RU2456578C2 - СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ pH СЛАБОЩЕЛОЧНЫХ РАСТВОРОВ - Google Patents

СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ pH СЛАБОЩЕЛОЧНЫХ РАСТВОРОВ Download PDF

Info

Publication number
RU2456578C2
RU2456578C2 RU2009145112/28A RU2009145112A RU2456578C2 RU 2456578 C2 RU2456578 C2 RU 2456578C2 RU 2009145112/28 A RU2009145112/28 A RU 2009145112/28A RU 2009145112 A RU2009145112 A RU 2009145112A RU 2456578 C2 RU2456578 C2 RU 2456578C2
Authority
RU
Russia
Prior art keywords
indicator
response
indicators
measuring
indicated
Prior art date
Application number
RU2009145112/28A
Other languages
English (en)
Other versions
RU2009145112A (ru
Inventor
Каибин КСИАО (US)
Каибин КСИАО
Бинчжи ЧЭНЬ (CN)
Бинчжи ЧЭНЬ
Вэйи ЦУЙ (US)
Вэйи ЦУЙ
Ли Чжан (CN)
Ли Чжан
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2009145112A publication Critical patent/RU2009145112A/ru
Application granted granted Critical
Publication of RU2456578C2 publication Critical patent/RU2456578C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Изобретение относится к системе для измерения рН, и более конкретно, к улучшенным способу и устройству для измерения рН слабощелочных растворов экстраполяцией спектрофотометрических измерений от многих чувствительных элементов-индикаторов рН. Система для измерения рН включает набор чувствительных элементов рН, имеющих много индикаторов рН. Причем каждый указанный индикатор имеет разную концентрацию индикатора. Также система включает средство для применения указанного набора чувствительных элементов к раствору пробы, имеющему известный рН. Система также включает средство для измерения первого рН отклика от каждого указанного индикатора одновременно, средство для генерации калибровочной функции, представляющей указанный первый рН отклик. Также система включает средство для применения указанного набора чувствительных элементов к раствору слабощелочной пробы, имеющему неизвестный рН и средство для измерения второго рН отклика от каждого указанного индикатора одновременно. Также система включает средство для сравнения указанного второго рН отклика с указанной калибровочной функцией, чтобы получить предварительное значение рН от каждого указанного индикатора и средство для генерации эмпирической функции, представляющей указанные предварительные значения рН. Кроме того, система также включает средство для экстраполяции указанной эмпирической функции к концентрации индикатора ноль, чтобы оценить фактический рН указанной неизвестной пробы. Техническим результатом изобретения является повышение точности рН слабощелочных растворов. 2 н. и 8 з.п. ф-лы, 5 ил.

