RU2464512C1 - Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи - Google Patents

Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи Download PDF

Info

Publication number
RU2464512C1
RU2464512C1 RU2011114831/02A RU2011114831A RU2464512C1 RU 2464512 C1 RU2464512 C1 RU 2464512C1 RU 2011114831/02 A RU2011114831/02 A RU 2011114831/02A RU 2011114831 A RU2011114831 A RU 2011114831A RU 2464512 C1 RU2464512 C1 RU 2464512C1
Authority
RU
Russia
Prior art keywords
gas
dust
cooling
process gas
cleaning
Prior art date
Application number
RU2011114831/02A
Other languages
English (en)
Inventor
Владимир Григорьевич Мизин (RU)
Владимир Григорьевич Мизин
Иван Емельянович Сперкач (RU)
Иван Емельянович Сперкач
Елена Игоревна Жилинская (RU)
Елена Игоревна Жилинская
Original Assignee
Общество с ограниченной ответственностью "Стандартиммаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Стандартиммаш" filed Critical Общество с ограниченной ответственностью "Стандартиммаш"
Priority to RU2011114831/02A priority Critical patent/RU2464512C1/ru
Application granted granted Critical
Publication of RU2464512C1 publication Critical patent/RU2464512C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Изобретение относится к черной металлургии, в частности к электросталеплавильному производству, и может применяться для очистки и охлаждения технологического газа дуговой сталеплавильной печи (ДСП). Способ включает отсос технологического газа из ДСП через патрубок в своде, сжигание в камере дожигания, первичную очистку и охлаждение продуктов сгорания в водоохлаждаемой пылеосадительной камере, водоохлаждаемом газоходе и охладителе, окончательную очистку от пыли в установке сухой газоочистки, отсос дымососом и сброс в атмосферу через дымовую трубу. Окончательную очистку газа от пыли осуществляют в керамическом фильтре до 5 мг/нм3 при рабочей температуре до 600°C и максимально возможной до 900°C и с охлаждением чистого газа в котле-утилизаторе до 150°С с выработкой пара. Технический результат: повышение степени очистки газа ДСП, снижение затрат материальных, капитальных, энергетических и трудовых ресурсов. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к черной металлургии, в частности к электросталеплавильному производству, и может применяться для очистки и охлаждения технологического газа дуговой сталеплавильной печи (ДСП) с использованием тепловой энергии, получаемой при сжигании технологического газа.
Процесс производства стали в современных ДСП является весьма интенсивным: применяются печные трансформаторы повышенной мощности, газокислородные горелки, продувка ванны кислородом, цикл плавки осуществляется в течение 45-50 минут (в т.ч. плавка - 80% времени, загрузка шихты и выпуск металла - до 20% времени) и сопровождается выходом монооксида углерода до 120 нм3/т при температуре 1600-1650°C и угаром шихты до 2,5% с образованием мелкодисперсной пыли.
Известны способы очистки и охлаждения технологического газа ДСП, описанные, например, в [1], [2] и др. источниках, согласно которым технологический газ отсасывают из ДСП через патрубок в своде, сжигают в камере дожигания, пропускают через водоохлаждаемую пылеосадительную камеру, смешивают с неорганизованными выбросами запыленных газов от ДСП, поступающими под крышный зонт, а также от других источников (бункеров шихтоподачи, установок ковш-печь, машин непрерывного литья заготовки и др.), окончательно очищают от пыли в электрофильтрах сухого типа до 20-50 мг/нм3 и сбрасывают дымососами в атмосферу через дымовую трубу.
Основные недостатки этих известных способов очистки и охлаждения технологического газа от ДСП:
- не используется тепловая энергия технологического газа;
- для обеспечения максимально допустимой температуры газа перед электрофильтрами (до 250°C) требуется подсос больших объемов воздуха и смешивание с неорганизованными выбросами, увеличивается объем очищаемого газа, соответственно увеличиваются габариты газопроводов, трубопроводной арматуры, аппаратов, электрофильтров, увеличиваются капитальные затраты на их сооружение и эксплуатационные затраты;
- для очистки газа от пыли с высоким омическим сопротивлением осуществляют увлажнение и охлаждение газа в диапазоне дискретного изменения температуры от 30 до 150°C перед электрофильтром со сложной системой автоматического управления процессом [3].
