RU2414522C1 - Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара - Google Patents

Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара Download PDF

Info

Publication number
RU2414522C1
RU2414522C1 RU2009136144/02A RU2009136144A RU2414522C1 RU 2414522 C1 RU2414522 C1 RU 2414522C1 RU 2009136144/02 A RU2009136144/02 A RU 2009136144/02A RU 2009136144 A RU2009136144 A RU 2009136144A RU 2414522 C1 RU2414522 C1 RU 2414522C1
Authority
RU
Russia
Prior art keywords
steam
molybdenum
nitrogen
phosphorus
exceed
Prior art date
Application number
RU2009136144/02A
Other languages
English (en)
Inventor
Игорь Васильевич Горынин (RU)
Игорь Васильевич Горынин
Алексей Сергеевич Орыщенко (RU)
Алексей Сергеевич Орыщенко
Георгий Павлович Карзов (RU)
Георгий Павлович Карзов
Герман Николаевич Филимонов (RU)
Герман Николаевич Филимонов
Борис Иванович Бережко (RU)
Борис Иванович Бережко
Ирина Владимировна Теплухина (RU)
Ирина Владимировна Теплухина
Игорь Анатольевич Повышев (RU)
Игорь Анатольевич Повышев
Original Assignee
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") filed Critical Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority to RU2009136144/02A priority Critical patent/RU2414522C1/ru
Application granted granted Critical
Publication of RU2414522C1 publication Critical patent/RU2414522C1/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к составам конструкционных сталей, используемых в судовом и энергетическом машиностроении при производстве различного теплообменного оборудования паросиловых установок и энергоблоков, работающих при сверхкритических параметрах пара. Жаропрочная сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, вольфрам, азот, бор, иттрий, водород, кальций, серу, фосфор и железо при следующем соотношении компонентов, мас.%: углерод 0,01-0,15, кремний 0,2-0,5, марганец 0,2-0,5, хром 10,0-12,0, молибден 0,4-0,8, вольфрам 0,4-1,2, ванадий 0,1-0,3, ниобий 0,02-0,06, алюминий 0,01-0,05, азот 0,01-0,05, бор 0,001-0,005, иттрий 0,002-0,01, водород 0,0005-0,003, кальций 0,001-0,005, сера 0,005-0,01, фосфор 0,005-0,02, железо остальное. Суммарное содержание углерода и азота (C+N) не превышает 0,16%, суммарное содержание серы и фосфора (S+P) не превышает 0,025%, а «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не превышает 1,0%. Повышается эксплуатационная надежность и общий ресурс работы современного паросилового оборудования тепловых энергоблоков и электростанций за счет повышения стабильности комплекса основных физико-механических свойств. 2 табл.

