RU2451635C2 - Способ получения высокочистого элементного кремния - Google Patents

Способ получения высокочистого элементного кремния Download PDF

Info

Publication number
RU2451635C2
RU2451635C2 RU2010107275/05A RU2010107275A RU2451635C2 RU 2451635 C2 RU2451635 C2 RU 2451635C2 RU 2010107275/05 A RU2010107275/05 A RU 2010107275/05A RU 2010107275 A RU2010107275 A RU 2010107275A RU 2451635 C2 RU2451635 C2 RU 2451635C2
Authority
RU
Russia
Prior art keywords
alkali
earth metal
silicon
alkaline earth
chloride salt
Prior art date
Application number
RU2010107275/05A
Other languages
English (en)
Other versions
RU2010107275A (ru
Inventor
Эндрю МАТЕСОН (US)
Эндрю МАТЕСОН
Джон В. КЁНИТЦЕР (US)
Джон В. КЁНИТЦЕР
Original Assignee
Бостон Силикон Матириалз Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бостон Силикон Матириалз Ллк filed Critical Бостон Силикон Матириалз Ллк
Publication of RU2010107275A publication Critical patent/RU2010107275A/ru
Application granted granted Critical
Publication of RU2451635C2 publication Critical patent/RU2451635C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Изобретение относится к технологии получения высокочистого элементного кремния с помощью реакции тетрахлорида кремния с жидким металлическим восстанавливающим агентом при использовании двухреакторной установки. Способ включает следующие стадии: загрузку в первый реакционный аппарат жидкого тетрахлорида кремния и щелочного или щелочноземельного металлического восстанавливающего агента в жидкой форме при температурах ниже температуры кипения данного щелочного или щелочно-земельного металла, в результате чего получают смесь хлоридной соли щелочного или щелочно-земельного металла и элементного кремния, и отделение хлоридной соли щелочного или щелочно-земельного металла от элементного кремния во втором реакционном аппарате, при этом смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют путем нагрева второго реакционного аппарата до температуры выше температуры кипения хлоридной соли щелочного или щелочно-земельного металла; с использованием воды для растворения хлоридной соли щелочного или щелочно-земельного металла во втором реакционном аппарате или путем нагрева второго реакционного аппарата до температур в диапазоне от 600°С до температуры кипения хлоридной соли щелочного или щелочно-земельного металла с применением вакуума ниже 100 микрон с целью удаления соли щелочного или щелочно-земельного металла. Получаемый элементный кремний обладает чистотой, достаточной для производства кремниевых фотоэлектрических генерирующих устройств и других полупроводниковых устройств. 3 н. и 10 з.п. ф-лы.