В мировой практике наиболее широко применяют способ очистки и охлаждения продуктов сгорания технологического газа ДСП в рукавных фильтрах [4], принятый за прототип, согласно которому технологический газ отсасывают из ДСП через патрубок в своде, сжигают в камере дожигания, продукты сгорания пропускают через водоохлаждаемую пылеосадительную камеру и водоохлаждаемый газоход (охлаждение до 600°C), охладитель с принудительной вытяжкой (охлаждение до 300°C) и искрогаситель, смешивают с неорганизованными выбросами запыленных газов от ДСП, поступающими под крышный зонт, а также от других источников (бункеров шихтоподачи, агрегатов ковш-печь, машин непрерывного литья заготовки и др.) для снижения температуры до максимально допустимой (140°C), окончательно очищают от пыли в рукавных фильтрах (10-20 мг/нм3) и сбрасывают дымососами в атмосферу через дымовую трубу.
Основные недостатки этого известного способа очистки и охлаждения технологического газа от ДСП:
- не используется тепловая энергия технологического газа;
- для обеспечения максимально допустимой температуры газа перед рукавными фильтрами (до 140°C) требуется подсос еще больших объемов воздуха с неорганизованными выбросами, чем при применении электрофильтров, увеличивается объем очищаемого газа, соответственно увеличиваются габариты газопроводов, трубопроводной арматуры, аппаратов, электрофильтров, увеличиваются капитальные затраты на их сооружение и эксплуатацию;
- для защиты рукавных фильтров от воздействия раскаленных частиц применяют искрогасители и специальные теплообменники, что создает дополнительное газодинамическое сопротивление тракта, увеличивает расход электроэнергии, количество мест выгрузки пыли;
- смешивание технологического газа с неорганизованными выбросами для поддержания температуры смеси перед рукавными фильтрами до 140°C приводит к недостаточному отсосу неорганизованных выбросов и созданию в цехах антисанитарных условий.
Опыт эксплуатации современных ДСП показал, что отсос, охлаждение и очистка от пыли технологического газа ДСП и неорганизованных выбросов с другими источниками должны быть раздельными.
Известен способ снижения потребления энергоресурсов на очистку и охлаждение технологического газа ДСП посредством регулирование частоты оборотов электропривода дымососа [5]. Так как в процессе цикла плавки в ДСП изменяется выход технологического газа в широком диапазоне (от 0 в период загрузки шихты и выпуска металла до максимума в период продувки ванны кислородом) и его температура, то за счет регулировании частоты оборотов электропривода дымососа по ходу плавки возможно снижение расхода электроэнергии на ~25%.
Технической задачей изобретения является устранение недостатков известных способов очистки и охлаждения технологического газа ДСП, повышение степени очистки газа от пыли, использование тепловой энергии сжигаемого технологического газа ДСП, снижение затрат материальных, капитальных, энергетических и трудовых ресурсов.
Решение технической задачи достигается тем, что в известном способе очистки и охлаждения технологического газа ДСП, включающем отсос технологического газа из ДСП через патрубок в своде, сжигание в камере дожигания, первичную очистку и охлаждение продуктов сгорания в водоохлаждаемой пылеосадительной камере, водоохлаждаемом газоходе и охладителе, окончательную очистку от пыли в установке сухой газоочистки, отсос дымососом и сброс в атмосферу через дымовую трубу, окончательную очистку газа осуществляют в керамическом фильтре до 5 мг/нм3 при температуре до 600°C (при максимально возможной до 900°C) и охлаждение чистого газа в котле-утилизаторе до -150°C с выработкой пара, регулируют частоту оборотов дымососа в зависимости от температуры газа перед керамическим фильтром по ходу плавки в диапазоне 200-650°C, регенерацию фильтровальной способности керамических элементов осуществляют автоматически обратной импульсной продувкой сжатым воздухом в зависимости от заданного уровня газодинамического сопротивления керамических элементов, например 3-7 кПа.
Для иллюстрации способа очистки и охлаждения технологического газа ДСП на рис.1 представлена схема, которая включает: ДСП 1, патрубок 2 в своде, камеру дожигания газа 3, пылеосадительную камеру 4, водоохлаждаемый газоход 5, керамический фильтр 6, котел-утилизатор 7, дымосос 8 с устройством для регулирования частоты оборотов 9 и дымовую трубу 10.
Очистку и охлаждение технологического газа ДСП с использованием тепловой энергии по настоящему изобретению осуществляют следующим образом:
- образующийся в ДСП 1 в период плавки технологический газ отсасывают через патрубок 2 в своде печи, сжигают в камере дожигания 3, продукты сгорания направляют в пылеосадительную камеру 4, в которой осуществляется осаждение крупных частиц пыли, шлака и металла, пропускают через водоохлаждаемую трубу 5 для снижения температуры до ~600°C, затем окончательно очищают от мелкодисперсной пыли в керамическом фильтре 6 до 5 мг/нм3, чистые продукты сгорания поступают в котел-утилизатор 7, где охлаждаются до ~150°C с выработкой пара, и дымососом 8 с устройством для регулирования частоты оборотов 9 через дымовую трубу 10 сбрасывается в атмосферу;
