RU2456251C1 - Способ активации вяжущих свойств минеральных техногенных продуктов - Google Patents

Способ активации вяжущих свойств минеральных техногенных продуктов Download PDF

Info

Publication number
RU2456251C1
RU2456251C1 RU2011107527/03A RU2011107527A RU2456251C1 RU 2456251 C1 RU2456251 C1 RU 2456251C1 RU 2011107527/03 A RU2011107527/03 A RU 2011107527/03A RU 2011107527 A RU2011107527 A RU 2011107527A RU 2456251 C1 RU2456251 C1 RU 2456251C1
Authority
RU
Russia
Prior art keywords
ash
slag
minutes
temperature
binding properties
Prior art date
Application number
RU2011107527/03A
Other languages
English (en)
Inventor
Елена Сергеевна Зыбина (RU)
Елена Сергеевна Зыбина
Фёдор Леонидович Капустин (RU)
Фёдор Леонидович Капустин
Владислав Михайлович Уфимцев (RU)
Владислав Михайлович Уфимцев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2011107527/03A priority Critical patent/RU2456251C1/ru
Application granted granted Critical
Publication of RU2456251C1 publication Critical patent/RU2456251C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к способу активации вяжущих свойств техногенных минеральных продуктов в виде зол или шлаков, содержащих оксид кальция, кремнезем и глинозем. Технический результат - повышение гидравлической активности - прочности шлака или золы. В способе термической активации вяжущих свойств минеральных техногенных продуктов в виде зол или шлаков, содержащих оксиды кальция, кремнезем и глинозем, включающем нагрев продукта, выдержку при заданной температуре, последующее охлаждение и тонкое его измельчение, золу или шлак нагревают до температуры 1200-1350°С за 3-5 минут, выдерживают при указанных температурах в течение 5-10 минут, а затем охлаждают до 800-1000°С за 1-2 минуты. 3 табл.