Description

Притязание на приоритет
Настоящая заявка притязает на приоритет от предварительной заявки на патент Соединенных штатов под номером 60/953450, зарегистрированной 1 августа 2007, раскрытие которой включено, таким образом, в настоящую заявку посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу получения высокочистого элементного кремния с помощью реакции тетрахлорида кремния с жидким металлическим восстанавливающим агентом при использовании двухреакторной установки.
Уровень техники
Тетрахлорид кремния (SiСl4) доступен в продаже. Например, Sigma-Aldrich продает 99%-ный SiCl4 в 200-л количествах по $4890,00 (см. каталог 2007-2008, позиция №215120-200L). От этого и других коммерческих источников можно приобрести и другие количества, и с другими степенями чистоты.
Однако с учетом высокой стоимости очищенного SiCl4 способ настоящего изобретения включает дополнительную необязательную стадию образования SiCl4 из одного или более кремнийсодержащих материалов, таких, например, как кремнистый сланец (см. патент США №1858100) и кварцевая мука, кремнеземная пыль, порошкообразный кварцевый песок и рисовая шелуха (см. патент США №4237103). Известны и другие легкодоступные кремнийсодержащие материалы.
Краткое раскрытие изобретения
Настоящее изобретение относится к способу получения высокочистого элементного кремния с помощью реакции тетрахлорида кремния (или эквивалентного тетрагалогенида) с жидким металлическим восстанавливающим агентом в двухстадийной реакции. Первая стадия включает в себя восстановление тетрахлорида кремния до элементного кремния, в результате чего образуется смесь элементного кремния и одной или более хлоридных солей восстановительного металла. Вторая стадия включает отделение элементного кремния от хлоридных солей восстановительного металла. В некоторых вариантах осуществления для этих переработочных стадий используют два реакционных аппарата.
В предпочтительных вариантах осуществления получаемый способом настоящего изобретения элементный кремний обладает чистотой, достаточной для производства кремниевых фотоэлектрических генерирующих устройств и других полупроводниковых устройств.
Один из предпочтительных способов настоящего изобретения включает следующие стадии:
(a) загрузка в реактор тетрахлорида кремния и щелочного или щелочно-земельного металлического восстанавливающего агента при температурах ниже температуры кипения данного щелочного или щелочно-земельного металла, в результате чего получают смесь хлоридной соли щелочного или щелочно-земельного металла и элементного кремния, и
(b) отделение хлоридной соли щелочного или щелочно-земельного металла от элементного кремния.
Перед стадией (а) возможна предварительная стадия, на которой осуществляется хлорирование кремнийсодержащего материала с образованием тетрахлорида кремния. Особо предпочтительным кремнийсодержащим материалом является песок (SiO2). В качестве источника кремния для восстановления предпочтительным материалом является SiCl4.
В некоторых предпочтительных вариантах осуществления настоящего изобретения тетрахлорид кремния и щелочной или щелочно-земельный металлический восстанавливающий агент загружают в реакционный аппарат в виде жидкостей.
В некоторых предпочтительных вариантах осуществления настоящего изобретения смесь хлоридной соли щелочного или щелочно-земельного металла и тетрахлорида кремния разделяют с помощью нагрева смеси во втором реакционном аппарате выше температуры кипения хлоридной соли щелочного или щелочно-земельного металла.
В некоторых предпочтительных вариантах осуществления настоящего изобретения смесь хлоридной соли щелочного или щелочно-земельного металла и тетрахлорида кремния разделяют с использованием воды для растворения хлоридной соли щелочного или щелочно-земельного металла во втором реакционном аппарате.
В некоторых предпочтительных вариантах осуществления настоящего изобретения смесь хлоридной соли щелочного или щелочно-земельного металла и тетрахлорида кремния разделяют с помощью нагрева второго реакционного аппарата до температур от 600°С до температуры кипения хлоридной соли щелочного или щелочно-земельного металла с применением вакуума ниже 100 микрон с целью удаления соли щелочного или щелочно-земельного металла.
В некоторых предпочтительных вариантах осуществления настоящего изобретения щелочным или щелочно-земельным металлическим восстанавливающим агентом являются натрий, калий, магний, кальций или комбинация из двух или более этих металлов.
В некоторых предпочтительных вариантах осуществления настоящего изобретения щелочным или щелочно-земельным металлическим восстанавливающим агентом является металлический натрий.
В некоторых предпочтительных вариантах осуществления настоящего изобретения получаемый настоящим способом элементный кремний обладает чистотой не менее 99,9%.
В некоторых предпочтительных вариантах осуществления настоящего изобретения получаемый настоящим способом элементный кремний обладает чистотой не менее 99,99%.
В некоторых предпочтительных вариантах осуществления настоящего изобретения получаемый настоящим способом элементный кремний обладает чистотой не менее 99,999%.
В некоторых предпочтительных вариантах осуществления настоящего изобретения получаемый настоящим способом элементный кремний обладает чистотой не менее 99,9999%.
Детальное описание предпочтительных вариантов осуществления
Как было указано выше, один из предпочтительных вариантов осуществления настоящего изобретения представляет собой способ получения высокочистого элементного кремния с помощью реакции тетрахлорида кремния с жидким металлическим восстанавливающим агентом в двухстадийном процессе. Первая стадия применяется для восстановления тетрахлорида кремния до элементного кремния, в результате чего образуется смесь элементного кремния и хлоридной соли восстановительного металла, в то время как для отделения элементного кремния от хлоридной соли восстановительного металла применяется второй реакторный аппарат. Получаемый с использованием настоящего изобретения элементный кремний обладает чистотой, достаточной для производства кремниевых фотоэлектрических генерирующих устройств и других полупроводниковых устройств.
Жидкий металлический восстанавливающий агент может быть любым из щелочных и щелочно-земельных металлов, предпочтительно натрием, калием, магнием, кальцием или смесью двух или более из этих металлов.
В некоторых вариантах осуществления, в которых в качестве жидкого металлического восстанавливающего агента использован натрий, реакционные потоки могут вводиться в реакторный аппарат 1 любым из двух способов.
Первый способ состоит во введении реагирующих веществ в реакторный аппарат 1 в виде парообразного и жидкого сырьевых потоков, например парообразный тетрахлорид кремния подается в реакторный аппарат 1 и восстанавливается с использованием жидкого металлического натрия при температурах выше 100°С.
