RU2451092C2 - Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей - Google Patents

Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей Download PDF

Info

Publication number
RU2451092C2
RU2451092C2 RU2010136756/02A RU2010136756A RU2451092C2 RU 2451092 C2 RU2451092 C2 RU 2451092C2 RU 2010136756/02 A RU2010136756/02 A RU 2010136756/02A RU 2010136756 A RU2010136756 A RU 2010136756A RU 2451092 C2 RU2451092 C2 RU 2451092C2
Authority
RU
Russia
Prior art keywords
oxygen
exhaust
gas
duct
nozzle
Prior art date
Application number
RU2010136756/02A
Other languages
English (en)
Other versions
RU2010136756A (ru
Inventor
Владимир Георгиевич Лисиенко (RU)
Владимир Георгиевич Лисиенко
Анатолий Леонтьевич Засухин (RU)
Анатолий Леонтьевич Засухин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2010136756/02A priority Critical patent/RU2451092C2/ru
Publication of RU2010136756A publication Critical patent/RU2010136756A/ru
Application granted granted Critical
Publication of RU2451092C2 publication Critical patent/RU2451092C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Изобретение относится к области металлургии, в частности к электросталеплавильному производству. Способ включает транспортирование отходящих газов через отводящий охлаждаемый газоход, очистку отходящих газов от пыли в рукавных фильтрах, создание разрежения для прососа газов с помощью дымососа. Навстречу потоку отходящих газов в отводящем охлаждаемом газоходе через сопло подают противоточную струю кислорода. При этом через второе сопло в указанный газоход подают спутную с потоком отходящих газов струю кислорода с тем же расходом, что и через первое сопло. Суммарный расход кислорода через оба сопла составляет 50% от объемного расхода оксида углерода, содержащегося в отходящих газах в газоходе. На оба потока кислорода накладывают акустическое поле от акустического газового излучателя с частотой 100-4000 Гц. При этом давление кислорода перед соплами составляет 1,2-0,5 МПа. Использование изобретения обеспечивает снижение эмиссии вредных выбросов, снижает нагрузку на фильтрующие устройства, обеспечивает снижение мощности дымососов и капитальных затрат. 2 з.п. ф-лы, 1 ил., 1 пр.

