RU2446135C1 - Способ получения жидких углеводородов - Google Patents

Способ получения жидких углеводородов Download PDF

Info

Publication number
RU2446135C1
RU2446135C1 RU2010153477/04A RU2010153477A RU2446135C1 RU 2446135 C1 RU2446135 C1 RU 2446135C1 RU 2010153477/04 A RU2010153477/04 A RU 2010153477/04A RU 2010153477 A RU2010153477 A RU 2010153477A RU 2446135 C1 RU2446135 C1 RU 2446135C1
Authority
RU
Russia
Prior art keywords
gasoline
temperature
mpa
pressure
carried out
Prior art date
Application number
RU2010153477/04A
Other languages
English (en)
Inventor
Ирина Владиславовна Кочеткова (RU)
Ирина Владиславовна Кочеткова
Михаил Витальевич Львов (RU)
Михаил Витальевич Львов
Валерий Иванович Завьялов (RU)
Валерий Иванович Завьялов
Original Assignee
Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН") filed Critical Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН")
Priority to RU2010153477/04A priority Critical patent/RU2446135C1/ru
Application granted granted Critical
Publication of RU2446135C1 publication Critical patent/RU2446135C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

Изобретение относится к способу получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа. Настоящий способ позволяет повысить производительность конверсии диметилового эфира в бензин. 13 пр.