Второй способ ввода реагирующих веществ, который является предпочтительным, состоит во введении реагирующих веществ в реакторный аппарат 1 в виде жидких сырьевых потоков, например жидкий тетрахлорид кремния подается в реакторный аппарат 1 при температурах от 0 до 70°С, подвергается воздействию давления от 1 до 10 атм и восстанавливается жидким натрием при температурах выше 100°С.
При обоих способах ввода реагирующих веществ получаемый в результате продукт включает смесь элементного кремния и хлорида натрия. Если металлический восстанавливающий агент включает другие металлы или комбинации металлов, будут образованы элементный кремний и хлоридные соли других металлов.
Реакторный аппарат 1 может быть выполнен из нержавеющей стали или какого-либо другого коррозионностойкого высокотемпературного металла или сплава. Реакторный аппарат 2, используемый для удаления соли методом сублимации, преимущественно имеет внутри покрытие из высокочистой алюмооксидной керамики или кварцевого стекла полупроводникового качества.
Если для удаления соли используют воду, реакция может быть полностью проведена в реакторном аппарате 1. Таким образом, в то время как бóльшая часть процесса (чистота 99%) может быть завершена в единственном реакторном аппарате, заключительную стадию очистки методом зонной плавки, т.е. очистку методом зонной плавки кремния с образованием були или слитка, предпочтительно проводят во втором реакторном аппарате, в результате чего достигается повышенная чистота кремния. Высокотемпературная вакуумная плавка кремния преимущественно используется как заключительная стадия очистки. Реакторный аппарат 1 можно использовать для удаления избытка натрия, а также хлорида натрия способами, описанными для реакторного аппарата 2.
Реакторный аппарат 1 может эксплуатироваться как реакторный аппарат либо непрерывного, либо периодического действия. При использовании реакторного аппарата 1 как непрерывного реактора жидкий металлический натрий смешивают либо с парообразным, либо с жидким тетрахлоридом кремния при температурах от 0 до 70°С и давлениях от 1 до 10 атм, используя для этого смесительное сопло, что обеспечивает непрерывное производство элементного кремния в результате восстановления тетрахлорида кремния. При периодической работе реакторный аппарат 1 заполняют жидким натрием при температурах выше 100°С. После этого в жидкий натрий инжектируют тетрахлорид кремния в виде пара при температурах выше 100°С или в виде жидкости при температурах от 0 до 70°С и давлениях от 1 до 10 атм. Как при непрерывной, так и при периодической работе реакторного аппарата 1 процесс ведут с по меньшей мере 1-10%-ным избытком металлического натрия, получая в результате этого металлический кремний с низким содержанием металлических примесей. При работе реакторного аппарата 1 в непрерывном режиме сырьевые потоки вводятся в реакторный аппарат 1 с 1-10%-ным избытком металлического натрия по отношению к его стехиометрической потребности. При периодической работе инжектирование тетрахлорида кремния прекращают до израсходования всего количества натрия, загруженного в реакторный аппарат 2, сохраняя тем самым среду с некоторым избытком натрия.
Второй реакторный аппарат используют для очистки кремния, т.е. для отделения хлорида натрия от смеси элементный кремний/хлорид натрия. Это производится при проведении процесса в реакторном аппарате 2 в одном из следующих предпочтительных режимов:
(1) Нагрев реакторного аппарата 2 до температур выше 1470°С. Эти температуры выше температуры кипения хлорида натрия, в то время как элементный кремний находится в жидком состоянии. Температуру реакторного аппарата 2 поддерживают выше 1470°С до тех пор, пока весь хлорид натрия не будет удален из жидкого металлического кремния. Как только весь хлорид натрия окажется удаленным из жидкого металлического кремния, реакторный аппарат 2 охлаждают до комнатной температуры, в результате чего получают булю высокочистого кремния, который затем может быть подвергнут дополнительной переработке с целью получения кремния для фотоэлектрических устройств.
(2) Использование реакторного аппарата 2 в качестве аппарата для водной промывки. При вводе в реакторный аппарат 2 деионизованной воды при температурах от 50 до 95°С происходит растворение хлорида натрия из смеси кремний/хлорид натрия. Смесь кремний/хлорид натрия в деионизованной воде перемешивают в течение 10-60 мин, после чего содержащую соль воду удаляют из реакторного аппарата 2. Эту операцию повторяют до полного удаления хлорида натрия.
(3) Нагрев реакторного аппарата 2 до температур от 600°С до температуры кипения соли щелочного или щелочно-земельного металла с применением вакуума по меньшей мере 100 микрон. Хлорид натрия сублимируется из смеси кремний/хлорид натрия, в результате чего получают порошок кремния, который затем может быть подвергнут дополнительной переработке с целью получения кремния для фотоэлектрических устройств.
Все описанные выше рабочие условия для реакторных аппаратов 1 и 2 позволяют получать металлический кремний с чистотой по меньшей мере 99,9% при менее чем 10 ч./млн (ррm) бора и фосфора. Бор и фосфор являются двумя примесями, которые не удаляются при кристаллизации Si. При этом В и Р сильно влияют на электрические свойства Si. По этой причине бóльшая часть технических условий для Si фотоэлектрической чистоты имеет более ограниченные уровни В и Р, чем уровни других загрязнителей. Суммарный уровень бора и фосфора в кремнии настоящего изобретения преимущественно ниже 1 ч./млн, более предпочтительно ниже 0,1 ч./млн, наиболее предпочтительно ниже 0,01 ч./млн и ниже 0,001 ч./млн.
Путем тщательного контроля рабочих условий можно получать металлический кремний с чистотой преимущественно выше 99.99%, более предпочтительно выше 99.999% и наиболее предпочтительно выше 99.9999% при уровнях бора и фосфора в каждом случае ниже 0,1 ч./млн. Для предотвращения взаимодействия реагирующих веществ с воздухом или влагой необходимо контролировать рабочие условия, относящиеся, в частности, к атмосфере над реагирующими веществами. Необходимо также контролировать экзотермичность реакции, чтобы предотвратить отклонения в сторону высоких температур. Наконец, для предупреждения коррозии реактора необходимы соответствующие очистка, хранение, обращение с реакторами и их загрузка. Строгость соблюдения условий будет зависеть от масштаба реакции, т.е. размера реактора и скоростей реакций.
Получаемый способом настоящего изобретения высокочистый кремний может быть дополнительно переработан с целью получения кремния для фотоэлектрических устройств. Например, очищенный кремний, полученный способом изобретения, может быть дополнительно расплавлен с образованием слитка для применения в области фотоэлектрических устройств, причем эта операция приведет к некоторой дополнительной очистке металлического кремния. Були или слитки могут быть, например, нарезаны на пластины и отполированы. После этого путем диффузии легирующей примеси могут быть образованы полупроводниковые переходы.