Description

Уровень техники
Область изобретения
Настоящее изобретение относится к системе для измерения pH, и более конкретно, к улучшенным способу и устройству для измерения pH слабощелочных растворов экстраполяцией спектрофотометрических измерений от многих чувствительных элементов-индикаторов рН.
Описание уровня техники
Широкий набор систем и методов использовался для измерения pH водных систем. Например, стеклянный электрод обычно используется для измерения pH как в лабораторных, так и в промышленных условиях. Альтернативно, известно, что спектрофотометрические методики могут использоваться для измерения pH. Типичные системы и методы измерения pH были описаны в заявке на патент США № 11/507689, зарегистрированной 22 августа 2006 года, которая переуступлена тому же правопреемнику, что и настоящая заявка, и раскрытие которой включено в качестве ссылки в настоящее изобретение.
В то время как предшествующие устройства и системы обеспечивали полезные продукты, они не были полностью удовлетворительными в обеспечении быстрого, простого и точного измерения рН водных слабощелочных проб относительно простым для пользователя способом. Одной из проблем, связанной с измерением pH слабощелочных растворов, является то, что возмущение pH, вызванное введением индикаторов в раствор пробы, не является незначительным. Это является установленным фактом, потому что сами индикаторы являются разбавленными кислотами или основаниями. Говоря иначе, pH слабобуферного (т.е. слабощелочного) раствора может быть сильно возмущен вследствие того, что концентрация индикатора, введенная в пробу, является значительной относительно количества кислоты или основания в растворе.
В предшествующих методах были сделаны попытки минимизировать или исправить возмущения, вызванные индикатором в водной фазе: (1) установлением pH исходного раствора индикатора, близким к pH пробы; (2) уменьшением отношения добавки индикатора к объему пробы и (3) наблюдением возмущения pH, вызванного индикатором, путем порционных добавлений индикатора, и затем использованием методов линейной экстраполяции, чтобы получать pH пробы. Такие предшествующие методы могут дать полезные результаты, но они являются обычно очень длительными и нелегкими в использовании. Поэтому остается сильная потребность в улучшенном способе и системе, которые обеспечат точное и быстрое измерение pH слабощелочных проб способом, относительно эффективным по затратам и легким в использовании.
Сущность изобретения
Одной из проблем, связанных с измерением pH слабощелочных растворов, является то, что возмущение величин рН, вызванное введением индикаторов в растворы проб, не является незначительным. В результате измерения pH могут быть сильно возмущены вследствие концентрации индикатора, введенной в слабобуферный (т.е. слабощелочной) раствор. Чтобы противостоять этой проблеме, настоящее изобретение обеспечивает системы и способы, включающие набор чувствительных элементов, включающий большое количество индикаторов рН, причем каждый индикатор имеет разную концентрацию. Набор чувствительных элементов калибруют, применяя набор чувствительных элементов к раствору пробы, имеющему известный pH. Отклик каждого индикатора рН регистрируется одновременно, и формируется калибровочная функция (т.е. калибровочная кривая), представляющая отклик pH на концентрацию индикатора для каждой концентрации индикатора. Калиброванный набор чувствительных элементов затем может быть применен к пробам слабощелочных растворов, имеющих неизвестный pH. Результаты величин рН от каждого индикатора рН сравнивают с калибровочной кривой, и формируется эмпирическая функция (т.е. эмпирическое уравнение), представляющая отклик pH на каждую концентрацию индикатора. Эмпирические уравнения затем объединяются и экстраполируются, чтобы определить точки пересечения (т.е. когда концентрация индикатора равна нулю), чтобы получить первоначальный (т.е. фактический) pH неизвестной пробы.
Другие аспекты настоящего изобретения относятся к использованию таких систем и способов, и к типовым способам измерения pH слабощелочных растворов. Дальнейшие аспекты настоящего изобретения и его преимущества по сравнению с методами, известными из уровня техники, станут очевидными после прочтения следующего подробного описания и приложенной формулы изобретения с привлечением соответствующих чертежей.
Краткое описание чертежей
Фиг.1 является графической иллюстрацией, показывающей изменения pH после введения различного количества тимолового синего;
фиг.2 изображает ряд графиков, показывающих значения рН различных растворов до и после добавления индикатора;
фиг.3 является графиком, поясняющим зависимость pH от количества добавленного фенолового красного;
фиг.4 поясняет калибровочные кривые, возникающие при четырех различных концентрациях индикатора; и
фиг.5 является графиком, поясняющим результат типичного способа линейной экстраполяции по настоящему изобретению.
Подробное описание изобретения
Настоящее изобретение описывает системы и способы, включающие набор чувствительных элементов на основе полимерной пленки для быстрого и точного измерения pH слабощелочных растворов, например слабощелочных водных проб. Известно, что щелочность или буферная емкость является одной из основных характеристик проб воды. Щелочность является мерой способности раствора нейтрализовать кислоты. Более низкая щелочность означает более низкую емкость, чтобы противостоять изменению pH, когда кислоту добавляют к раствору.
Концепция настоящего изобретения основана на том факте, что в слабощелочных растворах возмущение рН, вызванное введением индикаторов в пробу, не является незначительным. Это является установленным фактом, потому что сами индикаторы являются разбавленными кислотами или основаниями. В результате pH раствора может быть сильно возмущен вследствие того, что концентрация индикатора, введенного в пробу, является значительной относительно количества кислоты или основания, присутствующего в слабобуферном (слабощелочном) растворе. Этот эффект возмущения является еще более явным в пленке, загруженной индикатором рН.
Чтобы соответствовать этой задаче, один аспект настоящего изобретения описывает процесс экстраполяции для быстрого и точного измерения pH слабощелочных проб. Метод предпочтительно использует, но не ограничивается им, набор чувствительных элементов, созданный в соответствии с заявкой на патент США № 11/507689 и ранее включенный в качестве ссылки в настоящее изобретение. Такой набор чувствительных элементов формируют так, чтобы включить много участков индикатора, каждый с различными концентрациями индикатора. Созданный набор чувствительных элементов применяют, чтобы спектрофотометрически измерять pH пробы, посредством чего каждый индикатор обеспечивает дискретное поглощение измерения pH одновременно. Измеренные значения рН от каждого участка индикатора наносят на график зависимости от соответствующих концентраций индикатора, и эмпирическую функцию (т.е. эмпирическое уравнение), представляющее измеренные значения рН, экстраполируют, чтобы определить точки пересечения, когда концентрация индикатора нуль, чтобы получить начальный pH (т.е. реальный pH) пробы. Системы и способы по настоящему изобретению обеспечивают преимущество перед известными способами, поскольку вместо того, чтобы пытаться минимизировать возмущения pH, вызванные добавлениями индикатора, настоящее изобретение использует зависимость между возмущениями pH от различных концентраций индикатора, чтобы калибровать набор чувствительных элементов, таким образом, обеспечивая базисный эталонный параметр для определения измерения pH слабощелочных проб, имеющих неизвестный pH.
Как раскрыто здесь, системы и способы по настоящему изобретению особенно хорошо подходят для быстрого и точного определения pH слабощелочных растворов. Измерение pH слабощелочных растворов не является тривиальной задачей вследствие возмущений, вызванных добавлением слабых кислотных или основных индикаторов в раствор, особенно когда концентрация индикатора (который является обычно либо слабой кислотой, либо основанием) является значительной относительно количества кислоты или основания в растворе пробы. pH может быть измерен колориметром, спектрофотометром или флуоресцентным спектрометром.
В соответствии с типичным вариантом по настоящему изобретению набор чувствительных элементов рН был создан как четырехпленочный набор, хотя подразумевается, что больше или меньше пленок могли бы использоваться, не отступая от объема настоящего изобретения. Каждая пленка чувствительного элемента датчика содержит различную концентрацию индикатора рН, которая будет обозначена как In1, In2, In3 и In4, соответственно. Для целей примеров здесь концентрация индикатора каждой пленки изменялась от приблизительно 0,01 до 10%.
Твердые пленки обычно получают из водорастворимых полимеров, ацетилцеллюлозы или поли-2-гидроксиэтилметакрилата (пГЭМА). Индикаторы могут быть колориметрическими индикаторами рН, флуоресцентными индикаторами рН или другими подходящими индикаторами рН, известными или позже разработанными в области техники. Колориметрические индикаторы рН предпочтительно выбирают из группы, содержащей феноловый красный, крезоловый красный, мета-крезоловый пурпурный, тимоловый синий, бромхлорфеноловый синий W.S., бромкрезоловый зеленый, хлорфеноловый красный, бромкрезоловый пурпурный, бромтимоловый синий, нейтральный красный, фенолфталеин, орто-крезолфталеин, нильский синий A, тимолфталеин, бромфеноловый синий, метакрезоловый пурпурный, малахитовый зеленый, бриллиантовый зеленый, кристаллический фиолетовый, метиловый зеленый, метиловый фиолетовый 2B, пикриновую кислоту, нафтоловый желтый S, метаниловый желтый, основной фуксин, флоксин В, метиловый желтый, метилоранж, ализарин.
Чтобы продемонстрировать концепции настоящего изобретения, авторы выполнили теоретическое вычисление изменения pH (т.е. возмущение) в слабощелочных растворах вследствие добавления различных количеств материала индикатора в раствор пробы. Хотя раскрытые примеры включают, чтобы продемонстрировать широкую применимость настоящего изобретения, специалистам в области техники следует понимать, что методики, раскрытые в примерах здесь, представляют методики, обнаруженные изобретателями, и таким образом, как можно полагать, составляют типичные режимы практики изобретения. Однако специалисты в области техники, в свете настоящего раскрытия, должны понимать, что многие изменения могут быть сделаны в конкретных вариантах, которые раскрыты, и еще получать подобный результат, не отступая от объема изобретения. И калибровка, и способы экстраполяции, раскрытые в настоящем изобретении, могут использоваться, чтобы определить pH слабощелочных проб, где pH измеряли колориметром, спектрофотометром или флуоресцентным спектрометром.