Description

Изобретение относится к области металлургии, в частности к электросталеплавильному производству.
Известны способы дожигания отходящих газов электродуговых сталеплавильных печей (ЭДП).
В наиболее распространенных способах [1, 2] это осуществляется путем подсасывания атмосферного воздуха в зазор между отводящим газоходом печи и стационарным газоходом. Однако при этом резко увеличивается количество отходящих газов, что увеличивает необходимые затраты на транспортировку и удаление большого количества дымовых газов.
Недостатком обоих отмеченных способов является также образование оксидов азота в зонах дожигания из-за наличия азота в аспирационном воздухе. Кроме того, оба способа не обеспечивают снижения количества пыли в отходящих газах.
Недостатком также является и то, что в этих способах не обеспечивается количественное дозирование подсоса окислителя - аспирационного воздуха в газоход, при этом возникают неопределенности по степени избытка окислителя и степени дожигания оксида углерода, и как следствие, имеют место перерасход электрической мощности дымососа, избыточное содержание азота в отходящих газах, недостаточная степень дожигания оксидов углерода и углеводородов и дополнительная эмиссия оксидов азота, диоксинов и фуранов.
Таким образом, наиболее близким к представленному изобретению аналогом является способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей [2], при котором дожигание газов осуществляется путем подачи аспирационного воздуха через сопла, расположенные после отводящего газохода на ЭДП, со скоростью 50-70 м/с, при этом дожигание газов осуществляется в специальной камере дожигания, а охлаждение газов перед пылевыми рукавными фильтрами осуществляется путем впрыска воды после камеры дожигания на участке испарительного охлаждения.
Однако недостатком этого способа является большое количество отходящих газов, разбавляемых аспирационным воздухом в присутствии в нем азота. Кроме того, количество пыли в отходящих газах при этом не снижается, а, наоборот, увеличивается за счет эжектирующего эффекта подаваемых воздушных струй. Использование аспирационного воздуха с содержащимся в нем азотом в камере дожигания приводит к образованию оксидов азота - токсичных соединений. Теплота дожигания газов теряется для технологического процесса и уходит на нагрев атмосферного воздуха. Снижение температуры отходящих газов приводит к образованию диоксинов.
Недостатком способа является и то, что количественное дозирование подсоса окислителя - аспирационного воздуха в газоход не обеспечивается, что приводит к избыточному содержанию азота в отходящих газах, дополнительному образованию оксидов азота, недостаточной степени дожигания оксида углерода, перерасходу электрической мощности дымососа.
Технической задачей настоящего изобретения является обеспечение дожигания отходящих газов ЭДП при одновременном снижении содержания в отходящих газах плавильной пыли, оксидов азота, диоксинов и фуранов, а также снижение мощности дымососов.
Данная задача решается таким образом, что способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей включает транспортирование отходящих газов через отводящий водоохлаждаемый газоход, очистку отходящих газов от пыли в пылевых рукавных фильтрах, создание разрежения для прососа газов с помощью дымососа, отличается тем, что в отводящем водоохлаждаемом газоходе навстречу потоку отходящих газов через сопло подают противоточную струю кислорода, одновременно через второе сопло в указанный газоход подают спутную с потоком отходящих газов также струю кислорода с тем же расходом, что и через первое сопло, при этом суммарный расход кислорода через оба сопла составляет 50% от объемного расхода оксида углерода, содержащегося в отходящих газах в отводящем газоходе электродуговой печи, а на оба потока кислорода накладывают акустическое поле от акустического газового излучателя с частотой 100-4000 Гц.
Способ отличается также тем, что расход кислорода через сопла по ходу плавки устанавливают программным регулятором с коррекцией по концентрации оксида углерода в газоходе после пылевых рукавных фильтров. При этом давление кислорода перед соплами составляет 1,2-0,5 МПа, а истечение кислорода из сопел осуществляют в звуковом или сверхзвуковом режимах.
Таким образом, в предлагаемом способе дожигание содержащегося в отходящих газах электродуговой печи оксида углерода осуществляется не атмосферным воздухом, подсасываемым через зазор в отводящем тракте, а кислородом, что обеспечивает полное дожигание оксида углерода при одновременном отсутствии образования оксидов азота - токсичного газа. В соответствии с реакцией, определяющей объемные доли составляющих газов,
Figure 00000001
для дожигания одного моля СО требуется половина моля O2. Таким образом, общий объемный расход подаваемого кислорода для дожигания
Figure 00000002
составляет в данном способе по объему 50% от расхода содержащегося в отходящих газах оксида углерода, т.е.
Figure 00000003
где VCO - расход оксида углерода в отходящих газах ЭДП.
В свою очередь расход СО равен
Figure 00000004
где СО - концентрация СО в отходящих газах; Vo.г. - расход отходящих газов.
Направление в данном способе одной струи кислорода против потока отходящих газов, с одной стороны, обеспечивает хорошее перемешивание кислорода с отходящими газами и осаждение пыли в рабочем пространстве ЭДП, но, с другой, приводит к повышению противодавления по тракту отходящих газов. Поэтому в данном способе предусмотрена подача второй эжектирующей струи кислорода спутно с потоком отходящих газов. Расходы кислорода в противоточной и спутной
Figure 00000005
и
Figure 00000006
струях равны между собой, т.е.
Figure 00000007
Эжектирующее действие спутной струи компенсирует противодавление противоточной струи и обеспечивает нормальную эвакуацию отходящих газов по отводящему газоходу при использовании разрежения для прососа отходящих газов с помощью дымососа без увеличения мощности дымососа.
В данном способе не потребуется подсос атмосферного воздуха для дожигания, поэтому зазор между трактом для подачи атмосферного воздуха в газоходе перекрывается. Это приводит к резкому снижению количества отходящих газов, уменьшению нагрузки на пылевые рукавные фильтры и снижению необходимой мощности дымососа.