Claims (13)

1. Способ получения высокочистого элементного кремния, содержащий следующие стадии:
(a) загрузка в первый реакционный аппарат жидкого тетрахлорида кремния и щелочного или щелочноземельного металлического восстанавливающего агента в жидкой форме при температурах ниже температуры кипения данного щелочного или щелочноземельного металла, в результате чего получают смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния, и
(b) отделение хлоридной соли щелочного или щелочноземельного металла от элементного кремния во втором реакционном аппарате,
в котором смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют путем нагрева второго реакционного аппарата до температуры выше температуры кипения хлоридной соли щелочного или щелочноземельного металла или
смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют с использованием воды для растворения хлоридной соли щелочного или щелочноземельного металла во втором реакционном аппарате, или
смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют путем нагрева второго реакционного аппарата до температур в диапазоне от 600°С до температуры кипения хлоридной соли щелочного или щелочноземельного металла с применением вакуума ниже 100 мкм с целью удаления соли щелочного или щелочноземельного металла.
2. Способ по п.1, дополнительно содержащий предварительную стадию, которую проводят перед стадией (а), на которой осуществляют хлорирование кремнийсодержащего материала с образованием жидкого тетрахлорида кремния.
3. Способ по п.1, в котором смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют путем нагрева второго реакционного аппарата до температуры выше температуры кипения хлоридной соли щелочного или щелочноземельного металла.
4. Способ по п.1, в котором смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют с использованием воды для растворения хлоридной соли щелочного или щелочноземельного металла во втором реакционном аппарате.
5. Способ по п.1, в котором смесь хлоридной соли щелочного или щелочноземельного металла и элементного кремния разделяют путем нагрева второго реакционного аппарата до температур в диапазоне от 600°С до температуры кипения хлоридной соли щелочного или щелочноземельного металла с применением вакуума ниже 100 мкм с целью удаления соли щелочного или щелочноземельного металла.
6. Способ по п.1, в котором щелочным или щелочноземельным металлическим восстанавливающим агентом являются натрий, калий, магний, кальций или комбинация из двух или более этих металлов.
7. Способ по п.1, в котором щелочным или щелочноземельным металлическим восстанавливающим агентом является металлический натрий.
8. Способ по п.1 или 2, в котором очистку элементного кремния полностью осуществляют во втором реакционном аппарате.
9. Способ по п.1 или 2, в котором очистку элементного кремния частично осуществляют в первом реакционном аппарате, а завершающую очистку производят во втором аппарате.
10. Материал элементного кремния, полученный способом по п.1 или 2, в котором чистота кремния лежит в пределах от 99,99% до 99,9999%.
11. Материал элементного кремния по п.10, в котором материал содержит кремний при суммарном уровне бора и фосфора в пределах от менее 10 ч./млн до менее 0,0001 ч./млн.
12. Слиток кремния, полученный из материала по п.10, изготовленный способом разливки материала элементного кремния.
13. Слиток кремния по п.12, в котором способ разливки выбирают из вакуумно-дуговой переплавки и электронно-лучевой плавки.
RU2010107275/05A 2007-08-01 2008-07-31 Способ получения высокочистого элементного кремния RU2451635C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95345007P 2007-08-01 2007-08-01
US60/953,450 2007-08-01

