CN105377757A - 中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用 - Google Patents

中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用 Download PDF

Info

Publication number
CN105377757A
CN105377757A CN201480038835.4A CN201480038835A CN105377757A CN 105377757 A CN105377757 A CN 105377757A CN 201480038835 A CN201480038835 A CN 201480038835A CN 105377757 A CN105377757 A CN 105377757A
Authority
CN
China
Prior art keywords
silicon
porous
structures
porous silicon
psi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480038835.4A
Other languages
English (en)
Inventor
王东海
戴放
衣冉
宰建陶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penn State Research Foundation
Original Assignee
Penn State Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penn State Research Foundation filed Critical Penn State Research Foundation
Publication of CN105377757A publication Critical patent/CN105377757A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

我们提供了通过无模板和无HF的方法制备的中孔硅材料(PSi)。生产工艺是容易的和可扩展的,且它可以在温和反应条件下进行。可以直接通过用碱合金(例如NaK合金)还原硅卤化物前体(例如SiCl4)的产生硅。随后,退火所产生的Si盐基体用于孔隙形成和微晶生长。通过用水去除盐副产物获得最终产物。

Description

中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用
相关申请的交叉引用
本申请要求在2013年7月10日提交的美国临时专利申请No.61/844634的优先权。通过引用将该申请并入本文。
关于联邦资助的研究或开发的声明
本发明是在能源部授予批准号为DE-AC02-05CH11231的政府支持下完成。政府享有本发明的一定权利。
发明的背景技术
技术领域
本发明的实施方案涉及多孔硅材料的合成和使用。
相关技术背景
作为一类典型的多孔半导体材料,多孔硅材料由于其特殊的化学和物理性质以及在不同区域中的广泛应用而得到长久的研究。例如,在光电子和传感方面深度研究多孔硅材料,这是因为它们的发光性能。多孔硅材料还可用于药物和基因递送研究,这是因为其高孔隙度和生物相容性。此外,正在探索多孔硅材料在食品强化中的潜应用。
除了其对于上述应用中的吸引力,多孔硅还在锂离子(“Li离子”)蓄电池的领域中受到欢迎。这是因为使用硅基阳极材料。认为多孔结构是补偿硅阳极在电化学过程中的大体积变化(约300%)的有效方式。这趋向于提供比非多孔阳极材料的更好性能。
有两种产生多孔硅材料的广为接受的技术。这些特别是阳极化和染色蚀刻。遗憾的是,两种方法都需要固体结晶的硅前体。这导致相应的低孔隙率的生产。此外,两种方法需要大量的氢氟酸("HF"),这难以安全处理,且对环境不友好。这两个缺点使得这两种方法为高成本和低效率的。