На фиг.1 показано, как изменения в pH появляются после введения различного количества тимолового синего в раствор. Результаты фиг.1 указывают, что дельта pH (т.е. реальный pH - измеренный pH) становится все больше и больше с увеличивающимися добавлениями концентрации индикатора в раствор. Этот результат ясно показывает, что слабобуферные (т.е. слабощелочные) растворы могут быть сильно возмущены добавлениями индикатора.
С постоянной ссылкой на фиг.1 теоретическое вычисление возмущения pH демонстрирует что, чем ниже щелочность, тем больше дельта pH. Поэтому авторы могут сделать вывод, что, чем больше количество добавленного индикатора и чем ниже щелочность, тем больше pH-раствора будет изменяться или возмущаться.
Чтобы доказать это заключение, авторы проводили первый эксперимент, в котором был обеспечен ряд 0,01% карбонатных буферов, и значение рН различных растворов измеряли до и после добавлений индикатора. Результаты этого первого эксперимента показаны на фиг.2. Как показано на фиг.2, ряд графиков показывает значения рН различных растворов, измеренных до и после добавлений индикатора. Из этих результатов видно, что, когда 0,002% фенолового красного (кислотная форма) добавляли к раствору, величина pH немного уменьшалась. Фиг.2 также показывает, что постепенное уменьшение pH наблюдалось по мере того, как количество фенолового красного увеличивалось от 0% (ромбовидные точки) до 0,01% (квадратные точки). Когда добавляли больше 0,01% фенолового красного, pH был значительно возмущен. Как показано на фиг.2, при добавлении 0,01% фенолового красного, растворы с pH выше чем приблизительно 8,0, стали по существу неразличимыми. Из этих результатов стало очевидно, что коррекция дельта pH, вызванная добавлениями индикатора, могла бы учитываться, чтобы получить фактический pH (реальный pH) раствора.
Соответственно, авторы проводили второй эксперимент, чтобы показать, что метод экстраполяции может быть полезным для определения pH. В этом втором эксперименте были выбраны два 0,01% карбонатных буфера с первоначальным pH 8,12 и 8,53. Использовали индикатор феноловый красный, который имеет интервал pH от приблизительно 6,8 до 8,2. Когда кислотную форму фенолового красного постепенно добавляли к слабобуферному карбонатному раствору, использовали pH-метр, чтобы контролировать pH раствора.
Как показано на фиг.3, график линейной зависимости pH, измеренного на 0,01% добавленного индикатора для каждого 0,01% карбонатного буфера, был построен. Линейные функции, представляющие pH, измеренный от каждого типа индикатора, экстраполировались к процентному содержанию индикатора нуль, чтобы получить точки пересечения. Как показано на фиг.3, точки пересечения прямой с осью ординат, а именно, 8,13 и 8,46, представляют pH раствора, когда концентрация индикатора есть нуль. Таким образом, точки пересечения прямой с осью ординат представляют первоначальный pH раствора до добавлений индикатора. Легко видеть, что точки пересечения прямой с осью ординат очень близки к начальным значениям рН, т.е. 8,12 и 8,53, карбонатных буферов, соответственно. Следовательно, представленный эксперимент демонстрирует, что возмущение pH вследствие состояния индикатора не является незначительным, когда щелочность очень низка. Кроме того, упомянутый выше эксперимент демонстрирует, что типичный метод линейной экстраполяции по настоящему изобретению является весьма полезным, чтобы получить первоначальный pH пробы. Алгоритмы, используемые в типичном методе экстраполяции, описаны более подробно ниже.
Чтобы исправить изменения pH, вызванные добавлением индикатора, калибровочная кривая была построена с использованием синтетического свежего эталонного раствора с достаточно высокой щелочностью в зависимости от твердого чувствительного элемента pH с рядом концентраций индикатора. В этом третьем эксперименте pH пробы измеряли тем же самым твердым чувствительным элементом pH и вычисляли pH, измеренный для каждой концентрации индикатора. Затем строили график зависимости pH от концентрации индикатора, получали эмпирическое уравнение и экстраполировали к концентрации индикатора ноль, чтобы получить начальный pH (т.е. реальный pH) неизвестной пробы.
Как показано на фиг.4, калибровочная кривая была получена, исходя из четырех (0,5%, 1,0%, 1,5%, 2,0%) концентраций индикатора. Значение рН неизвестной пробы с низкой щелочностью (меньше 0,01%) было измерено.
Фиг.5 является графиком, показывающим типичный метод линейной экстраполяции по настоящему изобретению. Как может быть замечено из фиг.5, точка пересечения прямой с осью ординат по уравнению (т.е. когда концентрация индикатора равна нулю) составляет 9,18. Так как точка пересечения прямой с осью ординат представляет pH до добавления индикатора, настоящий метод экстраполяции демонстрирует, что точка пересечения прямой с осью ординат 9,18 является очень хорошим приближением к фактическому значению рН 9,07, измеренному pH-метром.
Для достижения результатов, показанных на фиг.4 и 5, набор чувствительных элементов pH был создан с четырехпленочным комплектом, в котором каждая пленка чувствительного элемента содержала различную концентрацию индикатора рН, такую как In1, In2, In3 и In4, соответственно. Затем отклик поглощения измеряли для каждой пленки чувствительного элемента pH от ряда эталонных растворов, имеющих установленное и известное значение щелочности.
Затем калибровочная кривая была построена для каждой пленки чувствительного элемента pH, исходя из данных, измеренных на предыдущем, втором этапе. Калибровочные функции обозначены f1, f2, f3 и f4 с целью вычислений, показанных ниже.
Затем неизвестную пробу pH наносили на набор чувствительных элементов pH, и величину поглощения измеряли от каждой пленки. С целью вычислений, показанных ниже, эти значения поглощения обозначены A1, A2, A3 и A4 для пленок 1, 2, 3 и 4, соответственно.
Затем предварительные значения рН вычисляют для каждой пленки, исходя из каждого соответствующего калибровочного уравнения и величины поглощения. Например, pH для пленок 1-4 представлен как pH1=f1(A1), pH2=f2(A2), pH3=f3(A3) и pH4=f4(A4), соответственно. Замечено, что все эти значения рН были бы теми же самыми, если значение щелочности неизвестной пробы было бы равно значению калибровочного эталонного раствора. Однако pH1, pH2, pH3 и pH4, все, будут иметь различные значения, если значение щелочности неизвестной пробы не будет равно значению щелочности калибровочного эталонного раствора.
На конечном этапе фактическое значение рН неизвестной пробы вычисляли из предварительных величин рН1, pH2, pH3 и pH4, основанных на алгоритме экстраполяции, данном ниже:
Уравнение 1:
Figure 00000001
где
i обозначает индекс пленки;
Ini обозначает концентрацию индикатора в i-й пленке;
pHi обозначает кажущуюся величину рН, вычисленную из поглощения i-й пленки и соответствующего калибровочного уравнения fi; и
N обозначает число пленок pH.
Фиг.5 является графической иллюстрацией типичного алгоритма экстраполяции. Вычисления для результатов, показанных на фиг.5, и соответствующая математическая процедура показаны ниже:
Уравнение 2:
N=4, i=1, 2, 3 и 4
Уравнение 3:
∑(Ini)2=2,02+1,52+1,02+0,5=7,5
Уравнение 4:
∑pHi=8,38+8,60+8,75+9,00=34,73
Уравнение 5:
∑Ini=2,0+1,5+1,0+0,5=5,0
Уравнение 6:
∑Ini·pHi=2,0×8,38+1,5×8,60+1,0×8,75+0,5×9,00=42,91
Уравнение 7:
pH пробы = (34,73×7,5-5,0×42,9)/(7,5×4-5,0×5,0)=9,18
На основе результатов, описанных выше, настоящее изобретение, таким образом, обеспечивает систему для прямого измерения pH слабощелочных проб, обеспечивая набор чувствительных элементов, имеющих много концентраций индикатора, и калибруя измеренный pH неизвестной пробы по калибровочной кривой, полученной из известной пробы, чтобы получить pH неизвестной пробы. В соответствии с настоящим изобретением эти измерения регистрируют одновременно уместным образом, чтобы избежать утомительных и длинных измерений и вычислений, связанных с постепенными добавлениями индикатора. Например, типичный твердопленочный чувствительный элемент по настоящему изобретению демонстрировал быструю реакцию на сигнал, с результатами, получаемыми в пределах приблизительно пяти минут в тестах in situ (на области).
Как описано здесь, системы и методы по настоящему изобретению включают набор твердопленочных чувствительных элементов рН на основе полимера, включающих ряд различных концентраций индикатора. Созданный набор чувствительных элементов применяют к раствору пробы, содержащему известный pH и щелочность. pH-отклик от каждой концентрации индикатора одновременно измеряют и регистрируют. Затем получают калибровочную функцию (т.е. калибровочную кривую), строя график зависимости измеренного pH от каждой концентрации индикатора. Калибровочная кривая, таким образом, представляет график измеренного pH от концентрации индикатора. Затем формируют эмпирическую функцию (т.е. эмпирическое уравнение), представляющую каждое измерение pH. Эмпирическое уравнение экстраполируется, чтобы определить точки пересечения, когда концентрация индикатора есть нуль, таким образом, получая точную индикацию первоначального pH пробы перед добавлениями индикатора. Таким образом, калибровочная кривая представляет базовую функцию сравнения, которая может использоваться, чтобы калибровать отдельные результаты от каждой части индикатора, чтобы быстро и легко использовать возмущение pH от различных добавлений индикатора для того, чтобы экстраполировать pH слабощелочной пробы.
В то время как раскрытие иллюстрировали и описывали в типичных вариантах, оно не должно ограничиваться показанными деталями, так как различные модификации и изменения могут быть сделаны, не отступая каким-либо образом от объема и сущности настоящего изобретения. Также, дальнейшие изменения и эквиваленты раскрытого изобретения могут иметь место для специалистов в области техники, используя не больше, чем повседневное экспериментирование, и все такие изменения и эквиваленты, как полагают, находятся в пределах объема раскрытия, как определено следующей формулой изобретения.