Publications (2)

Publication Number Publication Date
RU2010107275A RU2010107275A (ru) 2011-09-10
RU2451635C2 true RU2451635C2 (ru) 2012-05-27

Family

ID=40304870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010107275/05A RU2451635C2 (ru) 2007-08-01 2008-07-31 Способ получения высокочистого элементного кремния

Country Status (8)

Country Link
US (1) US20100154475A1 (ru)
EP (1) EP2173658A4 (ru)
JP (1) JP2010535149A (ru)
CN (1) CN101801847A (ru)
AU (1) AU2008282166A1 (ru)
BR (1) BRPI0814309A2 (ru)
RU (1) RU2451635C2 (ru)
WO (1) WO2009018425A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107850A1 (en) * 2009-03-20 2010-09-23 Boston Silicon Materials Llc Method for the manufacture of photovoltaic grade silicon metal
WO2011009017A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
EP2709952A4 (en) * 2011-05-16 2014-12-10 Boston Silicon Materials Llc PREPARATION AND APPLICATIONS OF SILICONE METAL
CN103764880B (zh) 2011-08-26 2016-10-26 康萨克公司 利用可消耗电极真空电弧冶炼工艺来精炼类金属
CN102923747A (zh) * 2012-11-28 2013-02-13 东北大学 一种利用煤矸石生产氯化铝、氯化硅和氯化铁的方法
CN105377757A (zh) * 2013-07-10 2016-03-02 宾夕法尼亚州研究基金会 中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用
CN108622882B (zh) * 2017-03-18 2022-02-18 深圳格林德能源集团有限公司 一种石墨烯的液相共沉积制备方法
AU2018266911C1 (en) 2017-05-12 2022-10-20 Enanta Pharmaceuticals, Inc. Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
RU2729691C2 (ru) * 2018-12-05 2020-08-11 ООО "Современные химические и металлургические технологии" (ООО "СХИМТ") Способ алюмотермического получения металлических порошков и устройство для его осуществления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102767A (en) * 1977-04-14 1978-07-25 Westinghouse Electric Corp. Arc heater method for the production of single crystal silicon
US4239740A (en) * 1979-05-25 1980-12-16 Westinghouse Electric Corp. Production of high purity silicon by a heterogeneous arc heater reduction
RU2181104C2 (ru) * 2000-02-03 2002-04-10 Государственное унитарное предприятие Государственный научный центр Российской Федерации Физико-энергетический институт имени академика А.И. Лейпунского Способ выделения кремния