在最近几年报道了一些替代性的制剂,其避免使用固体硅前体。这些包括多孔硅的化学还原,和热退火,然后用氢氟酸蚀刻模板。在该方法中,预形成的多孔前体或孔隙模板对于在工艺中获得孔隙仍是必要的。遗憾的是,仍然需要具有其很多缺点的氢氟酸。
发明概述
我们报告微米尺寸的中孔硅。我们用"微米尺寸"意指平均颗粒直径为1微米或更小。"多孔"使用的很广泛,并且包括具有孔隙、空位、或空隙的材料。通常将具有平均孔隙尺寸为直径2-50nm的多孔材料称为"中孔"。根据本发明的实施方案,多孔硅材料(PSi)可以通过无模板且无HF的方法制备。(但这不排除通过HF进一步加工以从已形成的硅去除表面涂层,如下所述。)
生产工艺是容易的且可扩展的。它可以在温和反应条件下进行。可以直接通过用碱合金(例如NaK合金)还原硅-卤化物前体(例如SiCl4)产生硅。随后,退火所产生的Si盐基体用于孔隙形成和微晶生长。通过用水去除盐副产物获得最终产物。
通常通过操作本文报道的方法获得的该微米尺寸的材料显示出220-580m2g-1的表面积。在一些实施方案中,表面积可以为250-550m2g-1;300-525m2g-1;350-525m2g-1;400-525m2g-1,或490-510m2g-1。在特别优选的实施方案中,该表面积为496.8m2g-1。典型的实施方案还显示了在0.86-1.44cm3g-1的总孔隙体积。其它实施方案可显示0.90-1.50cm3g-1的总孔隙体积。在优选实施方案中,孔隙体积为1.44cm3g-1。孔隙通常是平均直径为10nm的中孔。在一些实施方案中,平均孔隙直径为8-12nm。初级微晶单元典型是纳米尺寸的,平均尺寸小于10纳米。在一些实施方案中,它们具有小于8nm、小于6nm、或小于4nm的平均尺寸。
附图简要描述
图1A、1B、1C、1D、1E和1F示出应用于根据本发明的一个实施方案制得的多孔硅的各种分析技术结果。
图2A显示了PSi-600的SEM图像。图2B显示了PSi-600的TEM图像。图2C显示了PSi-700的TEM图像。图2D显示了PSi-820的TEM图像。
图3A显示了对于如下文讨论的本发明实施方案的紫外-可见光漫反射光谱。图3B、3C和3D显示了如下文讨论的实施方案中析氢随时间的变化。
图4A、4B和4C显示了包括本发明实施方案的硅的蓄电池的电化学性能。4D显示了在820℃制备的样品的电化学性能。
图5A、5B和5C显示了一些mPSi材料包括PSi-600、PSi-700、PSi-820和PSi-600R的特征。
本发明的详细描述
本发明实施方案提供了微米尺寸的中孔硅的合成和使用方法。将在下面描述各种组合物、方法和用途。
合成和表征
在方案1中显示了本发明的优选实施方案的合成途径。通过用碱合金还原剂NaK还原SiCl4生产硅。为了获得孔隙尺寸<20nm的中孔硅材料(测量为平均孔隙直径),不需要外部模板。可通过TEM显微术和使用Barrett-Joynes-Halenda(BJH)方法从氮吸附测量所计算的结果确认孔隙尺寸。可以在20-110℃的温度下在热下处理所述反应。在其他实施方案中,温度为60-100℃。
来自还原的Si硅是非晶的。为了使盐去除过程中Si与H2O氧化最小化,通过煅烧处理原料以形成晶态骨架,其与非晶Si相比提供对于水和空气的动力学较慢的反应性。不同的煅烧温度导致不同的颗粒尺寸以及孔隙尺寸。可在例如600℃-950℃的温度下进行煅烧。这产生一系列具有不同的BET(Brunauer-Emmett-Teller法)表面积的中孔硅。通过用去离子水除去盐副产物获得PSi材料。
在此使用术语"PSi-XXX",其中"XXX"是数字。这表示煅烧温度。因此,PSi-600表示煅烧温度为600℃。
在方案2中显示了本文报告的用于组合物的更一般的合成方案。在该方案中,通过用碱基的还原剂还原卤化硅来生产硅。模板不是必要的。卤化硅可以是例如四溴化硅、四氟化硅、四碘化硅或四氯化硅。所有的卤原子不必相同;例如,也可使用SiFCl3或SiI2Cl2。通常,这在有机溶剂中进行。甲苯是一种合适的溶剂的例子。例如,其它合适的溶剂包括但不限于四氢呋喃(THF)和戊烷。