Description

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для использования в судовом и энергетическом машиностроении при производстве различного теплообменного оборудования паросиловых установок и энергоблоков, работающих при сверхкритических параметрах пара.
Известны металлические конструкционные материалы, применяемые в энергомашиностроительных отраслях промышленности (например, хромистые стали марок 15Х11МФБ, 12Х11В2МФ и 15Х12ВНМФ, а также другие аналоги), указанные в научно-технической и патентной литературе [1-8]. Однако известные стали не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных характеристик, что снижает работоспособность и промышленную безопасность теплообменного оборудования, работающего в условиях длительной эксплуатации и воздействия пара высоких параметров.
Наиболее близкой к заявляемой композиции по базовому химическому составу и функциональному назначению компонентов является высокохромистая сталь мартенсито-ферритного класса марки 15Х11МФБ (ЭИ-756) [1], содержащая в своем составе легирующие и примесные элементы в следующем соотношении, в мас.%:
углерод 0,12-0,18
кремний ≤0,55
марганец 0,6-1,2
хром 10,0-12,0
никель 0,5-0,9
молибден 0,8-1,05
ванадий 0,5-0,9
ниобий 0,1-0,2
сера ≤0,025
фосфор ≤0,03
железо остальное
Данную марку стали в соответствии с требованиями действующей нормативно-технической документации [1-5] рекомендуется использовать как конструкционный материал в различных отраслях промышленности и народного хозяйства при производстве серийного энергооборудования общетехнического назначения, работающего до температур 580°С. При этом известная сталь не обеспечивает требуемого уровня и стабильности характеристик жаропрочности в условиях длительной высокотемпературной эксплуатации и отличается повышенной чувствительностью к коррозионно-усталостному разрушению. Вместе с тем, известной композиции свойственен широкий разброс и нестабильность основных физико-механических и служебных свойств, что не отвечает предъявляемым требованиям, определяющим заданную работоспособность и эксплуатационную надежность материала в условиях длительной эксплуатации теплообменного оборудования и паропроводов современных паросиловых установок. Согласно требованиям действующей нормативно-технической документации [1-6] содержание в сталях-аналогах ряда легирующих и примесных элементов, во многом определяющих требуемое структурное состояние металла и уровень его важнейших функциональных характеристик, не контролируется и находится в весьма широких концентрационных пределах.
Техническим результатом настоящего изобретения является создание жаропрочной стали, обладающей улучшенным комплексом и высокой стабильностью основных физико-механических и служебных свойств, меньшей склонностью к коррозионно-усталостному разрушению, а также большим значением по сравнению с известными материалами длительной прочности в условиях воздействия пара высоких параметров, что обеспечивает повышение эксплуатационной надежности и общего ресурса работы современного паросилового оборудования тепловых энергоблоков и электростанций. Технический результат достигается за счет того, что в состав известной стали, содержащей углерод, кремний, марганец, хром, молибден, ванадий, ниобий, серу, фосфор и железо, дополнительно введены алюминий, вольфрам, азот, бор, иттрий, водород и кальций при следующем соотношении компонентов, в мас.%:
углерод 0,01-0,15
кремний 0,2-0,5
марганец 0,2-0,5
хром 10,0-12,0
молибден 0,4-0,8
вольфрам 0,4-1,2
ванадий 0,1-0,3
ниобий 0,02-0,06
алюминий 0,01-0,05
азот 0,01-0,05
бор 0,001-0,005
иттрий 0,002-0,01
водород 0,0005-0,003
кальций 0,001-0,005
сера 0,005-0,01
фосфор 0,005-0,02
железо остальное
при этом:
- «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не должен превышать 1,0%;
- суммарное содержание углерода и азота (C+N) не должно превышать 0,16%;
- суммарное содержание серы и фосфора (S+P) не должно превышать 0,025%. Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемая композиция обеспечивала требуемый уровень и стабильность важнейших структурно-чувствительных характеристик материала, во многом определяющих заданную работоспособность и эксплуатационную надежность теплообменного оборудования современных тепловых энергоблоков.