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1858100A (en) * 1928-07-23 1932-05-10 Internat Silica Corp Process of treating silica-bearing materials
DE1030816B (de) * 1953-11-10 1958-05-29 Siemens Ag Verfahren und Vorrichtung zur Herstellung reinsten Siliziums oder Germaniums oder anderer Halbleiterstoffe
BE553349A (ru) * 1957-12-31 1900-01-01
US4150248A (en) * 1978-03-09 1979-04-17 Westinghouse Electric Corp. Arc heater with silicon lined reactor
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
US4237103A (en) * 1978-06-29 1980-12-02 Combustion Engineering, Inc. Method for disposal of sodium waste material
CA1198581A (en) * 1980-10-20 1985-12-31 Robert K. Gould Method and apparatus for producing high purity silicon from flames of sodium and silicon tetrachloride
US5021221A (en) * 1980-10-20 1991-06-04 Aero Chem Research Lab., Inc. Apparatus for producing high purity silicon from flames of sodium and silicon tetrachloride
US4446120A (en) * 1982-01-29 1984-05-01 The United States Of America As Represented By The United States Department Of Energy Method of preparing silicon from sodium fluosilicate
US4590043A (en) * 1982-12-27 1986-05-20 Sri International Apparatus for obtaining silicon from fluosilicic acid
US4781565A (en) * 1982-12-27 1988-11-01 Sri International Apparatus for obtaining silicon from fluosilicic acid
US4748014A (en) * 1982-12-27 1988-05-31 Sri International Process and apparatus for obtaining silicon from fluosilicic acid
FI72952C (fi) * 1985-03-11 1987-08-10 Kemira Oy Foerfarande foer framstaellning av kisel.
US4676968A (en) * 1985-07-24 1987-06-30 Enichem, S.P.A. Melt consolidation of silicon powder
JP3844856B2 (ja) * 1997-09-11 2006-11-15 住友チタニウム株式会社 高純度シリコンの製造方法
JP3218016B2 (ja) * 1998-09-17 2001-10-15 日本碍子株式会社 高純度シリコン及び高純度チタンの製造法
DE50302184D1 (de) * 2002-01-18 2006-04-06 Power Avenue Nashville Verfahren zur herstellung von silicium
US20050053540A1 (en) * 2002-01-18 2005-03-10 Norbert Auner Method for producing amorphous silicon and/or organohalosilanes produced therefrom
DE112006003557T5 (de) * 2005-12-27 2008-11-20 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung von polykristallinem Silicium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102767A (en) * 1977-04-14 1978-07-25 Westinghouse Electric Corp. Arc heater method for the production of single crystal silicon
US4239740A (en) * 1979-05-25 1980-12-16 Westinghouse Electric Corp. Production of high purity silicon by a heterogeneous arc heater reduction
RU2181104C2 (ru) * 2000-02-03 2002-04-10 Государственное унитарное предприятие Государственный научный центр Российской Федерации Физико-энергетический институт имени академика А.И. Лейпунского Способ выделения кремния

Also Published As

Publication number Publication date
EP2173658A4 (en) 2012-10-03
AU2008282166A1 (en) 2009-02-05
CN101801847A (zh) 2010-08-11
BRPI0814309A2 (pt) 2015-02-03
JP2010535149A (ja) 2010-11-18
WO2009018425A1 (en) 2009-02-05
RU2010107275A (ru) 2011-09-10
US20100154475A1 (en) 2010-06-24
EP2173658A1 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
RU2451635C2 (ru) Способ получения высокочистого элементного кремния
Gribov et al. Preparation of high-purity silicon for solar cells
JP5311930B2 (ja) シリコンの製造方法
JP4856738B2 (ja) 高純度シリコン材料の製造方法
NO171778B (no) Fremgangsmaate for raffinering av silisium
CA2797300A1 (en) Low-dopant polycrystalline silicon chunk
WO2010029894A1 (ja) 高純度結晶シリコン、高純度四塩化珪素およびそれらの製造方法
JP2024026145A (ja) トリクロロシランを調製するためのシリコン顆粒、及び関連する製造方法
JP2004051453A (ja) Si製造方法
CA2726003C (en) Halide-containing silicon, method for producing the same, and use of the same
US9327987B2 (en) Process for removing nonmetallic impurities from metallurgical silicon
JPH05262512A (ja) シリコンの精製方法
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
JP2004099421A (ja) シリコンの製造方法
RU2327639C2 (ru) Способ получения кремния высокой чистоты
JP6337389B2 (ja) 炭化珪素粉粒体の製造方法
US20120045383A1 (en) Method for the Manufacture of Photovoltaic Grade Silicon Metal
JP2008081387A (ja) 高純度シリコンの製造方法
Forniés et al. Polysilicon vs. upgraded metallurgical grade silicon (UMG-Si): Technology, quality and costs
RU2588627C1 (ru) Способ рафинирования металлургического кремния
JPS6389414A (ja) クロロポリシランの製造方法
RU2519460C1 (ru) Способ получения кремния с использованием субхлорида алюминия
RU2707053C1 (ru) Способ очистки металлургического кремния от углерода
RU2648436C2 (ru) Способ получения порошка кремния высокой чистоты из смеси диоксида кремния и алюминия
KR20140112631A (ko) 금속원소를 이용한 실리콘 정제방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130801