例如,碱金属基的还原剂可以是钠金属(Na)和/或萘化钠(NaC10H8)一优选的还原剂是钠-钾合金(NaK)。尽管可以使用任何NaK,但在一些实施方案中,NaK具有1∶4的硅卤化物与钾的比例。
在本文报道的方法中,一般使用以下煅烧工艺。煅烧温度为600℃-950℃。在一些实施方案中,温度为650℃-900℃;或700℃-800℃。通常在惰性气体环境(例如氮气或氩气)下进行煅烧过程从而防止材料的氧化。通常,一旦形成多孔硅材料,就用水清洗它以除去盐。也可使用其它除盐技术,如HF溶液蚀刻或热盐升华。
为了得到孔隙尺寸>20nm的中孔硅材料,通常使用外部SiO2模板。合成与以上描述的相同,尽管添加有下述模板。外部SiO2模板是市购的。例如,它们可以获自Sigma-Aldrich。将外部模板与SiCl4前体(或另一卤化硅前体)混合,通过在有或无回流的甲苯(或其它有机溶剂)中的NaK合金(或其它碱合金还原剂)还原该混合物。如同以上报告的无模板的合成,对于模板工艺需要煅烧以得到结晶产品。
不同的煅烧温度(例如600℃-950℃的不同温度)导致不同颗粒直径和孔隙尺寸,而较高的温度趋于导致较大的颗粒尺寸和较大的孔隙尺寸。这允许本发明的实施方案提供一系列具有不同BET表面积的中孔硅材料。在又一些实施方案中,可通过混合相应的掺杂元素的卤化物前体获得n-型和p-型中孔Si材料。例如,通过使用BCl3作为共前体,将实现p-型中孔Si。在一个实施方案中可采用PCl3作为共前体制备n型中孔硅。由于需要所期望的孔隙尺寸,因此外部SiO2模板是任选的。合成过程与之前描述的相同。
方案1.PSi合成路线的说明
方案2.多孔硅一般合成的说明
在本发明的优选实施方案中,由上述方法制得(特别初始方法)的硅,Brunauer-Emmett-Teller(BET)表面积分析显示出所产生的多孔硅(PSi-600)的496.8m2g-1(1152m2cm-3)的高表面积。
我们得到的BET表面积显著和令人惊奇地大于之前已实现的那些。大多数已报导的多孔硅材料具有100m2g-1-300m2g-1的表面积。几乎没有报道高达约500m2g-1的表面积。在一些实施方案中,我们的氧化硅具有超过550m2g-1的BET表面积。通过我们的新方法得到的最高值达到580m2g-1,这是所有已报告的中孔硅材料的最高值。这比已经报道的最大值大出几乎20%,比平均范围的上限(highend)大出几乎100%。
尽管由我们的方法得到的材料被定义为多孔硅,但我们强调,材料结构以及孔隙结构不同于其它多孔硅材料。这里"多孔"的定义应作广义阅读。可将具有许多孔隙或空位或空隙的任何材料定义为多孔结构。此外,概念中孔基于材料的孔隙尺寸。具有2-50nm的孔隙尺寸的所有多孔材料都为中孔结构的。
可采用多个其他分析方法确认多孔硅材料的品质和一致性。图2A中所示的透射电镜(TEM)图像显示出多孔材料颗粒包括纳米尺寸的互连晶体单元和几乎均匀的中孔。PSi-600的高分辨率TEM图像暗示了晶态颗粒。PSi-600的X-射线粉末衍射(XRD)图案显示出归于硅的结晶相(图1C,JCPDS卡号27-1402和空间群Fd3m[227])。X-射线光电子能谱(XPS)表征结果示于图1D。出现在100eV和104eV的峰分别归于Si(0)和Si(4+)。其间的结合能对应于SiOx(0<x<2)。通常在硅纳米颗粒中观察到的表面氧化物的外观也得到由拉曼光谱的确认,其中观察到归因于非晶SiOx(0<x<2)和SiO2的、出现在约350cm-1的峰肩。
PSi-600的拉曼光谱(图1E)还在480cm-1处显示出宽峰,其视为覆盖晶芯的非晶硅层。如同其他多孔硅材料,PSi-600还含有终端Si-H结构,其得到红外谱图的确定(图1F,在2100cm-1的vSi-H和在2257cm-1的vO-Si-H)。