Description

Изобретение относится к технологиям, повышающим потребительские свойства минеральной попутной продукции металлургии и энергетики как сырья в производстве строительных материалов.
Известен способ активации вяжущих свойств попутной продукции в виде металлургических шлаков доменного производства, так называемая «грануляция», путем быстрого охлаждения водой шлакового расплава, продуктом которой является доменный гранулированный шлак (Волженский А.В., Буров Ю.С., Колокольников B.C. Минеральные вяжущие вещества, М., Стройиздат. 1973. с.402). В сравнении с отвальным шлаком аналогичного состава вяжущие свойства гранулированного шлака значительно выше. Недостатком данного способа активации является повышенный выброс в атмосферу паров с высоким содержанием серы, а также сложность регулирования грануляции вследствие высокой температуры шлакового расплава и усиленного парообразования, сопровождающего грануляцию.
Известен способ повышения вяжущих свойств минеральной техногенной продукции, содержащей оксид кальция, кремнезем и глинозем в виде доменного гранулированного шлака путем его нагрева до 400-800°С и выдержки при указанных температурах в течение 20 мин и последующего естественного охлаждения (Каушанский В.Е., Боженова О.Ю., Трубицин А.С. Влияние термообработки шлаковой составляющей портландцемента на его активность. // Цемент и его применение. 2001, №3, с.25-26). Эффективность термоактивации оценивали по увеличению прочности композиции из цементного клинкера, гипсового камня и шлака, размолотых совместно. Недостатком указанного способа следует считать относительно низкий уровень повышения вяжущих свойств смеси, включающей шлак, активированный прогревом. Кроме того, данный способ неэффективен применительно к дисперсным материалам, т.е. в виде порошков, золам ТЭС и самораспадающихся шлаков, нагрев которых проблематичен по причине высокой межзерновой пустотности порошков.
Технической задачей изобретения является повышение вяжущих свойств минеральной техногенной продукции металлургии и энергетики, в виде шлаков или зол, содержащих оксиды кальция, кремнезема и глинозема.
Указанный результат достигается быстрым, за 3-5 минут, нагревом минеральной техногенной продукции металлургии и энергетики в виде шлаков или зол, содержащих оксид кальция, кремнезем и глинозем, включающий нагрев продукта до температуры 1200-1350°С, выдержки при указанных температурах в течение 5-10 минут и последующего их быстрого охлаждения до 800-1000°С за 1-2 минуты.
Эффективность термоактивации по заявляемому способу оценивали на доменном гранулированном шлаке (ДГШ) крупностью 5-10 мм и золе от сжигания Березовского угля. Зола подвергалась увлажнению до пластического состояния. Из полученного таким образом теста формовали образцы-таблетки диаметром 20 и толщиной 5 мм, которые высушивали, а затем помещали в печь, предварительно разогретую до заданной температуры. Пирометрически зафиксировано, что все образцы нагревались до заданной температуры за 3-4 минуты.
После определенной выдержки внутри печи образцы извлекали из печи и охлаждали в воздушной среде. В исследовании использовали две пробы золы, отличающиеся генезисом и технологиями сжигания топлива. В табл.1 содержатся данные по их химическому составу и дисперсности.
Таблица 1
Свойства и состав золы и шлака
Проба золы Дисперсность Содержание оксидов, мас.%
r008, % Sуд.пов., м2/кг
Δmп SiO2 Al2O3 Fe2O3 CaO MgO SO3
1 Березовская факел. 4,0 378 1,4 19,4 10,6 7,3 40,3 6,2 11,8
2 Березовская ЦКС 6,0 689 11,2 20,7 10,9 12,9 31,9 4,6 6,7
3 ДГШ 9,1 318 - 37,4 13,3 - 34,1 7,6 -
r008 - остаток на стандартном сите с ячейкой 80 мкм, Syд.пов - удельная поверхность
Проба 1 получена при факельном режиме сжигании топлива, а проба 2 - при сжигании угля в циркулирующем кипящем слое (ЦКС). После активации ее продукты измельчались до остатка на сите 008 10-15% и перемешивались с молотым клинкером и гипсовым камнем.
Сравнивали вяжущие свойства термоактивированных зол и шлаков в составе цементной композиции, состоящей из 75% клинкера, 20% шлака или золы и 5% гипсового камня. На основе смеси указанного состава готовили образцы, которые до момента испытания твердели в нормальных воздушно-влажных условиях. Образцы твердели над водой в нормальных воздушно-влажных условиях а затем, по истечению 7 и 28 суток испытывались на сжатие (табл.2).