Description

Изобретение относится к области нефтехимической и нефтеперерабатывающей промышленности, а более конкретно к области получения синтетического моторного топлива из газового углеводородного сырья.
Проблема получения жидких продуктов различного назначения из газового углеводородного сырья уже много десятилетий находится в поле зрения исследователей практически всех промышленно развитых стран мира. Относительно топливного направления переработки углеводородных газов экономисты обычно отмечают, что такое производство само по себе находится на пределе рентабельности и не может конкурировать с топливами, получаемыми из нефти. В то же время отмечается, что топливный рынок может принять практически любое количество бензина и других видов моторного топлива, в то время как емкость рынка других химических продуктов ограничена.
При анализе экономического аспекта проблемы необходимо учитывать также стоимостные показатели для моторных топлив в отдаленных и труднодоступных районах, а также экологические проблемы, связанные с большим количеством попутных нефтяных газов, зачастую сжигаемых на факелах, в частности на морских платформах. Другим аспектом экологии в свете возможности синтетических моторных топлив является их преимущество перед топливами из нефти в отношении чистоты выхлопных газов.
По этим причинам в последние годы XX века интерес к промышленному использованию углеводородных нефтяных газов в качестве сырья для получения моторных топлив получил новый импульс в ряде индустриально развитых стран мира, в том числе и в России.
Из анализа патентной и научно-технической литературы следует, что реализованная в промышленности классическая схема получения моторных топлив из углеводородного газового сырья включает стадии получения синтез-газа, получения жидких углеводородных продуктов в той или иной модификации синтеза Фишера-Тропша и, наконец, получения моторного топлива нужного качества. Известно использование угля в качестве сырья при получении синтез-газа, однако это не меняет общего построения технологической схемы. Известно также, что автомобильный бензин может быть получен в последовательности процессов: получение синтез-газа, синтез кислородсодержащих продуктов (метанола или диметилового эфира), получение бензина.
Процесс получения бензина из диметилового эфира начинается с реакции его дегидратации
(СН3)2О=С2Н4+H2O,
в результате которой происходит переход от кислородсодержащего продукта к углеводороду. Затем происходит сложная последовательность реакций олигомеризации, циклизации, диспропорционирования и изомеризации, в результате которых окончательно формируется индивидуальный и фракционный состав бензина.
Известен способ получения изопарафиновых углеводородов из диметилового эфира, описанный в US 4579999 [1].
В соответствии с описанием к патенту диметиловый эфир на высококремнеземном катализаторе ZSM-5 на первой стадии превращается в смесь олефинов С24 и углеводородов С5+. Полученная смесь олефинов направляется на олигомеризацию с использованием среднепористого кислотного цеолитного катализатора. Вторую стадию процесса проводят при повышенном давлении и умеренных температурах. Предусмотрен также рецикл легких углеводородов на первую стадию процесса. Недостатком описанного способа является его многостадийность.
Известен способ получения жидких углеводородов из диметилового эфира в присутствии катализатора, при котором используют катализатор на основе кристаллического алюмосиликата типа пентасилов с мольным отношением SiO2/Al2O3=25-100, содержащего 0,05-0,1 мас.% оксида натрия и связующего компонента, который дополнительно содержит оксид цинка и оксиды редкоземельных элементов при следующем соотношении компонентов, мас.%:
ZnO - 0.5-3.0
оксиды РЗЭ - 0,1-5,0
кристаллический алюмосиликат - 65-70
связующее - остальное
Катализатор активируют на воздухе, при температуре 540-560°С. Процесс осуществляется при давлении 0,1-10 МПа, температуре 250-400°С, объемной скорости подачи сырья 250-1100 ч-1 (RU 2160160 [2]).
В результате каталитического превращения ДМЭ (98-100%) получают следующие углеводородные продукты (вес.% в смеси углеводородов): C1-C4 - 7,6-16,6, н-парафины С5+ - 2,1-3,2, изопарафины С5+ - 31,1-34,3, прочие С5+ - 20,8-40,0, ароматические С6+ - 15,6-28,8.
Недостатком описанного способа является относительно невысокое содержание изопарафинов: в жидких продуктах процесса оно не превышает 34%.
Наиболее близким к предлагаемому изобретению является способ получения высокооктановых автомобильных бензинов, известный из RU 2248341 [3]. В соответствии с описанием к патенту для получения экологически чистого высокооктанового бензина из сырья, содержащего диметиловый эфир, в проточном изотермическом реакторе высокого давления при температуре 320-380°С, давлении 5-10 МПа, объемной скорости подачи сырья 1000-4000 ч-1 используют катализатор на основе цеолитов типа пентасилов с SiO2/Al2O3=25-100, содержащий не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка, который дополнительно содержит палладий и другие компоненты в следующих соотношениях (мас.%): оксид цинка 0,1-3; палладий 0,1-1%; цеолит 50-70; связующее - остальное. Перед опытом проводят активацию катализатора в потоке водорода (р=1 атм, v=5 л/ч) при подъеме температуры 50°С в час. По достижении рабочей температуры катализатор выдерживают в этом режиме в течение 3 часов. Затем подачу водорода прекращают и начинают подачу исходного сырья. В качестве сырья используют газовую смесь, образовавшуюся в процессе синтеза ДМЭ из СО и Н2 в проточном реакторе, включенном в схему.
Недостатком известного способа является его относительно невысокая производительность.
Заявляемый способ получения бензина или его компонентов направлен на повышение производительности (конверсии ДМЭ в жидкие углеводороды, например бензин).
Указанный результат достигается тем, что способ получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, осуществляют в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более (масс. доля) 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа.
Используемый в заявляемом способе катализатор серийно выпускается ОАО «Новосибирский завод химконцентратов» под маркой ИК-17-М, имеет указанный выше состав и предназначен для переработки пропан-бутановой фракции и позволяет получать с высоким выходом концентрат ароматических углеводородов.
Совершенно неожиданно авторами было установлено, что этот катализатор может быть использован в переработке сырья, содержащего диметиловый эфир, для получения бензина или его компонентов с октановым числом 92-93, причем с более высокой производительностью, чем по способу, выбранному за прототип. Это может быть объяснено сочетанием входящих в состав катализатора компонентов и их количественным содержанием в катализаторе. Получаемый таким образом бензин и его компоненты имеют более высокое качество, так как не требуют какой-либо ректификации в дальнейшем.
