в количестве менее 0,005% не дает желаемых результатов, а при концентрации выше 0,05% приводит к росту размеров неметаллических включений. Кроме того, содержание лантана в количестве от 0,05% до 0,005% уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает длительную прочность.
Выполнение отношения между ванадием и ниобием способствует получению ультрадисперсных карбонитридов типа MX.
Содержание ванадия в количестве от 0,15% до 0,30% способствует повышению длительной прочности. При содержании ванадия менее 0,15% не обеспечивается нужная жаропрочность, при содержании более 0,30% его влияние отрицательно, так как ванадий, находясь в твердом растворе, уменьшает силы межатомных связей.
Ограничение содержания ниобия до 0,04%-0,09% способствует получению более мелких нитридов NbN и, как следствие, повышению длительной прочности.
Снижение критерия суммы вольфрама и молибдена менее 2,5% приводит к снятию эффекта упрочнения твердого раствора - снижения сопротивления ползучести; превышение критерия суммы более 3,5% приводит к выделению избытка фазы Лавеса, что приводит к обеднению твердого раствора, снижению вязкости стали и снижению сопротивления ползучести.
Введение вольфрама в количестве от 1,8% до 3,0% повышает жаропрочность стали за счет упрочнения твердого раствора и выделения фазы Лавеса Fe2W. При введении вольфрама менее 1,8% не достигается нужный эффект повышения длительной прочности, при введении вольфрама более 3% образуется недопустимое количество δ-феррита в стали и снижается ударная вязкость.
Содержание молибдена от 0,4% до 0,6% обеспечивает жаропрочные свойства стали. Содержание молибдена менее 0,4% не дает нужной степени легирования твердого раствора, карбидной фазы, а следовательно, и жаропрочности, легирование молибденом свыше 0,6% - экономически нецелесообразно.
Введение кобальта в количестве от 2,5% до 4,0% способствует уменьшению скорости диффузии легирующих элементов и, как следствие, увеличению дисперсности упрочняющих карбидных и интерметаллидных частиц, а также уменьшению количества δ-феррита в структуре стали, что приводит к увеличению характеристик длительной прочности.
Присутствие в стали никеля до 0,2% и легкоплавких элементов Sn, Pb, Sb не более 0,006% каждого способствует повышению длительной прочности.
Марганец в количестве от 0,2% до 0,4% использован для раскисления стали. Введение марганца менее 0,2% приводит к низкому раскислительному эффекту, а увеличение его количества более 0,4% практически не влияет на раскислительную способность.
Содержание хрома от 8,5% до 9,5% обеспечивает заданное количество (не более 10%) структурно-свободного феррита, оптимальную технологичность стали в трубном производстве, высокую жаропрочность и ударную вязкость стали. При содержании менее 8,5% хрома понижается жаропрочность стали, при содержании более 9,5% хрома в структуре стали возрастает доля структурно-свободного феррита, понижаются ударная вязкость и технологические свойства.
Содержание кальция от 0,005% до 0,05% повышает изотропность свойств, снижая вторичное окисление стали и способствуя равномерному распределению сульфидных и оксидных включений. Содержание кальция в количестве менее 0,005% нецелесообразно в связи с отсутствием влияния малых концентраций этого элемента на характер неметаллических включений и изотропных свойств стали. Введение кальция в количестве более 0,05% приводит к образованию крупных глобулей и приводит к снижению длительной прочности. Содержание церия в количестве от 0,02% до 0,05% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость. При содержании церия менее 0,02% указанный эффект не достигается. Содержание церия более 0,05% может привести к повышению загрязненности стали сложными включениями.
Ограничение содержания фосфора до 0,015% и серы до 0,010% способствует получению более высоких характеристик пластичности.
Применение принципа поликомпонентного легирования при совокупном влиянии перечисленных элементов в сочетании с последующей нормализацией и отпуском позволило получить сталь с высоким уровнем служебных и экономических характеристик, как то: жаропрочность, пластичность, ударная вязкость, стабильность при длительных изотермических выдержках, технологичность и экономичность в металлургическом производстве.
Химический состав стали приведен в таблице 1, а механические свойства - в таблице 2.
Испытания проводили на материалах, выплавленных в вакуумно-индукционных печах. Испытание на растяжение проводили на цилиндрических образцах с диаметром рабочей части 6 мм по ГОСТ 1497 и ГОСТ 9651, испытания на жаропрочность проводили на цилиндрических образцах с диаметром рабочей части 10 мм по ОСТ 108.901.102-78.
Из таблицы 2 видно, что минимальные значения длительной прочности предлагаемой стали
Figure 00000004
, а
Figure 00000005
Сталь рекомендуется для изготовления трубопроводов и пароперегревателей котлов со сверхкритическими параметрами (температура до 650°С, давление до 35 МПа).
Figure 00000006
Figure 00000007

Claims (2)

1. Жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор, серу и железо, отличающаяся тем, что она дополнительно содержит вольфрам, кобальт, алюминий, никель, лантан, бор, свинец, олово и мышьяк при следующем соотношении компонентов, мас.%:
углерод [С] 0,01-0,02 кремний [Si] 0,05-0,10 марганец [Mn] 0,2-0,4 хром [Cr] 8,5-9,5 молибден [Мо] 0,4-0,6 ванадий [V] 0,15-0,30 ниобий [Nb] 0,04-0,09 церий [Се] 0,02-0,05 кальций [Са] 0,005-0,05 азот [N] 0,04-0,07 фосфор [Р] не более 0,015 сера [S] не более 0,010 вольфрам [W] 1,8-3,0 кобальт [Со] 2,5-4,0 алюминий [Аl] не более 0,015 никель [Ni] не более 0,2 лантан [La] 0,005-0,05 бор [В] 0,003-0,01 свинец [Рb] не более 0,006 олово [Sn] не более 0,006 мышьяк [As] не более 0,006 железо остальное,

при этом суммарное содержание углерода, бора и азота составляет 0,05-0,08, отношение содержания ванадия и ниобия составляет 1:4, а разность между хромовым и никелевым эквивалентом удовлетворяет неравенству:
09·Creq-Nieq≤7,0,
где Creq=[Cr]+2[Si]+1,5[Mo]+5[V]+5,5[Al]+1,75[Nb]+0,75[W],
Nieq=[Ni]+[Co]+0,5[Mn]+25[N]+30[C].
2. Сталь по п.1, отличающаяся тем, что содержание вольфрама и молибдена удовлетворяет соотношению: 2[Mo]+[W]=3±0,5.
RU2011130586/02A 2011-07-22 2011-07-22 Жаропрочная сталь RU2458179C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011130586/02A RU2458179C1 (ru) 2011-07-22 2011-07-22 Жаропрочная сталь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011130586/02A RU2458179C1 (ru) 2011-07-22 2011-07-22 Жаропрочная сталь

Publications (1)

Publication Number Publication Date
RU2458179C1 true RU2458179C1 (ru) 2012-08-10

Family

ID=46849630

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011130586/02A RU2458179C1 (ru) 2011-07-22 2011-07-22 Жаропрочная сталь

Country Status (1)

Country Link
RU (1) RU2458179C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760760A (zh) * 2019-12-05 2020-02-07 中国核动力研究设计院 一种核反应堆结构材料用FeCrAl基合金的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2270269C1 (ru) * 2005-02-01 2006-02-20 Закрытое акционерное общество "Ижевский опытно-механический завод" Сталь, изделие из стали и способ его изготовления
RU2414522C1 (ru) * 2009-09-29 2011-03-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2270269C1 (ru) * 2005-02-01 2006-02-20 Закрытое акционерное общество "Ижевский опытно-механический завод" Сталь, изделие из стали и способ его изготовления
RU2414522C1 (ru) * 2009-09-29 2011-03-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760760A (zh) * 2019-12-05 2020-02-07 中国核动力研究设计院 一种核反应堆结构材料用FeCrAl基合金的制备方法

Similar Documents

Publication Publication Date Title
KR102368928B1 (ko) 고크롬 내열철강
KR102223549B1 (ko) 오스테나이트계 스테인리스 강
JP4609491B2 (ja) フェライト系耐熱鋼
JP6179667B2 (ja) ばね鋼及びその製造方法
CA2604428C (en) Low alloy steel
JP5838933B2 (ja) オーステナイト系耐熱鋼
JP2017089013A (ja) オーステナイトステンレス鋼
CN109604863B (zh) 一种高强韧气体保护焊丝
KR102009630B1 (ko) 강판
RU2458179C1 (ru) Жаропрочная сталь
JP6575392B2 (ja) 高Crフェライト系耐熱鋼
JP2017053028A (ja) フェライト−マルテンサイト2相ステンレス鋼およびその製造方法
RU2441092C1 (ru) Теплостойкая сталь
RU2448192C1 (ru) Жаропрочная сталь
RU2333285C2 (ru) Сталь
JP2000290756A (ja) 熱間加工性に優れた高Crマルテンサイト系耐熱鋼
RU2425172C1 (ru) Жаропрочная сталь
JP6597450B2 (ja) 耐摩耗鋼板及びその製造方法
JP5245202B2 (ja) 超大入熱溶接部haz靭性に優れた高強度溶接構造用鋼及びその製造方法
RU2335569C2 (ru) Сталь
JP5371420B2 (ja) 耐熱鋳鋼および蒸気タービン主要弁
JP6597449B2 (ja) 耐摩耗鋼板及びその製造方法
JP3839334B2 (ja) 衝撃特性、耐食性に優れたCr−Mo−V系鋼
RU2448193C2 (ru) Литейная сталь
RU2448196C2 (ru) Сталь для корпусных конструкций атомных энергоустановок