Использование в данном способе давления кислорода в диапазоне 1,2-0,5 МПа и истечение струй кислорода в звуковом или сверхзвуковом режимах (со скоростью 330 м/с и выше) обеспечивает известный турбулизирующий эффект [3, с.384] и способствует интенсивному осаждению пыли в рабочем пространстве ЭДП без ее выноса в отводящий тракт. Дополнительное наложение акустического поля на струи кислорода с использованием струйных акустических излучателей (в которых рабочим телом является тот же кислород) при частоте акустических колебаний 100-4000 Гц обеспечивает интенсификацию пылеосаждения и снижение выноса пыли из ЭДП [4]. Осаждение плавильной пыли в рабочем пространстве ЭДП с учетом содержания в этой пыли ценных легирующих элементов (Cr, V, Ti и др.) обеспечивает улучшение качества выплавляемой стали и снижает требуемый расход легирующих элементов в шихте ЭДП.
Необходимое снижение температуры отходящих газов перед пылевыми рукавными фильтрами обеспечивается охлаждением в охлаждаемом газоходе и подачей охлаждающей воды в газоход.
Подача кислорода обеспечивает также дожигание в отводящем патрубке ЭДП выделяющихся при использовании замасленного лома углеводородов, что предотвращает образование и эмиссию фуранов и диоксинов.
Как следует из формул (2)-(4), требуемый расход кислорода для подачи в отводящий газоход определяется расходами оксида углерода, содержащегося в отходящих газах. Эти расходы по ходу плавки в ЭДП предварительно определяются с использованием материальных балансов плавки и вводятся в виде базы данных в программный регулятор. Последний, воздействуя на задатчик регулятора-стабилизатора расхода кислорода, устанавливает во времени требуемые расходы кислорода по ходу плавки. Однако для уточнения требуемого расхода и его корректировки используется датчик содержания оксида углерода в отходящих газах (установленный после пылевых фильтров) и корректирующий регулятор, который в зависимости от превышения концентрации оксида углерода над некоторой допустимой заданной величиной (согласованной с экологическими нормами, например, 0,1% CO) увеличивает расход кислорода. При снижении концентрации оксида углерода ниже установленного уровня расход кислорода, наоборот, снижается.
Данный способ реализуется с помощью устройства, представленного на рис.1. Оно включает рабочее пространство ЭДП 1, охлаждаемый газоход 2, подачу охлаждающей воды 3, пылеулавливающую аппаратуру (например, пылевые рукавные фильтры) 4, отвод газов к дымососу 5, фурму для подачи кислорода 6, струйный акустический излучатель 7, сопло противоточной струи 8, сопло спутной струи 9, датчик расхода кислорода 10, регулятор расхода кислорода 11, исполнительный механизм 12, регулирующий орган 13, программный регулятор 14, корректирующий регулятор 15, датчик концентрации оксида углерода 16.
Устройство работает следующим образом. Из рабочего пространства ЭДП 1 в отводящий охлаждаемый газоход 2 поступают отходящие газы, содержащие оксид углерода, углеводороды и пылевые частицы. Навстречу потоку отходящих газов через фурму 6 и сопло 8 подается противоточная струя кислорода. Одновременно через фурму 6 и сопло 9 подается спутная струя кислорода с тем же расходом, что и через сопло 8. Предварительно подаваемый кислород проходит через струйный акустический излучатель 7, обеспечивающий наложение акустического поля с частотой 100-4000 Гц на струи кислорода.
Для снижения температуры отходящих газов перед пылевыми рукавными фильтрами 4 через форсунки 3 подаются охлаждающие струи воды.
Расход кислорода определяется с использованием датчика расхода 10, стабилизируется регулятором расхода кислорода 11, исполнительным механизмом 12 и регулирующим органом 13. Программный регулятор 14 устанавливает требуемый расход кислорода по ходу плавки, полученный предварительным расчетом. Датчик 16 измеряет концентрацию оксида углерода в газоходе после пылевых рукавных фильтров, а корректирующий регулятор 15 корректирует требуемый расход кислорода по ходу плавки при обнаружении превышения концентрации оксида углерода в отходящих газах сверх установленного минимального значения.
ПРИМЕР
По данным [1, с.425, табл.5.59] для 100 т ЭДП выход газов из печи (без разбавления) составляет 8000 м3/ч. При среднем содержании СО в отходящих газах 10% его расход составляет 800 м3/ч. Для его дожигания потребуется в соответствии с формулой (2) 400 м3/ч кислорода. На каждое сопло потребуется подавать кислорода 400:2=200 м3/ч. При максимальном количестве выделяющегося СО=20% [1, с.424] суммарный расход кислорода на оба сопла составит 800 м3/ч и расход на одно сопло - 400 м3/ч.
Таким образом, в период плавления (с учетом подачи природного газа и кислорода в рабочее пространство печи) и в восстановительный период плавки в ЭДП расход кислорода на дожигающие сопла составляет максимальную величину - до 800 м3/ч. Однако в окислительный период и в период рафинирования этот расход резко снижается и составит 20-30% от среднего расхода, т.е. 80-120 м3/ч. Эти данные используются как базовые в программном регуляторе расхода кислорода для регулирования расхода кислорода по ходу плавки. При необходимости, если содержание оксида углерода в отходящих газах будет превышать допустимую по экологическим нормативам, установленную величину, например, СО=0,1% с использованием корректирующего регулятора, расход кислорода будет увеличен, а при снижении данного уровня CO, наоборот, уменьшен.
Использование данного способа обеспечивает снижение эмиссии вредных выбросов: токсичных газов и пыли, снижает нагрузку на фильтрующие устройства, обеспечивает снижение мощности дымососов и капитальных затрат, а при наличии легирующих элементов в составе осаждаемой пыли на ванну ЭДП улучшается качество выплавляемой стали.
СПИСОК ЛИТЕРАТУРЫ
1. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Сооружение промышленных печей. Проектирование плавильных комплексов. Справочное издание. Т.1, кн.2. / Под ред. В.Г.Лисиенко. - М. - Теплотехник, 2006. - 775 с.
2. Кочнов М.Ю., Шульц Л.А., Кочнов Ю.М. Повышение эффективности дожигания и охлаждение технологических газов крупнотоннажных дуговых сталеплавильных печей. Изв. вузов. Черная металлургия, 2009, №11. С.49-55.
3. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Плавильные агрегаты: теплотехника, управление и экология. Справочное издание. В 4-х книгах, кн.1 / Под ред. В.Г.Лисиенко. - М.: Теплотехник, 2005. - 768 с.
4. Воронов Г.В., Лисиенко В.Г., Шиленко Б.П. и др. Газоструйный стержневой излучатель. Патент РФ №1455444. Опубл. 15.10.1994.