Авторами было установлено, что при использовании упомянутого катализатора процесс получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, следует вести при температуре 300-400°С и давлении 2,5-4,5 МПа. Если температура процесса будет ниже 300°С, то производительность способа снижается и становится сравнимой с производительностью способа, взятого в качестве прототипа. Проведение процесса при температуре выше 400°С является нецелесообразным, так как при этом происходит сдвиг реакции в сторону образования ароматических соединений. Если осуществлять процесс получения при давлении ниже 2,5 МПа, то так же, как и в случае снижения температуры процесса ниже 300°С, производительность способа снижается. Если осуществлять процесс получения при давлении выше 4,5 МПа, то так же, как и в случае повышения температуры процесса выше 400°С, процесс сдвигается в сторону образования высокомолекулярных ароматических соединений.
Сущность заявляемого способа получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, поясняется примерами его реализации
Пример 1. В самом общем случае заявляемый способ получения бензина или его компонентов реализовывался следующим образом.
Проточный каталитический реактор установки, предназначенный для конверсии ДМЭ в бензиновую фракцию, представляет собой цилиндрический аппарат с рабочим давлением до 100 атмосфер, состоящий из катализаторной кассеты и теплообменника, гарантирующего необходимую температуру на выходе из реактора. В каталитическом реакторе проводили процесс превращения реакционного сырья (состоявшего из 95% диметилового эфира, полученного межмолекулярной дегидратацией метанола, соответствующего ГОСТ 2222-95 и 5% непрореагировавшего метанола) в бензин или его компоненты в присутствии катализатора марки ИК-17-М, выпускаемого ОАО «Новосибирский завод химконцентратов», при температуре 300-400°С, давлении 2,5-4,5 МПа и объемной скорости по сырью 0,2-0,8 час-1. Предварительной активации катализатора не проводилось.
В результате в реакторе осуществлялось протекание комплекса реакций. Сначала происходит реакция дегидратации ДМЭ
(СН3)2O=С2Н42О,
в результате которой происходит переход от кислородсодержащего продукта к углеводороду. Затем происходит сложная последовательность реакций олигомеризации, циклизации, диспропорционирования и изомеризации, в результате которых окончательно формируется индивидуальный фракционный состав бензина.
Конверсия ДМЭ была равна 95% и более, выход бензиновой фракции - 95,5% и более, выход сухих газов C13 составлял 4,5%. Важно отметить тот факт, что бензин, получаемый согласно предлагаемому способу, по такой важной экологической характеристике, как содержание серы (менее 0,5 ppm), существенно превосходит все виды топлив для карбюраторных двигателей и имеет октановое число 92-93 по исследовательскому методу. Таким образом, было достигнуто повышение конверсии ДМЭ до величины 95-98% (в то время как производительность по способу прототипа равнялась 85%).
Пример 2. Способ осуществлялся следующим образом. В проточный каталитический реактор, описанный в примере 1, загружали 4 кг катализатора марки ИК-17-М (предварительно выдержанного в атмосфере инертного газа при температуре 300°С в течение 3 часов), который засыпали в кассету, неподвижно устанавливаемую на пути газового потока. Внутренний объем каталитической кассеты реактора, равный 5 л, нагревали до температуры 300°С. На вход реактора подавали исходную реакционную смесь, содержащую 95% об. ДМЭ и 5% СН3ОН, компримировали до давления 3 МПа и подавали на вход реактора со скоростью 2,45 м3/час (при нормальных условиях). В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 34% ароматических углеводородов (бензол отсутствовал полностью), 12% нафтенов и 9% н-парафинов. Конверсия по бензину составила 95%.
Пример 3. Для сравнения был проведен эксперимент по реализации способа, выбранного за прототип. Использовался катализатор на основе типа пентасилов с SiO2/Al2O3=25-100, содержащий не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка; 0,1-1 мас.% палладия.
Сырье состава, указанного выше в примере 2, подавалось на вход реактора при температуре 350°С, давлении 7 МПа, объемной скорости сырья как в примере 2. Перед опытом провели активацию катализатора в потоке водорода (р=1 атм, v=5 л/ч) при подъеме температуры 50°С, как это указано в описании RU 2248341 [3]. По достижении рабочей температуры катализатор выдерживали в этом режиме в течение 3 часов. Затем подачу водорода прекратили и начали подачу исходного сырья. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 11% н-парафинов, 46% ароматических углеводородов и 10% нафтенов. Конверсия по бензину составила 85%.
Пример 4. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 300°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 9% н-парафинов, 34% ароматических углеводородов и 12% нафтенов. Конверсия по бензину составила 96%.
Пример 5. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 38% изопарафинов, 9% н-парафинов, 41% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.
Пример 6. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 400°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 9% н-парафинов, 45% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 99%.
Пример 7. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 410°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 9% н-парафинов, 46% ароматических углеводородов и 10% нафтенов. Конверсия по бензину составила 100%.
Пример 8. Способ осуществлялся, как описано в примере 2, но при следующих параметрах; температура - 310°С, давление - 2,2 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 44% изопарафинов, 10% н-парафинов, 33% ароматических углеводородов и 13% нафтенов. Конверсия по бензину составила 82%.
Пример 9. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 2,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 10% н-парафинов, 34% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 86%.
Пример 10. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 3,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 37% изопарафинов, 9% н-парафинов, 42% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.
Пример 11. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,0 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 35% изопарафинов, 9% н-парафинов, 44% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.
Пример 12. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 33% изопарафинов, 9% н-парафинов, 46% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 99%.
Пример 13. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,6 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 32% изопарафинов, 9% н-парафинов, 47% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 100%.