- для керамического фильтра 5 допускается максимальная температура очищаемых продуктов сгорания до 900°C, не требуется специальный теплообменник для доохлаждения газа перед керамическим фильтром 6 и искрогаситель;
- регенерация фильтровальной способности керамического фильтра 6 осуществляется автоматически обратной импульсной продувкой сжатым воздухом при достижении заданного перепада давления (например 3-7 кПа);
- выгрузку пыли из бункеров керамического фильтра производят при заполнении их пылью до фиксируемого датчиками уровня;
- максимальное количество продуктов сгорания технологического газа и их температура перед керамическим фильтром 6 имеют место в период продувки ванны кислородом, снижается в другие периоды плавления, а в периоды загрузки шихты и выпуска металла (20% времени цикла) через камеру дожигания 3, пылеосадительную камеру 4, водоохлаждаемый газоход 5 и керамический фильтр 6 просасывается воздух, который нагревается от раскаленной футеровки тракта до 400°C, поэтому автоматическим устройством 9 дымососа 8 поддерживается максимальная частота оборотов дымососа 8 в период продувки ванны кислородом и снижается по мере снижения выхода технологического газа и температуры продуктов сгорания перед керамическим фильтром 6.
Экологический и экономический эффект от применения изобретения иллюстрируется следующим примером:
ДСП садкой 100 т, цикл плавки 50 мин, в т.ч. время плавления - 40 мин (80%), загрузки шихты и выпуска металла - 10 мин (20%), время работы печи 8000 ч/г.:
- средний выход газа за период плавления 120 тыс нм3/ч при температуре 600°C, за период загрузки шихты и выпуска металла - 90 тыс нм3/ч при температуре 320°C.
- среднее содержание пыли в газе в период плавления 10 г/нм3, в период между плавлением - 2 г/нм3.
Расчетное количество уловленной пыли в керамическом фильтре:
М=(120000×10×0,8+90000×2×0,2)8000/106=7960 т/год.
Расчетное количество выработанного пара в котле-утилизаторе при средней температуре входящего газа 540°C, выходящего 150°C, теплоемкости газа 1,5 Дж/м3·C и расходе тепла 2,9 ГДж/т пара:
G=(120000×0,8+90000×0,2)×8000×(540-150)×1,5/2,9×109=184000 т/год.
Использование тепловой энергии при сжигании технологического газа только одной ДСП садкой 100 т для выработки пара экономит 18 тыс т у.т. в год и исключает выбросы парниковых газов 66 тыс т/год.
За счет регулирования частоты оборотов дымососа снижается расход электроэнергии на очистку и охлаждение газа на ~25%.
Внедрение способа очистки и охлаждения технологического газа ДСП по настоящему изобретению позволяет:
- осуществить очистку газа в керамическом фильтре до 5 мг/нм3 (в 2-4 раза ниже, чем в тканевых фильтрах, и в 4-10 раз, чем в электрофильтрах) при рабочей температуре до 600°C и максимально допустимой до 900°C;
- использовать тепловую энергию технологического газа ДСП для выработки пара с экономией первичного топлива и исключения дополнительных выбросов парниковых газов;
- пар в зависимости от местных условий может быть использован для отопления и горячего водоснабжения зданий предприятия и поселка, или выработки электроэнергии;
- уменьшить объем поступающих на очистку и охлаждение продуктов сгорания технологического газа и соответственно уменьшить габариты аппаратов, трубопроводов и трубопроводной арматуры;
- снизить расход электроэнергии на очистку и охлаждение газа на 25% за счет регулирования частоты оборотов дымососа в зависимости от изменения температуры продуктов сгорания технологического газа ДСП перед керамическим фильтром в процессе плавки;
- исключить из газоотводящего тракта охладитель и искрогаситель, уменьшить количество мест пылеуборки и сократить персонал.
Литература
1. Н.А.Архипов, Л.В.Чекалов. Очистка газов электрофильтрами в черной металлургии (Бюл. Черная металлургия. №11. 2004 г.).
2. Л.А.Шульц, Ю.М.Кочнов, М.Ю.Кочнов. Современное состояние и развитие систем удаления, использования и очистки газов крупнотоннажных высокомощных электродуговых печей. (Черные металлы, октябрь 2006).
3. Лозин Г.А., Богданов Н.А., Бурнашев P.P. и др. Способ подготовки технологических газов сталеплавильного производства к очистке в электрофильтре. (Патент RU 2213608 С2, опубликовано 10.10.2003 г., Бюл. №28).
4. М.Н.Швец, Д.В.Сталинский, А.Ю.Пирогов. Улавливание и очистка пылегазовыделений электросталеплавильных печей (ж. «Сталь», №12. 2006 г.).
5. Niva Yukio. Установка для вывода газов из электродуговой печи. Daido Steel Co Ltd. JP 2737193 B2, 2178595 A. 29.12.1988 г. (Изобретения стран мира. Вып.78. №5/99).