根据所有表征结果,PSi材料的结构可以描述为由纳米尺寸的晶体单元和中孔构成的多孔微米尺寸的颗粒,所述中孔是具有2-50nm的典型孔隙直径的孔隙。PSi的结构可与在R.Yi,F.Dai,M.L.Gordin,S.Chen,D.Wang,AdvEnergyMater2012中报告的Si-C复合材料的结构形成对比。两种材料都具有类似的主单元尺寸和孔隙尺寸。然而,相比Si-C复合材料的中孔,PSi的中孔更加有序和均匀地分布。另外,PSi的总孔隙体积(1.44cm3g-1)远高于Si-C复合材料的总孔隙体积。
锂离子蓄电池正极的电化学性能
本文报道的多孔硅的一个特别有用的应用是Li离子蓄电池中的阳极。例如,这些阳极可以通过将多孔硅与聚合物粘合剂和导电碳混合制成。例如,合适的聚合物粘结剂包括但不限于聚丙烯酸(PAA)、羧甲基纤维素钠盐(NaCMC)和聚偏氟乙烯(PVDF)。将该混合物涂覆在铜箔表面上。也可以在电化学性能测试前通过乙炔的热沉积使PSi材料涂覆有碳薄层。
可以使用CR2016硬币式半电池测试作为Li离子蓄电池的阳极的PSi和PSi/C材料的电化学性能。可以通过运行多个充电和放电循环测试根据本发明的实施方案的阳极。对于典型的测试,在图3A中显示了在0.01V-1.5V在1Ag-1下在第1、第10、第50和100个循环期间的电极的放电-充电曲线。
根据Si,在0.4Ag-1的电流密度下,初始放电和充电容量是1862mAhg-1和1044mAhg-1(2482mAhg-1和1392mAhg-1),给出了56%的库仑效率。从第10个循环到第100个循环,放电-充电曲线几乎不显示变化。在图4B中显示了PSi/C阳极在0.01V-1.5V的循环性能。在100个循环后,材料表现出990mAhg-1(1320mAhg-1,基于Si)的可逆容量,容量保持率为94.8%。在10个循环后,库仑效率达到99%,且保持在>99%。还在0.4Ag-1、0.8Ag-1、1.6Ag-1、3.2Ag-1和6.4Ag-1的电流密度下测试了PSi/C阳极的倍率性能。
结果示于图3C中。在6.4Ag-1的电流密度下的容量为395mAhg-1,优于石墨的理论容量。在55个循环后,当电流密度重置为0.4mAhg-1时,恢复1032mAhg-1的容量,显示了PSi/C阳极材料的良好可逆性。在PSi/C阳极和820℃的产品之间对比了电化学性能。820℃产品显示出2060mAhg-1的较高初始容量,然而,具有较差的容量保持率,这是由于快速的容量衰减。仅在40个循环内,820℃产品的容量降至低于380mAhg-1
太阳能析氢
根据本文教导制备的硅可以特别适用于太阳能析氢应用,其涉及使用太阳能催化水分解成氧气和氢气。氢气可以用作燃料。通常,硅对于捕获直到太阳光谱的可见光区中的红色部分的光子是优异的。已经由自下而上的化学方法制备了基于硅的光电极,已证明电化学或化学刻蚀方法对于光电化学太阳能析氢是有效的。然而,几乎没有光催化太阳能析氢的报道。限制因素主要是因为在能带边缘和H+/H2电位之间的小的能隙,以及短的工作寿命。
这里制备的多孔硅可具有相对于其它硅增大的带隙,并且当用于太阳能应用时,这可提高效率。对于1.63eV的增大带隙,其根据UV-可见光漫反射光谱计算(图4A),测试了PSi-600的光催化的析氢性能(见实验部分)。图4B显示了不同的非负载的PSi材料的光催化H2析出的典型反应时间过程。PSi-600在7小时内显示出1341μmolH2g-1Si的H2发生量,其高于典型的Si纳米粉末的H2发生量(206μmolH2g-1Si)。
光催化活性通常受光吸收步骤,光生电荷对的分离,表面活性位点量以及光生电荷的迁移和复合的影响。根据我们的光谱表征,PSi-600包含表面氧化物层以及极少非晶硅层,其可以防止光生电荷的迁移并强化电子和空穴的复合。一般认为表面氧化物对于硅的太阳能应用具有不利的影响,这是因为产生了减少活性位点和降低光催化性能的覆盖物。因此,考虑此效应,可以用HF清洗表面以去除表面氧化物和非晶硅。
当用拉曼、IR和XRD光谱(如图5所示)表征时,所得材料(PSi-600R)展示出较少的表面氧化物和更好的结晶相。PSi-600R的BET表面积稍增加到580m3g-1。结果,PSi-600R的光催化活性增大至882μmolg-1h-1,其是显著改善的,并且可以与用于太阳能H2析出的其它非负载的光催化剂(例如MoS2/TiO2、(AgIn)xZn2(l-x)S2、Cu3SnS4)相比。