Claims (10)

1. Способ измерения рН, включающий следующие стадии:
обеспечение набора чувствительных элементов рН, имеющего много индикаторов рН, причем каждый указанный индикатор имеет различную концентрацию индикатора;
применение указанного набора чувствительных элементов к раствору пробы, имеющему известный рН;
измерение первого рН-отклика от каждого указанного индикатора одновременно;
формирование калибровочной функции, представляющей указанный первый рН-отклик;
применение указанного набора чувствительных элементов к раствору слабощелочной пробы, имеющей неизвестный рН;
измерение второго рН-отклика от каждого указанного индикатора одновременно;
сравнение указанного второго рН-отклика с указанной калибровочной функцией, так чтобы получить предварительное значение рН от каждого указанного индикатора;
формирование эмпирической функции, представляющей указанные предварительные значения рН; и
экстраполяция указанной эмпирической функции к концентрации индикатора нуль, чтобы оценить фактический рН указанной неизвестной пробы.
2. Способ по п.1, в котором указанная стадия экстраполяции включает генерацию линейных точек пересечения указанной эмпирической функции, чтобы получить рН указанной неизвестной пробы.
3. Способ по п.2, в котором указанная стадия экстраполяции включает алгоритм экстраполяции, определенный уравнением
Figure 00000002