Таблица 2
Свойства композиции с термоактивированными продуктами
№№, вид добавки, температура, длительность активации r008% В/Ц, % Сроки схватывания часы-мин Прочность на сжатие Rсж, МПа
начало конец 7 с 28 с
1. Домен. гранулир. шлак (ДГШ)* 13 0,28 6-10 10-15 38,4 55,3
2. ДГШ, прототип 800°, 15 мин 11 0,28 6-25 7-20 44,2 63,6
3. ДГШ, нагрев 5 минут до 1200°С, выдержка 10 мин, охлажд. 2 мин до 10000С 10 0,28 5-45 8-10 35,1 67,7
4. Зола факельная* 18 0,48 1-20 3-40 35,3 45,8
5. Зола фак., прототип 800, 20 мин 12 0,28 6-25 9-50 40,1 56,9
6. 3ола факельная нагрев 3 мин до 1150°С, выдержка 10 мин, охлажд. 2 мин, до 9000С 13 0,28 1-45 2-30 45,3 53,8
7. Зола факельная нагрев 3 мин до 1200°С, выдержка 10 мин, охлажд. 2 мин, до 9000С 14 0,28 1-15 1-30 75,3 89,4
8. 3ола ЦКС* 6 0,46 0-35 0-55 18,1 28,4
9. 3ола ЦКС, нагрев 4 мин до 1350°С, выдержка 5 мин, охлажд. 2 мин, до 10000С 15 0,38 0-45 1-15 25,8 43,6
10. Зола ЦКС, нагрев 4 мин до 1370°С, выдержка 5 мин, охлажд. 2 мин, до 10000С 15 0,36 0-55 1-05 20,2 34,3
r008 - остаток на сите 008, В/Ц - водоцементное отношение, * без термоактивации.
Из приведенного следует:
- Термоактивация шлака по прототипу повышает прочность цемента на 15% (состав 2), тогда как добавка шлака, активированная по заявляемому способу, увеличивает прочность на 22% (состав 3);
- При увеличении температуры выше 1350° активность композиции на шлаке будет снижаться до исходного уровня, т.е. повышение температуры нагрева шлака выше указанного уровня - нецелесообразно;
- Термоактивация золы по режиму прототипа, в интервале температур 800-1150° (составы 5 и 6), малоэффективна, напротив, при повышении температуры до 1200° прочность существенно увеличивается (состав 7);
- Повышение температуры термоактивации до 13500С позволяет снижать ее длительность с 10 до 5 мин (состав 9), но дальнейшее повышение температуры свыше 1350°С нецелесообразно (состав 10), т.к. при этом прочность образцов снижается, а затраты на прогрев возрастают.
- В сравнении со шлаком, зольная добавка ускоряет схватывание цемента и ускоряет его твердение. При этом зола ЦКС, в сравнении с факельной, значительно повышает водопотребность композиции, что сопровождается определенным снижением прочности образцов.
Практический интерес представляет получение бесклинкерных вяжущих на основе техногенного термически активированного минерального сырья. В табл.3 сравниваются вяжущие свойства шлака и зол в исходном состоянии и после термоактивации при температуре 1250°С длительностью 5 мин.
Таблица 3
Свойства бесклинкерных термоактивированных вяжущих
В/В Сроки схватывания, час-мин Rсж, МПа
начало окончание 7 с. 28 с.
1 Домен. гранулир. шлак 0,45 2-30 4-25 3,2 5,4
2 То же, после термоакт. 0,45 1-45 3-35 5,7 8,9
3 Зола факельная 0.5 0-45 1-30 7,5 10,4
4 То же, после термоакт. 0,35 0-15 0-35 12,4 20,5
Увеличение гидравлической активности техногенной добавки к клинкеру можно объяснить фазовыми изменениями в структурах шлака и золы. Кроме того, при нагреве золы возможно образование дополнительных гидравлических фаз в виде силикатов и алюмоферритов кальция за счет алюмосиликатного стекла золы, взаимодействующего со свободной известью, входящей в ее состав. Установлено, что количество СаОсв в исходной золе выше, чем в термоактивированном продукте, полученном на ее основе, что косвенно подтверждает возможность появления в продуктах термоактивации новых, гидравлически активных фаз. Об этом же свидетельствует существенное увеличение прочности термоактивированных продуктов в сравнении с исходным сырьем - табл.3.
Применение термоактивации по предложенному способу позволит увеличивать активность цемента при вводе в его состав активированной техногенной добавки, а также получать бесклинкерные вяжущие повышенной прочности. Наибольший эффект следует ожидать при использовании активированной золы, поскольку она имеет менее плотную, нежели шлак, структуру и легко размалывается. Поэтому ее совместный помол с клинкером по сравнению со шлаком менее энергозатратен. Ожидаемая экономия использования изобретения может составлять - в качестве активной добавки в клинкерных цементах вместо обычного шлака до 30%; - как бесклинкерное вяжущее в кладочных и отделочных растворах до 40%.