在与其他硅源不同的光照条件下,根据本发明的实施方案产生的硅显示出光催化活性。与其它测试样品不同,即使在黑暗的条件下,PSi-600R也显示出对水的反应性(图4C)。
通常,硅的水自然氧化是慢的。然而,PSi-600R的增加的反应速率可能是由于增大的表面积,其提供硅和水之间的额外接触。
在表面积和反应速率之间的这种关系可特别得到PSi-600R与KOH水溶液之间的化学反应的证明。极高的平均H2产生速率达到47.5mmolH2s-1g-1Si,它为先前报道的最高结果(1.5mmolH2s-1g-1Si)的约30倍。在可见光下,本发明的PSi实施方案显示了光催化反应性(图4C)。相比之下,在可见光下,没有从硅纳米粉末产生H2。PSi还显示了相对于以前报道结果显著扩展的工作寿命。在55小时(3个循环,图4D)后,PSi-600R仍然在可见光下显示出可接受的光催化H2析出速率(~400μmο1Η2h-1g-1Si)。
实施例
通过举例的方式进一步描述本发明的实施方案。这些不是排除性的,而是意在显示样品的实施方案。
制备PSi:
在充有氩气的手套箱中,将NaK合金(6g)添加到120mL的无水四氯化硅的甲苯溶液(4mL,34mmol,Aldrich99%)。在回流下,将该混合物加热4小时。在将溶液冷却至室温后,从手套箱移出混合物。然后,在Ar下,伴随搅拌,缓慢添加20mL氯化氢的乙醚溶液(2M,Aldrich)。通过过滤来收集粗产物,和在氩气氛下将其退火(例如600℃)30分钟。通过用去离子(DI)水去除盐副产物获得最终产物,和在使用前在真空烘箱中干燥。
使用外部SiO2模板(例如200nm尺寸)用于产生较大的孔隙。在Ar填充手套箱中,在120ml甲苯中混合240mgSiO2与4mLSiCl4。然后,将混合物与6gNaK合金混合。在回流4小时后,将混合物冷却至室温,并从手套箱取出。然后,在Ar下,伴随搅拌,缓慢添加20mL氯化氢的乙醚溶液(2M,Aldrich)。通过过滤来收集粗产物,和在氩气氛下将其退火(例如600℃)30分钟。通过用HF/HCl混合物去除盐和模板获得最终产物,和在使用前在真空烘箱中干燥。
通过类似的方式合成P型PSi。将0.4mlBCl3与4mlS1Cl4进行混合,然后在120ml甲苯中用6gNaK合金还原。其后过程与以上描述的相同。为了除去盐,只需要去离子水。
电化学测量:
将由通过Celgard2400膜分开的PSi基电极和锂箔阳极构成的CR2016型硬币式电池用于蓄电池测试。电极包含60重量%活性材料、20重量%的超级P(SuperP)和20重量%的聚丙烯酸(PAA)。电解质是溶解于碳酸乙烯酯(EC),碳酸甲乙酯(1∶2,v/v)的混合溶剂中的1MLiPF6,该混合溶剂具有10重量%的碳酸氟代乙烯酯(FEC)作为添加剂。电极的密度为0.72g/cm3,和活性材料的负载为1.4mg/cm2。在充有氩气的手套箱(MBraunGmbH,Germany)中组装电池。在BT2000蓄电池测试系统(ArbinInstruments,USA)上,在0.01-1.5V的电势范围内,使用具有不同电流倍率的恒电流(galvostatic)充电和放电方法,进行充电-放电实验。锂箔充当参考和对电极。在室温下进行电化学测试。
太阳能析氢
在具有用于采样的侧壁隔片颈部的气闭性顶部窗口(石英玻璃)Pyrex单元中,使用300W氙灯作光源,进行光催化的水分解。用于该单元的有效面积为40.7cm2。周期性采取0.1ml的气体样品,并使用具有热导率检测器和2mMSX13X柱的HP5890II气体色谱分析氢。在全部实验中,将含有约0.02g催化剂和牺牲剂甲醇(清除光生空穴)的70ml去离子水加入到反应单元中。用氩气吹扫整个系统30分钟以在反应前除去溶解的空气。对于所有光催化反应,将温度保持在25±5℃。在表征之前进行受控实验,和在没有光催化剂的情况下没有检测到可观的H2