где i обозначает индекс, соответствующий каждому рН индикатору;
Ini обозначает концентрацию индикатора в i-м индикаторе;
pHi обозначает второе измерение рН i-м индикатором
и N обозначает число индикаторов рН.
4. Способ по п.3, в котором указанные индикаторы являются твердыми пленками на основе полимера, содержащими индикатор рН.
5. Способ по п.4, в котором указанные индикаторы являются колориметрическими индикаторами рН или флуоресцентными индикаторами рН.
6. Способ по п.1, в котором указанный рН-отклик измеряют колориметром, спектрофотометром или флуоресцентным спектрометром.
7. Способ по п.4, в котором указанные твердые пленки получают из водорастворимых полимеров.
8. Способ по п.4, в котором указанные твердые пленки получают из поли(2-гидроксиэтилметакрилата) (пГЭМА) или ацетилцеллюлозы.
9. Способ по п.3, далее включающий стадию получения графических представлений указанной калибровки и эмпирических функций.
10. Система для измерения рН, включающая
набор чувствительных элементов рН, имеющих много индикаторов рН,
причем каждый указанный индикатор имеет разную концентрацию индикатора;
средство для применения указанного набора чувствительных элементов к раствору пробы, имеющему известный рН;
средство для измерения первого рН-отклика от каждого указанного индикатора одновременно;
средство для генерации калибровочной функции, представляющей указанный первый рН-отклик;
средство для применения указанного набора чувствительных элементов к раствору слабощелочной пробы, имеющему неизвестный рН;
средство для измерения второго рН-отклика от каждого указанного индикатора одновременно;
средство для сравнения указанного второго рН-отклика с указанной калибровочной функцией, чтобы получить предварительное значение рН от каждого указанного индикатора;
средство для генерации эмпирической функции, представляющей указанные предварительные значения рН; и
средство для экстраполяции указанной эмпирической функции к концентрации индикатора ноль, чтобы оценить фактический рН указанной неизвестной пробы.
RU2009145112/28A 2007-05-07 2008-04-15 СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ pH СЛАБОЩЕЛОЧНЫХ РАСТВОРОВ RU2456578C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/800,746 2007-05-07
US11/800,746 US7883898B2 (en) 2007-05-07 2007-05-07 Method and apparatus for measuring pH of low alkalinity solutions

Publications (2)

Publication Number Publication Date
RU2009145112A RU2009145112A (ru) 2011-06-20
RU2456578C2 true RU2456578C2 (ru) 2012-07-20

Family

ID=39561884

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009145112/28A RU2456578C2 (ru) 2007-05-07 2008-04-15 СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ pH СЛАБОЩЕЛОЧНЫХ РАСТВОРОВ

Country Status (17)

Country Link
US (3) US7883898B2 (ru)
EP (1) EP2145174B1 (ru)
JP (1) JP5221646B2 (ru)
KR (1) KR101462295B1 (ru)
CN (1) CN101675331B (ru)
AR (1) AR066368A1 (ru)
AU (1) AU2008247975B2 (ru)
BR (1) BRPI0809737A2 (ru)
CA (1) CA2685677C (ru)
CL (1) CL2008001286A1 (ru)
HK (1) HK1142132A1 (ru)
MX (1) MX2009012072A (ru)
MY (1) MY151097A (ru)
NZ (1) NZ580942A (ru)
RU (1) RU2456578C2 (ru)
TW (1) TWI449896B (ru)
WO (1) WO2008137260A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573453C1 (ru) * 2014-08-14 2016-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) СПОСОБ ОПРЕДЕЛЕНИЯ pH МАЛОБУФЕРНЫХ ПРЕДЕЛЬНО РАЗБАВЛЕННЫХ ВОДНЫХ РАСТВОРОВ ТИПА КОНДЕНСАТА
RU2578045C1 (ru) * 2014-11-06 2016-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) СПОСОБ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ВЕЛИЧИНЫ pH ЦИРКУЛЯЦИОННОЙ ВОДЫ КОНТУРА ОХЛАЖДЕНИЯ СТАТОРА ЭЛЕКТРОГЕНЕРАТОРА ПАРОВОЙ ТУРБИНЫ
RU179664U1 (ru) * 2018-01-30 2018-05-22 Марат Габдулгазизович Бикмуллин Устройство для автоматического определения рН раствора
RU2735487C1 (ru) * 2020-03-13 2020-11-03 Лариса Васильевна Атрепьева Способ исследования активной реакции среды для онлайн-мониторинга водных объектов и гидротехнических сооружений

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883898B2 (en) * 2007-05-07 2011-02-08 General Electric Company Method and apparatus for measuring pH of low alkalinity solutions
DE102008050092A1 (de) 2008-10-06 2010-04-08 Hach Lange Gmbh Mobile Wasser-Analyseanordnung
EP2596347B1 (en) * 2010-07-22 2017-09-06 Hach Company Alkalinity analysis using a lab-on-a-chip
US9228986B2 (en) 2010-08-03 2016-01-05 General Electric Company Simultaneous determination of multiple analytes in industrial water system
CA2726064C (en) 2010-12-21 2014-03-11 Nutriag Ltd. Agricultural composition comprising ph sensitive agricultural chemicals and organic ph buffer
WO2015047173A1 (en) 2013-09-30 2015-04-02 Ge Healthcare Bio-Sciences Ab Method for preparation of liquid mixtures
CN103698287B (zh) * 2013-12-19 2015-09-23 山东省科学院海洋仪器仪表研究所 用于检测海水pH值的微光信号检测装置
CN104237229B (zh) * 2014-08-22 2016-08-24 天津商业大学 pH值测试液及其制备方法
EP3215829B1 (en) 2014-11-07 2020-05-20 Water Lens LLC Assay kit and method for determining alkalinity of an analyte solution
CN106338511A (zh) * 2016-09-18 2017-01-18 国网福建省电力有限公司 一种自动试验变压器用绝缘纸酸值装置及方法
CN107703019A (zh) * 2017-09-08 2018-02-16 瓮福达州化工有限责任公司 一种含钾型磷酸二铵中钾含量检测方法
CN107703254B (zh) * 2017-09-14 2020-09-29 中国神华能源股份有限公司 一种检测乳化炸药中硝酸铵溶液pH值是否合格的方法
CN110412023A (zh) * 2018-04-27 2019-11-05 大连理工大学 一种快速评价堆肥腐熟度的试剂盒及其使用方法
CN109632674A (zh) * 2019-01-29 2019-04-16 厦门鲎试剂生物科技股份有限公司 一种检测样品pH值的方法
JP7415437B2 (ja) * 2019-10-25 2024-01-17 三浦工業株式会社 ボイラ水のpH調整方法
FR3105424B1 (fr) * 2019-12-23 2022-01-14 Commissariat Energie Atomique Procédés de détermination de l’acidité d’une solution aqueuse acide
JP7427519B2 (ja) 2020-04-28 2024-02-05 オルガノ株式会社 pH測定システム及びpH測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1567960A1 (ru) * 1988-03-15 1990-05-30 Московский энергетический институт Устройство дл измерени рН при высоких давлени х и температуре
SU1578597A1 (ru) * 1988-06-01 1990-07-15 МГУ им.М.В.Ломоносова Способ определени изоэлектрической точки белка
RU2005137143A (ru) * 2001-08-24 2007-06-10 Сенсор-Тек Лимитед (Gb) Способы получения высокочувствительных потенциометрических датчиков