Введение в заявляемую сталь микролегирующих и модифицирующих добавок алюминия, вольфрама, азота, бора, иттрия и кальция в указанном соотношении с другими легирующими и примесными элементами улучшает ее структурную стабильность и, как следствие, весь комплекс основных физико-механических и служебных свойств, положительно влияющих на повышение жаропрочности материала в процессе длительной высокотемпературной эксплуатации, а также повышает работу зарождения и развития межзеренной трещины в условиях статического и динамического нагружений. При этом, как показали выполненные исследования [9-12], происходит более равномерное распределение легирующих элементов и неметаллических включений по всему сечению слитка, крупных поковок и слябов, металл эффективнее очищается от вредных примесей и газов, тоньше и чище становятся границы зерна, увеличивается высокотемпературная прочность межкристаллитной связи, что в целом обеспечивает значительное повышение деформационной способности материала. Снижается склонность стали к структурной анизотропии и существенно улучшается ее технологичность на стадии металлургического передела, что повышает выход годного при промышленном производстве крупногабаритных поковок и заготовок. Введение рассматриваемых элементов вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению важнейших структурно-чувствительных характеристик работоспособности материала в составе паросилового оборудования.
Модифицирование стали азотом, бором, водородом и кальцием в указанном соотношении с другими элементами, в частности с углеродом, ниобием, молибденом и вольфрамом, улучшает высокотемпературную структурную стабильность металла, способствует формированию при соответствующей термообработке в достаточном количестве мелкодисперсных карбидных, карбонитридных и других упрочняющих фаз, термодинамически устойчивых в интервале рабочих температур (500-630°С). При этом обеспечивается снижение структурной неоднородности в приграничных областях и по всему объему зерна и повышается сопротивление металла высокотемпературной ползучести в условиях длительного воздействия механического статического нагружения. В этом случае обеспечение требуемого, более высокого, чем в стали-прототипе, уровня прочностных и пластических характеристик стали достигается за счет твердорастворного упрочнения и более равномерного распределения упрочняющих фаз и наночастиц по всему объему зерна на стадии предвыделений [13-16], т.е. контролированием и управлением процессом наноструктурного упрочнения стали. При этом обеспечивается формирование устойчивой дислокационной структуры, определяющей оптимальную плотность активных плоскостей скольжения в процессе высокотемпературной пластической деформации и отражающей важный вклад дислокационной неупругости в механизм повышения характеристик жаропрочности. При этом логарифмический декремент колебаний как одна из важных характеристик реального структурного состояния металла и его деформационной способности отражает заметное возрастание энергоемкости процесса пластической деформации и, как следствие, работы зарождения хрупкой трещины в условиях ударного и циклического нагружений. Выполненные металлографические исследования и электронно-фрактографический анализ поверхности излома ударных образцов с помощью высокоразрешающей растровой электронной микроскопии [9-10] свидетельствует о преобладании внутризеренного характера разрушения и наличии развитого локального пластического течения металла, что является важной структурной характеристикой высокой деформационной способности заявляемой композиции. Вместе с тем, введение азота в указанном соотношении с углеродом и нитридообразующими элементами способствует более активному образованию высокодисперсных нитридов и карбонитридов, а также других упрочняющих фаз, что положительно влияет на повышение длительной прочности при сохранении необходимой деформационной способности материала. Под воздействием эксплуатационных факторов (напряжение, температура, среда и время) в условиях термического и деформационного старения формирующаяся при этом наноструктура стали обеспечивает стабильность основных физико-механических и служебных свойств и, в частности, существенное снижение скорости ползучести и повышение длительной прочности. Фрактографический анализ поверхности изломов образцов методом сканирования на растровом электронном микроскопе показал [9-12], что в заявляемой стали доля вязкой составляющей в зоне разрушения металла заметно возрастет по сравнению с известным составом. Увеличение содержания вводимых микролегирующих и модифицирующих добавок, а также вредных примесных элементов (S+P) свыше указанных в формуле изобретения пределов снижает дисперсность образующихся упрочняющих фаз (сложнолегированных карбидов типа М23С6, карбонитридов типа MX, фазы Лавеса др.), что снижает равномерность их распределения по объему зерна и ослабляет механизм закрепления дислокации в процессе высокотемпературной эксплуатации и отрицательно влияет на коррозионно-механическую прочность металла в условиях длительного воздействия пара высоких параметров [14-16].