Claims (3)

1. Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи (ДСП), включающий отсос технологического газа из ДСП через патрубок в своде, сжигание в камере дожигания, первичную очистку и охлаждение продуктов сгорания в водоохлаждаемой пылеосадительной камере, водоохлаждаемом газоходе и охладителе, окончательную очистку от пыли в установке сухой газоочистки, отсос дымососом и сброс в атмосферу через дымовую трубу, отличающийся тем, что окончательную очистку газа от пыли осуществляют в керамическом фильтре до 5 мг/нм3 при рабочей температуре до 600°C и максимально возможной до 900°C и с охлаждением чистого газа в котле-утилизаторе до 150°С с выработкой пара.
2. Способ по п.1, отличающийся тем, что регулируют частоту оборотов дымососа в зависимости от изменения температуры продуктов сгорания технологического газа перед керамическим фильтром по ходу плавки в диапазоне 200-650°C.
3. Способ по одному из пп.1 и 2, отличающийся тем, что регенерируют фильтровальную способность керамических элементов обратной импульсной продувкой сжатым воздухом в зависимости от заданного уровня газодинамического сопротивления керамических элементов, например, 3-7 кПа.
RU2011114831/02A 2011-04-15 2011-04-15 Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи RU2464512C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114831/02A RU2464512C1 (ru) 2011-04-15 2011-04-15 Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114831/02A RU2464512C1 (ru) 2011-04-15 2011-04-15 Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи

Publications (1)