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792465A (fr) * 1971-12-09 1973-03-30 Atomic Energy Commission Rotor perfectionne pour analyseur photometrique rotatif convenant en particulier dans des conditions d'apesanteur
US3998878A (en) * 1975-11-05 1976-12-21 Boise Cascade Corporation Selectively separating oxalic, tartaric, glyoxylic and erythronic acids from aqueous solutions containing the same
JPS5672845A (en) * 1979-11-19 1981-06-17 Hitachi Ltd Detecting apparatus of examination position of sample
JPS56104248A (en) 1980-01-25 1981-08-19 Kurita Water Ind Ltd Method and apparatus for measuring anionic polymer concentration
US4323536A (en) * 1980-02-06 1982-04-06 Eastman Kodak Company Multi-analyte test device
JPS5853758A (ja) * 1981-09-28 1983-03-30 Wako Pure Chem Ind Ltd マグネシウム測定試薬
US4514504A (en) 1983-07-22 1985-04-30 Rohm And Haas Company Monitoring method for polyacrylic acids in aqueous systems
US5032526A (en) * 1983-10-11 1991-07-16 Calgon Corporation Method for the colorimetric determination of sulfonates in aqueous systems
US4894346A (en) * 1983-10-11 1990-01-16 Calgon Corporation Method for the colorimetric determination of polycarboxylates in aqueous systems
US5164598A (en) * 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4756884A (en) * 1985-08-05 1988-07-12 Biotrack, Inc. Capillary flow device
US4857453A (en) * 1987-04-07 1989-08-15 Syntex (U.S.A.) Inc. Immunoassay device
US5005572A (en) * 1988-02-26 1991-04-09 Brigham & Women's Hospital CO2 indicator and the use thereof to evaluate placement of tracheal tubes
US4877586A (en) * 1988-07-27 1989-10-31 Eastman Kodak Company Sliding test device for assays
US5234813A (en) * 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
JPH0816649B2 (ja) * 1989-10-13 1996-02-21 富士写真フイルム株式会社 液体分析の校正方法
ES2118062T3 (es) * 1989-12-15 1998-09-16 Hoffmann La Roche Composiciones reactivas, metodos y reactivos para la valoracion cuantitativa de magnesio o de calcio y magnesio.
US5094752A (en) * 1990-02-09 1992-03-10 Davis Water & Waste Industries, Inc. Aerobic wastewater treatment with alkalinity control
US5116759A (en) * 1990-06-27 1992-05-26 Fiberchem Inc. Reservoir chemical sensors
IE904444A1 (en) * 1990-12-10 1992-06-17 Stephen J Harris Ion-selective electrodes
US5593850A (en) * 1991-08-30 1997-01-14 Nalco Chemical Company Monitoring of industrial water quality using monoclonal antibodies to polymers
US5290705A (en) * 1992-01-13 1994-03-01 R. E. Davis Chemical Corporation Speciman support for optical analysis
AU4581893A (en) * 1992-08-12 1994-03-15 Dermot Diamond Chromogenic ligands and use thereof in optical sensors
US5354692A (en) * 1992-09-08 1994-10-11 Pacific Biotech, Inc. Analyte detection device including a hydrophobic barrier for improved fluid flow
GB9302903D0 (en) * 1993-02-13 1993-03-31 Univ Strathclyde Detection system
US5342787A (en) * 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
US5504573A (en) * 1993-10-13 1996-04-02 Man-Gill Chemical Company Apparatus and method for analyzing particles deposited on a substrate using substantially continuous profile data
US5470710A (en) 1993-10-22 1995-11-28 University Of Utah Automated hybridization/imaging device for fluorescent multiplex DNA sequencing
US5478751A (en) * 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
US5389548A (en) * 1994-03-29 1995-02-14 Nalco Chemical Company Monitoring and in-system concentration control of polyelectrolytes using fluorochromatic dyes
CN1147301A (zh) * 1994-05-02 1997-04-09 希巴-盖吉股份公司 测定pH值和离子强度的光学传感器系统
US5846396A (en) 1994-11-10 1998-12-08 Sarnoff Corporation Liquid distribution system
US5645799A (en) * 1995-03-06 1997-07-08 Nalco Chemical Company Apparatus for a continuous polymer dosage optimization and waste water analysis system
US5705394A (en) * 1995-04-17 1998-01-06 Nalco Chemical Company Tagged epichlorohydrin-dimethylamine copolymers for use in wastewater treatment
US5790627A (en) * 1995-09-20 1998-08-04 Research Development Corp. Method and apparatus for observing a specimen using an X-ray microscope
US5747342A (en) * 1995-10-31 1998-05-05 Calgon Corporation Methods and apparatus for monitoring and controlling PH phosphate and sodium to phosphate ratio in boiler systems operating with captive alkalinity
US5736405A (en) * 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
CA2253710A1 (en) 1996-04-25 1997-10-30 Spectrametrix Inc. Analyte assay using particulate labels
US5772894A (en) * 1996-07-17 1998-06-30 Nalco Chemical Company Derivatized rhodamine dye and its copolymers
US6113855A (en) * 1996-11-15 2000-09-05 Biosite Diagnostics, Inc. Devices comprising multiple capillarity inducing surfaces
EA002403B1 (ru) * 1997-02-28 2002-04-25 Бурштейн Текнолоджис, Инк. Лаборатория на диске
US6046052A (en) * 1997-05-06 2000-04-04 Ortho Clinical Diagnostics, Inc. Dry analytical elements for the determination of protein
US5958788A (en) * 1997-05-28 1999-09-28 Nalco Chemical Company Luminol tagged polymers for treatment of industrial systems
US5948695A (en) * 1997-06-17 1999-09-07 Mercury Diagnostics, Inc. Device for determination of an analyte in a body fluid
EP1005645B1 (en) 1997-08-18 2005-04-27 Novartis AG Optical carbon dioxide sensor
ES2235216T3 (es) 1997-09-11 2005-07-01 Randox Laboratories Ltd. Metodo y aparato de analisis de imagen.
US6011882A (en) * 1997-10-16 2000-01-04 World Precision Instruments, Inc. Chemical sensing techniques employing liquid-core optical fibers
FI107080B (fi) * 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd Mittauslaite
NZ504223A (en) 1997-10-27 2001-10-26 Idexx Lab Inc Device and methods for determination of the presence or amount of an analyte or microorganism in a solution
US6893877B2 (en) * 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
US6051437A (en) * 1998-05-04 2000-04-18 American Research Corporation Of Virginia Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control
GB9809943D0 (en) 1998-05-08 1998-07-08 Amersham Pharm Biotech Ab Microfluidic device
GB9815002D0 (en) 1998-07-11 1998-09-09 Jna Ltd Formulations
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6143246A (en) * 1998-08-18 2000-11-07 Biochem Technology, Inc. Apparatus for measuring ammonia in biochemical processes
EP1165235B1 (en) * 1999-03-19 2011-09-28 Life Technologies Corporation Method of screening mutated cells