Claims (1)

  1. Способ получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа.
RU2010153477/04A 2010-12-28 2010-12-28 Способ получения жидких углеводородов RU2446135C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010153477/04A RU2446135C1 (ru) 2010-12-28 2010-12-28 Способ получения жидких углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010153477/04A RU2446135C1 (ru) 2010-12-28 2010-12-28 Способ получения жидких углеводородов

Publications (1)

Publication Number Publication Date
RU2446135C1 true RU2446135C1 (ru) 2012-03-27

Family

ID=46030862

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010153477/04A RU2446135C1 (ru) 2010-12-28 2010-12-28 Способ получения жидких углеводородов

Country Status (1)

Country Link
RU (1) RU2446135C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468299A (zh) * 2012-06-08 2013-12-25 渭南高新区爱心有限责任公司 一种二甲醚制汽油的工艺技术
US10550331B2 (en) 2014-03-28 2020-02-04 Ngt Global Ag Method of producing aromatic hydrocarbon concentrate from light aliphatic hydrocarbons, and installation for implementing same
US10550045B2 (en) 2014-01-22 2020-02-04 Ngt Global Ag Methods for producing aromatic hydrocarbons from natural gas and installation for implementing same
US10556846B2 (en) 2014-08-12 2020-02-11 Ngt Global Ag Method of producing concentrate of aromatic hydrocarbon from liquid hydrocarbon fractions, and installation for implementing same
US11427770B2 (en) 2016-03-09 2022-08-30 Ngt Global Ag Method for producing high-octane motor gasolines of low-octane hydrocarbon fractions, fractions of gaseous olefins and oxygenates and a plant for the method embodiment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894106A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of ethers
RU2160160C1 (ru) * 1999-10-22 2000-12-10 Байбурский Владимир Леонович Катализатор и способ получения жидких углеводородов из диметилового эфира
RU2248341C1 (ru) * 2003-08-07 2005-03-20 Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Катализатор, способ его приготовления и способ получения экологически чистого высокооктанового бензина

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894106A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of ethers
RU2160160C1 (ru) * 1999-10-22 2000-12-10 Байбурский Владимир Леонович Катализатор и способ получения жидких углеводородов из диметилового эфира
RU2248341C1 (ru) * 2003-08-07 2005-03-20 Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Катализатор, способ его приготовления и способ получения экологически чистого высокооктанового бензина

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468299A (zh) * 2012-06-08 2013-12-25 渭南高新区爱心有限责任公司 一种二甲醚制汽油的工艺技术
US10550045B2 (en) 2014-01-22 2020-02-04 Ngt Global Ag Methods for producing aromatic hydrocarbons from natural gas and installation for implementing same
US10550331B2 (en) 2014-03-28 2020-02-04 Ngt Global Ag Method of producing aromatic hydrocarbon concentrate from light aliphatic hydrocarbons, and installation for implementing same
US10556846B2 (en) 2014-08-12 2020-02-11 Ngt Global Ag Method of producing concentrate of aromatic hydrocarbon from liquid hydrocarbon fractions, and installation for implementing same
US11427770B2 (en) 2016-03-09 2022-08-30 Ngt Global Ag Method for producing high-octane motor gasolines of low-octane hydrocarbon fractions, fractions of gaseous olefins and oxygenates and a plant for the method embodiment

Similar Documents

Publication Publication Date Title
US10894752B2 (en) Catalyst and method for aromatization of C3-C4 gases, light hydrocarbon fractions and aliphatic alcohols, as well as mixtures thereof
CN102190546B (zh) 甲醇转化制丙烯和芳烃的方法
US9296665B2 (en) Synthesis of drop-in liquid fuels and chemicals from methanol, ethanol or syngas using mixed catalysts
CN103864562B (zh) 一种甲醇制均四甲苯的方法
AU2011326572B2 (en) Single loop multistage fuel production
US20040192990A1 (en) Process for the simultaneous conversion of methane and organic oxygenate to C2 to C10 hydrocarbons
RU2446135C1 (ru) Способ получения жидких углеводородов
US10150718B2 (en) Hydrogen rejection in methanol to hydrocarbon process
KR20190094202A (ko) 통합된 산소화물 전환 및 올레핀 올리고머화
WO2006126913A2 (en) Method for producing hydrocarbons from carbon oxides and hydrogen
WO2010097175A1 (en) Process for the direct conversion of oxygenated compounds to liquid hydrocarbons having a reduced aromatic content
RU2235590C1 (ru) Катализатор для превращения алифатических углеводородов c2-c12, способ его получения и способ превращения алифатических углеводородов c2-c12 в высокооктановый бензин и/или ароматические углеводороды
CN111111757A (zh) 整体式催化剂、制备方法及其使用方法
CN103772109B (zh) 甲醇转化制丙烯联产乙苯的方法
Graf et al. Hydroprocessing and Blending of a Biomass-Based DTG-Gasoline
CN111111752B (zh) 无粘结剂整体式催化剂、制备方法及其用途
RU2248341C1 (ru) Катализатор, способ его приготовления и способ получения экологически чистого высокооктанового бензина
RU2442767C1 (ru) Способ получения экологически чистого высокооктанового бензина
RU2103322C1 (ru) Способ получения бензиновых фракций и ароматических углеводородов
CN112961699B (zh) 一种合成气与混合c4共进料一步法制备液体燃料的方法
WO2012021094A2 (ru) Катализатор, способ его приготовления и способ получения смеси углеводородов с низким содержанием ароматических соединений
CN104342198B (zh) 一种甲醇基汽油重组分的改性方法
RU2674769C1 (ru) Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии
RU2330719C1 (ru) Катализатор для конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию, способ его получения и способ конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию
WO2011159202A1 (ru) Катализатор и способ получения олефинов из диметилового эфира в его присутствии

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141229