Claims (3)

1. Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей, включающий транспортирование отходящих газов через отводящий охлаждаемый газоход, очистку отходящих газов от пыли в пылевых рукавных фильтрах, создание разрежения для прососа газов с помощью дымососа, отличающийся тем, что в отводящем охлаждаемом газоходе навстречу потоку отходящих газов через сопло подают противоточную струю кислорода, одновременно через второе сопло в указанный газоход подают спутную с потоком отходящих газов струю кислорода с тем же расходом, что и через первое сопло, при этом суммарный расход кислорода через оба сопла составляет 50% от объемного расхода оксида углерода, содержащегося в отходящих газах в газоходе электродуговой печи, а на оба потока кислорода накладывают акустическое поле от акустического газового излучателя с частотой 100-4000 Гц.
2. Способ по п.1, отличающийся тем, что расход кислорода через сопла по ходу плавки устанавливают программным регулятором с коррекцией расхода по концентрации оксида углерода в отводящем охлаждаемом газоходе после пылевых рукавных фильтров.
3. Способ по п.1, отличающийся тем, что давление кислорода перед соплами составляет 1,2-0,5 МПа, а истечение кислорода из сопел осуществляется в звуковом или сверхзвуковом режиме.
RU2010136756/02A 2010-09-01 2010-09-01 Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей RU2451092C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010136756/02A RU2451092C2 (ru) 2010-09-01 2010-09-01 Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010136756/02A RU2451092C2 (ru) 2010-09-01 2010-09-01 Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей

Publications (2)

Publication Number Publication Date
RU2010136756A RU2010136756A (ru) 2012-03-10
RU2451092C2 true RU2451092C2 (ru) 2012-05-20

Family

ID=46028841

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010136756/02A RU2451092C2 (ru) 2010-09-01 2010-09-01 Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей

Country Status (1)

Country Link
RU (1) RU2451092C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766937C2 (ru) * 2020-07-07 2022-03-16 Адель Талгатович Мулюков Способ плавки конверторного шлама в дуговой печи постоянного тока

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111530216A (zh) * 2020-06-12 2020-08-14 中冶赛迪技术研究中心有限公司 一种抑制二噁英再生的烟气急冷除尘装置及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450569A (en) * 1982-09-01 1984-05-22 Hagendoorn Willem J Method and structure for maintaining effluent pressure range within an electric arc melting furnace
SU1254270A1 (ru) * 1985-01-31 1986-08-30 Научно-исследовательский институт металлургии Устройство дл удалени газов из дуговой печи
RU2086873C1 (ru) * 1991-05-22 1997-08-10 Юниметал Способ удаления отходящих газов из дуговой электропечи, устройство для его осуществления и дуговая электропечь

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450569A (en) * 1982-09-01 1984-05-22 Hagendoorn Willem J Method and structure for maintaining effluent pressure range within an electric arc melting furnace
SU1254270A1 (ru) * 1985-01-31 1986-08-30 Научно-исследовательский институт металлургии Устройство дл удалени газов из дуговой печи
RU2086873C1 (ru) * 1991-05-22 1997-08-10 Юниметал Способ удаления отходящих газов из дуговой электропечи, устройство для его осуществления и дуговая электропечь

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОЧНОВ М.Ю. и др. Повышение эффективности дожигания и технологических газов крупнотоннажных дуговых сталеплавильных печей. Изв. вузов. Черная металлургия. 2009, № 11, с.49-55. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766937C2 (ru) * 2020-07-07 2022-03-16 Адель Талгатович Мулюков Способ плавки конверторного шлама в дуговой печи постоянного тока

Also Published As

Publication number Publication date
RU2010136756A (ru) 2012-03-10

Similar Documents

Publication Publication Date Title
RU2451092C2 (ru) Способ дожигания и обеспыливания отходящих газов электродуговых сталеплавильных печей
JP4650106B2 (ja) 焼結装置および焼結方法
EP4023985A1 (en) Heat treatment furnace
CN101749931A (zh) 冶炼熔炉
JP6264943B2 (ja) 転炉脱炭処理方法
JP2007127355A (ja) ごみ焼却溶融方法及びこれに用いるごみ焼却溶融装置
CN109844435A (zh) 废气处理装置和处理方法
RU2464512C1 (ru) Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи
JP6191707B2 (ja) 転炉ガス回収方法
JP3199568U (ja) 焼却システム
KR101511178B1 (ko) 금속, 용융 금속 및/또는 슬래그의 건식 야금 처리 방법
RU2576281C2 (ru) Способ и система для удаления наслоения настыли в печи
JPS58141345A (ja) 有価金属の回収方法
Nagai et al. The most advanced power saving technology in EAF. Introduction to EcoArc
EP0490743B1 (en) Method for controlling metal oxide fume generation during the oxygen-induced subdivision of a body containing metal values
JP6766673B2 (ja) 溶鋼の昇温方法
RU2370546C2 (ru) Способ дожигания окиси углерода над зоной продувки в конвертере
JPH0434610B2 (ru)
CN106755973A (zh) 一种减少铁矿烧结过程no排放的方法
JP7043915B2 (ja) 溶鋼の昇温方法
JPH11190594A (ja) 製鋼用電気炉の排ガス処理方法及び装置
CN210268197U (zh) 重金属污泥步进式烧结机
RU2205234C1 (ru) Способ выплавки стали в дуговой сталеплавильной печи
JP2000205751A (ja) スクラップの連続装入装置
Sugasawa et al. The most advanced power saving technology in EAF introduction to ECOARC™

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120902