US6214627B1 (en) * 1999-03-26 2001-04-10 Nalco Chemical Company Rapid colorimetric method for measuring polymers in aqueous systems
ITBO990179A1 (it) * 1999-04-16 2000-10-16 Technogym Srl Sistema di telecomunicazioni per lo scambio di informazioni di stato fisiologico tra una persona fisica ed un sistema informativo .
EP1777255A3 (en) * 1999-06-11 2007-07-11 Sydney Hyman Image making medium
AU6366200A (en) 1999-07-27 2001-02-13 Cellomics, Inc. Miniaturized cell array methods and apparatus for cell-based screening
US6648820B1 (en) * 1999-10-27 2003-11-18 Home-Medicine (Usa), Inc. Medical condition sensing system
US6241788B1 (en) * 1999-11-16 2001-06-05 Betzdearborn Inc. Method of stabilizing dye solutions and stabilized dye compositions
US6676903B2 (en) * 2001-07-30 2004-01-13 General Electric Company Apparatus and method for spatially detecting or quantifying chemical species
US6331438B1 (en) 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6360585B1 (en) * 2000-03-06 2002-03-26 General Electric Company Method and apparatus for determining chemical properties
WO2001088050A2 (en) * 2000-05-18 2001-11-22 Henkel Loctite Corporation Adhesive compositions for bonding passive substrates such as magnesium alloys
EP1290429A2 (en) 2000-06-09 2003-03-12 The Johns Hopkins University A pH SENSOR SYSTEM AND METHOD FOR USING SAME
US20020040208A1 (en) * 2000-10-04 2002-04-04 Flaherty J. Christopher Data collection assembly for patient infusion system
AU2002239354A1 (en) 2000-11-03 2002-06-11 Clinical Mirco Sensors, Inc. Devices and methods for biochip multiplexing
US6645142B2 (en) * 2000-12-01 2003-11-11 Optiscan Biomedical Corporation Glucose monitoring instrument having network connectivity
US6627177B2 (en) * 2000-12-05 2003-09-30 The Regents Of The University Of California Polyhydroxyl-substituted organic molecule sensing optical in vivo method utilizing a boronic acid adduct and the device thereof
JP4319363B2 (ja) * 2001-01-15 2009-08-26 富士フイルム株式会社 ネガ型画像記録材料
AU2002258528A1 (en) 2001-03-14 2002-09-24 Burnstein Technologies, Inc. Methods of decreasing non-specific binding in dual bead assays and system apparatus for detecting medical targets
JP2005233974A (ja) 2001-03-21 2005-09-02 Olympus Corp 生化学的検査方法
US6572902B2 (en) * 2001-04-25 2003-06-03 Advanced H2O, Inc. Process for producing improved alkaline drinking water and the product produced thereby
US6591124B2 (en) * 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
FR2825926A1 (fr) * 2001-06-14 2002-12-20 Sod Conseils Rech Applic Derives d'imidazoles modulant les canaux sodiques
US7169578B2 (en) * 2001-07-27 2007-01-30 Surface Logix, Inc. Cell isolation and screening device and method of using same
US6898531B2 (en) * 2001-09-05 2005-05-24 Perlegen Sciences, Inc. Algorithms for selection of primer pairs
WO2003064996A2 (en) * 2002-01-31 2003-08-07 Burstein Technologies, Inc. Bio-safe dispenser and optical analysis disc assembly
US20030157586A1 (en) * 2002-02-21 2003-08-21 Martin Bonde Device and method for conducting cellular assays using multiple fluid flow
JP2004028775A (ja) 2002-06-25 2004-01-29 Olympus Corp 遺伝子検査装置およびそれを用いた検出方法
US6794671B2 (en) * 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
KR100480338B1 (ko) * 2002-08-08 2005-03-30 한국전자통신연구원 극소량의 유체제어를 위한 미세 유체제어소자
JP3908135B2 (ja) 2002-09-09 2007-04-25 オリンパス株式会社 生化学的検査用画像処理方法
US7008795B2 (en) * 2002-09-20 2006-03-07 Mitsubishi Electric Research Labs, Inc. Multi-way LED-based chemochromic sensor
CN1188698C (zh) * 2002-11-02 2005-02-09 中国石油化工股份有限公司 一种测量pH值的装置及方法
GB2408330B (en) * 2003-11-22 2008-12-03 Advanced Gel Technology Ltd Polymeric materials comprising pH indicators for use in wound dressings
US7456968B2 (en) * 2003-11-24 2008-11-25 General Electric Company Sensor system and methods for improved quantitation of environmental parameters
US7524455B2 (en) * 2003-11-24 2009-04-28 General Electric Company Methods for deposition of sensor regions onto optical storage media substrates and resulting devices
US7132550B2 (en) * 2003-11-25 2006-11-07 Eastman Kodak Company Process for the preparation of cyanine dyes with polysulfonate anions
US20050133697A1 (en) 2003-12-23 2005-06-23 Potyrailo Radislav A. Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air
DE102004013161B4 (de) 2004-03-17 2008-04-10 microTec Gesellschaft für Mikrotechnologie mbH Mikrofluidik-Chip
US20060009805A1 (en) * 2004-04-26 2006-01-12 Ralph Jensen Neural stimulation device employing renewable chemical stimulation
EP1755536B1 (en) * 2004-06-15 2010-11-03 The Procter & Gamble Company A system for evaluating the ph and buffering capacity of moisture containing cleansing articles
US20060029516A1 (en) * 2004-08-09 2006-02-09 General Electric Company Sensor films and systems and methods of detection using sensor films
US7288414B2 (en) * 2005-04-19 2007-10-30 Specialty Assays, Inc. Use of phosphonazo III for the measurement of calcium, magnesium and sodium in analytical samples
US7807473B2 (en) * 2005-10-26 2010-10-05 General Electric Company Material compositions for sensors for determination of chemical species at trace concentrations and method of using sensors
US20070092972A1 (en) * 2005-10-26 2007-04-26 General Electric Company Self-contained phosphate sensors and method for using same
MY152491A (en) * 2005-10-26 2014-10-15 Gen Electric Methods and systems for delivery of fluidic samples to sensor arrays
US7723120B2 (en) * 2005-10-26 2010-05-25 General Electric Company Optical sensor array system and method for parallel processing of chemical and biochemical information
US8133741B2 (en) * 2005-10-26 2012-03-13 General Electric Company Methods and systems for delivery of fluidic samples to sensor arrays
US7883898B2 (en) * 2007-05-07 2011-02-08 General Electric Company Method and apparatus for measuring pH of low alkalinity solutions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1567960A1 (ru) * 1988-03-15 1990-05-30 Московский энергетический институт Устройство дл измерени рН при высоких давлени х и температуре
SU1578597A1 (ru) * 1988-06-01 1990-07-15 МГУ им.М.В.Ломоносова Способ определени изоэлектрической точки белка
RU2005137143A (ru) * 2001-08-24 2007-06-10 Сенсор-Тек Лимитед (Gb) Способы получения высокочувствительных потенциометрических датчиков