Что касается «молибденового эквивалента», то при содержании (Мо+0,5·W) более 1,0% очень сложно в процессе длительных эксплуатационных нагревов (до 100000 ч) избежать разупрочнения твердого раствора вследствие зарождения, роста и коагуляции в приграничных областях сложнолегированных карбидов и фаз Лавеса, обогащенных атомами молибдена и вольфрама, в результате чего происходит диффузионное обеднение твердого раствора по этим элементам и существенно снижаются характеристики жаропрочности материала [9-11, 14-16].
Полученный более высокий уровень физико-механических, технологических и служебных характеристик стали обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным содержанием вводимых микролегирующих и модифицирующих добавок, а также контролированием чистоты металла по остаточным вредным примесям - сере и фосфору.
В ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли в соответствии с планом проводимых научных исследований в рамках федеральной целевой программы «Энергетика-2015» выполнен необходимый комплекс лабораторных, расчетных и опытно-промышленных работ по выплавке, пластической и термической обработкам заявляемой марки стали. Металл выплавлялся в 50 т электродуговой печи дуплекс-процессом с обработкой на установке внепечного рафинирования и вакуумирования (УВРВ), где проводилась окончательная доводка стали до заданного химсостава. Обработка на УВРВ включает в себя вакуумирование, продувку аргоном, десульфурацию, раскисление и нагрев металла до заданной температуры разливки стали с последующим получением полуфабрикатов требуемого сортамента на промышленном кузнечно-прессовом и прокатном оборудовании.
Химический состав исследованных материалов, а также результаты определения всего комплекса наиболее важных их свойств и характеристик представлены в табл.1 и 2.
Ожидаемый технико-экономический эффект применения разработанной марки стали в энергомашиностроительных отраслях промышленности выразится в повышении эксплуатационной надежности, коэффициента полезного действия и общего ресурса работы паросиловых установок и тепловых энергоблоков, работающих на сверхкритических параметрах пара.
Figure 00000001
Figure 00000002
ЛИТЕРАТУРА
1. Марочник сталей и сплавов, Изд-во «Машиностроение», М., 2001, стр.320 - прототип.
2. ГОСТ 5632 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные» (марки и технические требования), Изд-во «Госстандарт», М., 1975.
3. ГОСТ 5949 «Сталь сортовая и калиброванная, коррозионностойкая, жаростойкая и жаропрочная» (технические условия), Изд-во стандартов, М., 1994.
4. ГОСТ 18968 «Прутки и полосы из коррозионностойкой и жаропрочной стали для лопаток паровых турбин» (технические условия), Изд-во стандартов, 1979.
5. В.Н.Журавлев, О.И.Николаева «Машиностроительные стали» (справочник), Изд-во «Машиностроение», М., 1989.
6. Технические условия ТУ 14-1-1529-93 «Заготовка трубная катаная и кованая для котельных труб», 1993.
7. Спецификация Кода ASME, № SA-508/SA-508M, 1995.
8. Спецификация общества ASTM, № А508/А-508М, 1995.
9. Технический отчет ЦНИИ КМ «Прометей» по теме «Новые теплоустойчивые стали для энергоблоков на суперсверхкритические параметры пара», С-Пб, 2006.
10. Технический отчет ЦНИИ КМ «Прометей» по гос. контракту №02.467.11.2015 от 03.04.2006 «Разработка элементов технологии получения новых сплавов на основе системы железо-хром для создания энергоблоков на сверхкритических и суперсверхкритических параметрах пара, а также разработка высокопрочной коррозионно-стойкой стали мартенситно-аустенитного класса», С-Пб, 2006.
11. А.А.Чижик «Материалы для энергоблоков на сверхкритические параметры пара» - журнал «Тяжелое машиностроение», 1997, №9, с.35-37.
12. Б.В.Фармаковский. Исследования ЦНИИ КМ «Прометей» в области наноматериалов». - Журнал «Индустрия», 2006, №5.
13. Ю.Д.Третьяков. Проблема развития нанотехнологий в России и за рубежом. - «Вестник Российской академии наук», 2007, том 77, №1, с.3-10.
14. В.Ю.Скульский, А.К.Царюк «Проблемы выбора стали для высокотемпературных компонентов энергоблоков ТЭС» - журнал «Автоматическая сварка», 2004, №3, с.3-7.
15. В.Ю.Скульский, А.К.Царюк «Новые теплоустойчивые стали для изготовления сварных узлов тепловых энергоблоков» - журнал «Автоматическая сварка», 2004, №4, с.35-40.
16. Хазуме, Такэда, Такано и др. «Новая сталь типа 12%Cr для роторов турбин применительно к температуре пара 593°С» - журнал «Теоретические основы инженерных расчетов», 1988, №3, с.55-67.