Publication Number Publication Date
RU2464512C1 true RU2464512C1 (ru) 2012-10-20

Family

ID=47145477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114831/02A RU2464512C1 (ru) 2011-04-15 2011-04-15 Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи

Country Status (1)

Country Link
RU (1) RU2464512C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215078A (zh) * 2014-08-29 2014-12-17 东北大学 一种带有余热回收装置的镁熔坨生产工艺及设备
CN111944947A (zh) * 2020-08-07 2020-11-17 马鞍山奥柯环保科技发展有限公司 自适型转炉烟气干法除尘设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315443A (en) * 1965-10-05 1967-04-25 United States Steel Corp Method and apparatus for cleaning exhaust gases from oxygen steelmaking furnaces
RU2360197C1 (ru) * 2007-11-01 2009-06-27 Александр Александрович Максимов Способ очистки отходящих газов рудно-термических печей и установка для его осуществления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315443A (en) * 1965-10-05 1967-04-25 United States Steel Corp Method and apparatus for cleaning exhaust gases from oxygen steelmaking furnaces
RU2360197C1 (ru) * 2007-11-01 2009-06-27 Александр Александрович Максимов Способ очистки отходящих газов рудно-термических печей и установка для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШВЕЦ М.Н. и др. Улавливание и очистка пылегазовыделений электросталеплавильных печей. Сталь, 2006, №12, с.72-74. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215078A (zh) * 2014-08-29 2014-12-17 东北大学 一种带有余热回收装置的镁熔坨生产工艺及设备
CN104215078B (zh) * 2014-08-29 2015-12-09 东北大学 一种带有余热回收装置的镁熔坨生产工艺及设备
CN111944947A (zh) * 2020-08-07 2020-11-17 马鞍山奥柯环保科技发展有限公司 自适型转炉烟气干法除尘设备

Similar Documents

Publication Publication Date Title
CN101539371B (zh) 电炉烟气一次除尘和余热回收系统
CN102183155A (zh) 电石炉烟气高温除尘及蒸汽和煤气回收系统及其方法
CN102506589A (zh) 使部分烟气回流的电炉烟气除尘工艺
CN101851695A (zh) 阻氧式转炉煤气干法布袋净化回收工艺
CN111440640A (zh) 一种可利用余热的煤气高温净化系统及使用方法
CN102235679A (zh) 一种具有湿干法联合方式的除尘装置
RU2464512C1 (ru) Способ очистки и охлаждения технологического газа дуговой сталеплавильной печи
CN104154762A (zh) 矿热炉冶炼烟气除尘净化处理方法和矿热炉冶炼系统
CN101539370B (zh) 不设水冷烟道的电炉烟气一次除尘和余热回收系统
CN101559305B (zh) 高炉烟气分流捕集并列除尘工艺
CN201565226U (zh) 一种炉外法冶炼烟气除尘系统
CN104197725A (zh) 矿热炉冶炼烟气除尘净化及显热和潜热的综合利用方法
CN204064005U (zh) 蓄热式循环瓦斯气加热炉高温烧积碳装置
CN106288833A (zh) 一种提高闪速炉余热锅炉作业率的方法和循环系统
CN110030841A (zh) 电弧炉除尘设备及除尘方法
CN111321263A (zh) 一种高炉荒煤气升温方法与装置
CN104879747B (zh) 一种清洁燃烧装置
CN102052856B (zh) 一种氩氧脱碳炉除尘及余热利用系统
CN114669129A (zh) 一种高炉出铁场烟气除尘方法
CN104197733B (zh) 蓄热式循环瓦斯气加热炉高温烧积碳装置及工艺
CN201653115U (zh) 一种电炉烟气净化系统
CN203625414U (zh) 一种全过程回收余热的碳钢转炉干法布袋除尘装置
RU2609588C1 (ru) Газоотводящий тракт сталеплавильного агрегата
CN206056314U (zh) 一种提高闪速炉余热锅炉作业率的循环系统
CN203672157U (zh) 一种转底炉烟气处理系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140416

NF4A Reinstatement of patent

Effective date: 20150610

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200416