Claims (18)

1.一种用于生产多孔晶态硅的方法,包括:
用至少一种碱金属和碱金属合金还原硅-卤化物前体以产生硅-盐基体;
退火所述硅-盐基体,由此在多孔硅结构中形成多个盐晶体;和
用水清洗多孔硅结构,由此提供多孔晶态硅。
2.权利要求1的方法,其中硅-卤化物前体选自SiCl4、SiI4、SiBr4和SiF4
3.根据权利要求2的方法,其中硅-卤化物前体是SiCl4
4.权利要求1的方法,其中所述碱合金选自钠-钾合金(NaK)、钠金属和萘化钠。
5.权利要求1的方法,其中所述碱合金是NaK和其它碱金属或合金,和所述硅-卤化物前体是SiCl4
6.权利要求1的方法,其中所述方法不包括使选自硅-卤化物前体、硅盐基体和多孔硅结构的任何成员接触氢氟酸。
7.权利要求1的方法,其中多孔硅结构包括尺寸为1nm-200nm的多个孔隙,其中所述孔隙尺寸由至少一个外部模板的尺寸支配。
8.权利要求1的方法,其中所述多孔硅结构包括以有序分布而分布的多个孔隙。
9.权利要求1的方法,其中所述多孔硅结构具有0.86-2.00cm3g-1的总孔隙体积。
10.权利要求1的方法,其中所述多孔硅结构具有220-700m2g-1的表面积。
11.权利要求1的方法,其中将所述硅-卤化物前体与外部模板混合,其中所述多孔硅结构具有大于20nm的平均孔隙尺寸。
12.权利要求1的方法,其中在甲苯溶液中进行所述还原步骤。
13.一种具有多孔硅结构的中孔硅结构,其具有10nm的中值平均孔隙直径、0.86-1.44cm3g-1的总孔隙体积和550-580m2g-1的表面积。
14.锂离子蓄电池的阳极,包括:
多孔硅结构,其具有1nm-200nm的孔隙直径、0.86-1.44cm3g-1的总孔隙体积和220-580m2g-1的表面积;聚合物粘合剂(如聚丙烯酸(PAA)、羧甲基纤维素钠盐(NaCMC)和/或聚偏氟乙烯(PVDF))和导电碳。
15.权利要求14的阳极,其中所述聚合物粘合剂选自聚丙烯酸(PAA)、羧甲基纤维素钠盐(NaCMC)和聚偏氟乙烯(PVDF)。
16.锂离子蓄电池,包括权利要求14的阳极。
17.用于太阳能氢析出的硅光催化剂,包含具有多孔硅结构的硅,所述多孔硅结构具有10nm的平均孔隙直径,0.86-1.44cm3g-1的总孔隙体积,和220-580m2g-1的表面积,其中所述硅结构具有通过UV-vis漫反射光谱计算的最多1.63eV的带隙。
18.太阳氢燃料电池,包含权利要求17的硅光催化剂。
CN201480038835.4A 2013-07-10 2014-07-10 中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用 Pending CN105377757A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361844634P 2013-07-10 2013-07-10
US61/844,634 2013-07-10
PCT/US2014/046145 WO2015006557A1 (en) 2013-07-10 2014-07-10 Mesoporous silicon synthesis and applications in li-ion batteries and solar hydrogen fuel cells