Claims (1)

  1. Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит алюминий, вольфрам, азот, бор, иттрий, водород и кальций при следующем соотношении компонентов, мас.%:
    углерод 0,01-0,15 кремний 0,2-0,5 марганец 0,2-0,5 хром 10,0-12,0 молибден 0,4-0,8 вольфрам 0,4-1,2 ванадий 0,1-0,3 ниобий 0,02-0,06 алюминий 0,01-0,05 азот 0,01-0,05 бор 0,001-0,005 иттрий 0,002-0,01 водород 0,0005-0,003 кальций 0,001-0,005 сера 0,005-0,01 фосфор 0,005-0,02 железо остальное,

    при этом «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не превышает 1,0%, суммарное содержание углерода и азота (C+N) не превышает 0,16%, суммарное содержание серы и фосфора (S+P) не превышает 0,025%.
RU2009136144/02A 2009-09-29 2009-09-29 Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара RU2414522C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009136144/02A RU2414522C1 (ru) 2009-09-29 2009-09-29 Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009136144/02A RU2414522C1 (ru) 2009-09-29 2009-09-29 Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара

Publications (1)

Publication Number Publication Date
RU2414522C1 true RU2414522C1 (ru) 2011-03-20

Family

ID=44053689

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009136144/02A RU2414522C1 (ru) 2009-09-29 2009-09-29 Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара

Country Status (1)

Country Link
RU (1) RU2414522C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458179C1 (ru) * 2011-07-22 2012-08-10 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") Жаропрочная сталь

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458179C1 (ru) * 2011-07-22 2012-08-10 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") Жаропрочная сталь

Similar Documents

Publication Publication Date Title
KR101630096B1 (ko) Ni기 내열 합금
EP2479300B1 (en) Ni-BASED ALLOY PRODUCT AND PROCESS FOR PRODUCTION THEREOF
JP6904359B2 (ja) オーステナイト系ステンレス鋼
JP6350686B2 (ja) オーステナイトステンレス鋼
JP4007241B2 (ja) 高温強度と耐食性に優れたオーステナイト系ステンレス鋼ならびにこの鋼からなる耐熱耐圧部材とその製造方法
WO2018151222A1 (ja) Ni基耐熱合金およびその製造方法
WO2016204005A1 (ja) 高Cr系オーステナイトステンレス鋼
CN111394663A (zh) 耐热铁基合金及其制备方法
RU108037U1 (ru) ИЗДЕЛИЕ ИЗ КОРРОЗИОННО-СТОЙКОГО СПЛАВА НА ОСНОВЕ Fe-Cr-Ni
JP6575392B2 (ja) 高Crフェライト系耐熱鋼
RU2414522C1 (ru) Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара
Li et al. The effect of Al and Ti on the microstructure, mechanical properties and oxidation resistance of γ′-Ni3 (Al, Ti) strengthened austenitic stainless steels
RU2700346C1 (ru) Жаропрочный сплав
RU2617272C1 (ru) Жаропрочный сплав
RU2579709C1 (ru) Жаропрочный сплав
RU2385360C1 (ru) Жаропрочный сплав для конструкций высокотемпературных установок
RU2700347C1 (ru) Жаропрочный сплав
RU2579710C1 (ru) Жаропрочный сплав
RU2273679C1 (ru) Нержавеющая сталь для трубопроводов и трубных систем термоядерной и водородной энергетики
RU2632728C2 (ru) Жаропрочный сплав
RU2293787C2 (ru) Коррозионно-стойкая сталь для внутрикорпусных устройств и теплообменного оборудования аэс
RU2333285C2 (ru) Сталь
RU2577643C1 (ru) Жаропрочный сплав
RU2765806C1 (ru) Жаропрочный сплав
RU2716922C1 (ru) Аустенитная коррозионно-стойкая сталь с азотом