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573453C1 (ru) * 2014-08-14 2016-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) СПОСОБ ОПРЕДЕЛЕНИЯ pH МАЛОБУФЕРНЫХ ПРЕДЕЛЬНО РАЗБАВЛЕННЫХ ВОДНЫХ РАСТВОРОВ ТИПА КОНДЕНСАТА
RU2578045C1 (ru) * 2014-11-06 2016-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) СПОСОБ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ВЕЛИЧИНЫ pH ЦИРКУЛЯЦИОННОЙ ВОДЫ КОНТУРА ОХЛАЖДЕНИЯ СТАТОРА ЭЛЕКТРОГЕНЕРАТОРА ПАРОВОЙ ТУРБИНЫ
RU179664U1 (ru) * 2018-01-30 2018-05-22 Марат Габдулгазизович Бикмуллин Устройство для автоматического определения рН раствора
RU2735487C1 (ru) * 2020-03-13 2020-11-03 Лариса Васильевна Атрепьева Способ исследования активной реакции среды для онлайн-мониторинга водных объектов и гидротехнических сооружений

Also Published As

Publication number Publication date
CA2685677C (en) 2017-01-10
EP2145174A1 (en) 2010-01-20
JP2010527001A (ja) 2010-08-05
AU2008247975B2 (en) 2013-04-18
JP5221646B2 (ja) 2013-06-26
CN101675331B (zh) 2012-06-27
US20110091985A1 (en) 2011-04-21
NZ580942A (en) 2011-05-27
AR066368A1 (es) 2009-08-12
CN101675331A (zh) 2010-03-17
US20110217213A1 (en) 2011-09-08
EP2145174B1 (en) 2019-02-13
MX2009012072A (es) 2009-11-19
AU2008247975A1 (en) 2008-11-13
RU2009145112A (ru) 2011-06-20
US7883898B2 (en) 2011-02-08
BRPI0809737A2 (pt) 2014-10-14
HK1142132A1 (en) 2010-11-26
KR101462295B1 (ko) 2014-11-14
WO2008137260A1 (en) 2008-11-13
US8076153B2 (en) 2011-12-13
TW200912285A (en) 2009-03-16
KR20100016248A (ko) 2010-02-12
MY151097A (en) 2014-04-15
TWI449896B (zh) 2014-08-21
US20080280373A1 (en) 2008-11-13
US8148166B2 (en) 2012-04-03
CA2685677A1 (en) 2008-11-13
CL2008001286A1 (es) 2008-12-26

Similar Documents

Publication Publication Date Title
RU2456578C2 (ru) СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ pH СЛАБОЩЕЛОЧНЫХ РАСТВОРОВ
JP2010527001A5 (ru)
EP1394546B1 (en) Method and system for determining the acceptability of signal data collected from a prothrombin time test strip
KR20130088623A (ko) 인체 내 활성산소 검출수단
JP2000512752A (ja) 血清および血漿検体中の干渉体測定機器用較正材料
Rovati et al. Construction and evaluation of a disposable pH sensor based on a large core plastic optical fiber
US5183761A (en) Method of making calibration solution for verifying calibration and linearity of vertical photometers
US5258308A (en) Method, kit and apparatus for verifying calibration and linearity of vertical photometers
JPH0816649B2 (ja) 液体分析の校正方法
RU2369839C1 (ru) Система калибровки для использования с индикаторными полосками для исследования аналита с латеральным распространением
JP2004212120A (ja) 測定値推定機能を持つ測定装置及び測定方法
D'Orazio et al. Accuracy of commercial blood gas analyzers for monitoring ionized calcium at low concentrations
JPS6332132B2 (ru)
CN107478632B (zh) 一种通过pH试纸的荧光检测pH值的方法
Mittal et al. Estimation of uncertainty for measuring Galantamine hydrobromide in pharmaceutical formulation using ultraviolet spectrophotometry
CN108885207B (zh) 用于测定体液中的分析物浓度的方法和装置
Opitz et al. The applicability of fluorescence indicators to measure hydrogen ion activities by optimizing accuracy and minimizing the influence of ionic strength
Blanc POTENTIAL (MILLIVOLTS)
WO2016109329A2 (en) Compositions, apparatus and methods for determining ph of an analyte solution
CN114199843A (zh) 一种海水叶绿素a传感器的稳定性评价和修正方法
CN105115919A (zh) 一种用硫酸铜溶液检测分析仪器性能的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160416