Claims (1)

  1. Способ термической активации вяжущих свойств минеральных техногенных продуктов в виде зол или шлаков, содержащих оксиды кальция, кремнезем и глинозем, включающий нагрев продукта, выдержку при заданной температуре, последующее охлаждение и тонкое его измельчение, отличающийся тем, что золу или шлак нагревают до температуры 1200-1350°С за 3-5 мин, выдерживают при указанных температурах в течение 5-10 мин, а затем охлаждают до 800-1000°С за 1-2 мин.
RU2011107527/03A 2011-02-25 2011-02-25 Способ активации вяжущих свойств минеральных техногенных продуктов RU2456251C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011107527/03A RU2456251C1 (ru) 2011-02-25 2011-02-25 Способ активации вяжущих свойств минеральных техногенных продуктов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011107527/03A RU2456251C1 (ru) 2011-02-25 2011-02-25 Способ активации вяжущих свойств минеральных техногенных продуктов

Publications (1)

Publication Number Publication Date
RU2456251C1 true RU2456251C1 (ru) 2012-07-20

Family

ID=46847371

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011107527/03A RU2456251C1 (ru) 2011-02-25 2011-02-25 Способ активации вяжущих свойств минеральных техногенных продуктов

Country Status (1)

Country Link
RU (1) RU2456251C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU624891A1 (ru) * 1976-12-20 1978-09-25 Проектный И Научно-Исследовательский Институт "Харьковский Промстройниипроект" Способ обработки гранулированного доменного шлака
SU775071A1 (ru) * 1979-01-10 1980-10-30 Грузинский Ордена Ленина И Ордена Трудового Красного Знамени Политехнический Институт Им.В.И.Ленина Расшир юща добавка к цементу
RU94042717A (ru) * 1993-01-26 1996-07-20 Рей Тео Способ получения цемента из металлургических шлаков
JP2616053B2 (ja) * 1989-10-20 1997-06-04 三菱マテリアル株式会社 フライアッシュの加熱処理方法及び低発熱・高耐久性セメント
US20040231566A1 (en) * 2003-05-20 2004-11-25 Cemex Inc. Process for Fly Ash Beneficiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU624891A1 (ru) * 1976-12-20 1978-09-25 Проектный И Научно-Исследовательский Институт "Харьковский Промстройниипроект" Способ обработки гранулированного доменного шлака
SU775071A1 (ru) * 1979-01-10 1980-10-30 Грузинский Ордена Ленина И Ордена Трудового Красного Знамени Политехнический Институт Им.В.И.Ленина Расшир юща добавка к цементу
JP2616053B2 (ja) * 1989-10-20 1997-06-04 三菱マテリアル株式会社 フライアッシュの加熱処理方法及び低発熱・高耐久性セメント
RU94042717A (ru) * 1993-01-26 1996-07-20 Рей Тео Способ получения цемента из металлургических шлаков
US20040231566A1 (en) * 2003-05-20 2004-11-25 Cemex Inc. Process for Fly Ash Beneficiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КАУШАНСКИЙ В.Е. и др. Влияние термообработки шлаковой составляющей портландцемента на его активность. - Цемент и его применение, 2001, №3, с.25-26. *

Similar Documents

Publication Publication Date Title
KR101845278B1 (ko) 시멘트 클링커의 제조 방법
JP2017518256A (ja) セメント化合物及びその製造方法
RU2478084C2 (ru) Композиция для производства водостойкого пористого заполнителя
KR101372676B1 (ko) 철강 슬래그를 이용한 콘크리트 조성물
WO2009084984A2 (ru) Способ производства цемента с минеральной добавкой
RU2392251C1 (ru) Способ получения алюмосиликатного пропанта и его состав
RU2456251C1 (ru) Способ активации вяжущих свойств минеральных техногенных продуктов
RU2602622C1 (ru) Керамическая композиция для изготовления кирпича
RU2433106C2 (ru) Способ получения теплоизоляционного гексаалюминаткальциевого материала
JP6061421B2 (ja) 膨張性物質および膨張性組成物
RU2353596C1 (ru) Способ получения глиноземистого цемента
KR101471381B1 (ko) 무기결합재 조성물
KR101183535B1 (ko) 나노필러 효과 및 포졸란 반응성을 높인 건조수축 저감형 고강도 무기질 조성물
RU2426707C1 (ru) Термоизоляционная масса
RU2641678C2 (ru) Способ обжига дисперсного известняка
RU2615200C1 (ru) Жаростойкий бетон
RU2381279C2 (ru) Способ получения сталеплавильного флюса
RU2362748C1 (ru) Способ получения ангидритового вяжущего
RU2622060C1 (ru) Композиция для производства пористого заполнителя
RU2613702C1 (ru) Керамическая композиция для изготовления стеновых материалов
RU2479518C1 (ru) Сырьевая смесь для производства легкого заполнителя бетонов (пенозола)
RU2594238C1 (ru) Композиция для производства пористого заполнителя
WO2012169005A1 (ja) 膨張材クリンカの製造方法
JP5980044B2 (ja) セメント組成物の製造方法
RU2736598C1 (ru) Шихта для изготовления строительного кирпича

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130226