Publications (1)

Publication Number Publication Date
CN105377757A true CN105377757A (zh) 2016-03-02

Family

ID=52277343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480038835.4A Pending CN105377757A (zh) 2013-07-10 2014-07-10 中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用

Country Status (3)

Country Link
US (1) US9656243B2 (zh)
CN (1) CN105377757A (zh)
WO (1) WO2015006557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623121A (zh) * 2017-10-18 2018-01-23 山东大学 一种金属包覆多孔硅复合物电极材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439201B2 (en) 2015-06-05 2019-10-08 Robert Bosch Gmbh Sulfur-carbon composite comprising micro-porous carbon nanosheets for lithium-sulfur batteries and process for preparing the same
JP2019530151A (ja) * 2016-09-12 2019-10-17 イメリス グラファイト アンド カーボン スイッツァランド リミティド 組成物及びその使用
WO2021048798A1 (en) * 2019-09-11 2021-03-18 King Adbullah University Of Science And Technology Record photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
CN1398347A (zh) * 1998-07-10 2003-02-19 医疗咨询公司 光致发光的半导体材料
WO2010038068A1 (en) * 2008-09-30 2010-04-08 Intrinsiq Materials Global Limited Hair care compositions comprising porous silicon
CN101801847A (zh) * 2007-08-01 2010-08-11 波士顿硅材料有限公司 制造高纯单质硅的方法
CN102161488A (zh) * 2011-02-28 2011-08-24 中南大学 一种制备太阳能级多晶硅的方法
CN102616785A (zh) * 2011-10-27 2012-08-01 内蒙古神舟硅业有限责任公司 锌还原四氯化硅制备纳米硅粉颗粒的方法
CN102630355A (zh) * 2009-11-03 2012-08-08 安维亚系统公司 用于锂离子电池的高容量阳极材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709833A (en) * 1970-08-21 1973-01-09 Owens Illinois Inc Process for preparing high purity silicon oxide porous beads doped with small quantities of other oxides
JPH0694365B2 (ja) * 1985-11-22 1994-11-24 日本電信電話株式会社 ケイ素の製造方法および製造装置
RU2181104C2 (ru) * 2000-02-03 2002-04-10 Государственное унитарное предприятие Государственный научный центр Российской Федерации Физико-энергетический институт имени академика А.И. Лейпунского Способ выделения кремния
US7615206B2 (en) * 2006-08-11 2009-11-10 Georgia Tech Research Corporation Methods of fabricating nanoscale-to-microscale structures
KR100818263B1 (ko) * 2006-12-19 2008-03-31 삼성에스디아이 주식회사 다공성 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
KR101375328B1 (ko) 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
CA2785464C (en) * 2009-12-31 2019-08-13 Oxane Materials, Inc. Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
WO2011156419A2 (en) 2010-06-07 2011-12-15 The Regents Of The University Of California Lithium ion batteries based on nanoporous silicon
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
US20120244436A1 (en) * 2011-03-24 2012-09-27 Leyden Energy, Inc. Anodes of porous silicon particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
CN1398347A (zh) * 1998-07-10 2003-02-19 医疗咨询公司 光致发光的半导体材料
CN101801847A (zh) * 2007-08-01 2010-08-11 波士顿硅材料有限公司 制造高纯单质硅的方法
WO2010038068A1 (en) * 2008-09-30 2010-04-08 Intrinsiq Materials Global Limited Hair care compositions comprising porous silicon
CN102630355A (zh) * 2009-11-03 2012-08-08 安维亚系统公司 用于锂离子电池的高容量阳极材料
CN102161488A (zh) * 2011-02-28 2011-08-24 中南大学 一种制备太阳能级多晶硅的方法
CN102616785A (zh) * 2011-10-27 2012-08-01 内蒙古神舟硅业有限责任公司 锌还原四氯化硅制备纳米硅粉颗粒的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N.R. MATHEWS ETC.: "Photoelectrochemical characterization of porous Si", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
ZHIHAO BAO ETC.: "Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas", 《NATURE》 *
陈冬贇: "基于无机氧化物的核壳型功能纳米复合材料的合成及其性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623121A (zh) * 2017-10-18 2018-01-23 山东大学 一种金属包覆多孔硅复合物电极材料及其制备方法
CN107623121B (zh) * 2017-10-18 2019-12-27 山东大学 一种金属包覆多孔硅复合物电极材料及其制备方法

Also Published As

Publication number Publication date
US20150017569A1 (en) 2015-01-15
WO2015006557A1 (en) 2015-01-15
US9656243B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
El-Deen et al. Anatase TiO 2 nanoparticles for lithium-ion batteries
Wang et al. Hierarchical CuCo2O4@ nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors
Xie et al. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance
Xi et al. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance
Wang et al. Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications
Zhang et al. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance
Ye et al. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior
Wen et al. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage
Chen et al. Kinetics-controlled growth of aligned mesocrystalline SnO 2 nanorod arrays for lithium-ion batteries with superior rate performance
Madian et al. Self-organized TiO2/CoO nanotubes as potential anode materials for lithium ion batteries
Zhao et al. Green electrochemical energy storage devices based on sustainable manganese dioxides
Li et al. Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries
Sambandam et al. Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries
Jia et al. Synthesis of mesoporous single crystal Co (OH) 2 nanoplate and its topotactic conversion to dual-pore mesoporous single crystal Co3O4
Karthikeyan et al. Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method
Zhang et al. Self-assembled Co3O4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries
Zhu et al. Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage
Xu et al. S or N-monodoping and S, N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation
Chang-Jian et al. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries
Liu et al. Facile molten salt synthesis of carbon-anchored TiN nanoparticles for durable high-rate lithium-ion battery anodes
CN105377757A (zh) 中孔硅合成以及在锂离子蓄电池和太阳能氢电池中的应用
Li et al. Hierarchical tubular structure constructed by mesoporous TiO2 nanosheets: Controlled synthesis and applications in photocatalysis and lithium ion batteries
Cai et al. TiO 2 mesocrystals: Synthesis, formation mechanisms and applications
Muniyandi et al. Li2FeSiO4/C aerogel: A promising nanostructured cathode material for lithium-ion battery applications
Shi et al. Metal-organic-framework-derived multi-heteroatom doped Cu1. 8Se/C composites for high-performance Na-ion hybrid capacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160302