RU2435102C1 - Система утилизации мокрых углеродсодержащих отходов - Google Patents

Система утилизации мокрых углеродсодержащих отходов Download PDF

Info

Publication number
RU2435102C1
RU2435102C1 RU2010129610/03A RU2010129610A RU2435102C1 RU 2435102 C1 RU2435102 C1 RU 2435102C1 RU 2010129610/03 A RU2010129610/03 A RU 2010129610/03A RU 2010129610 A RU2010129610 A RU 2010129610A RU 2435102 C1 RU2435102 C1 RU 2435102C1
Authority
RU
Russia
Prior art keywords
heat
nozzle
boiler
nozzles
outlet
Prior art date
Application number
RU2010129610/03A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов (RU)
Олег Савельевич Кочетов
Мария Олеговна Стареева (RU)
Мария Олеговна Стареева
Original Assignee
Олег Савельевич Кочетов
Мария Олеговна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов, Мария Олеговна Стареева filed Critical Олег Савельевич Кочетов
Priority to RU2010129610/03A priority Critical patent/RU2435102C1/ru
Application granted granted Critical
Publication of RU2435102C1 publication Critical patent/RU2435102C1/ru

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

Изобретение относится к системам утилизации и может быть использовано на тепловых электрических станциях, на углеобогатительных фабриках, нефтеперерабатывающих заводах при утилизации гидрошламов и нефтешламов, а также на энерготехнологических комплексах при утилизации осадков сточных вод. Технический результат: повышение эффективности энерго-ресурсосбережения и очистки дымовых газов. Система утилизации мокрых углеродсодержащих отходов содержит топку, теплообменник и золоуловитель. Топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка. Суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки. В нижней части корпуса топки установлен шнековый разгрузчик. На колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем. В сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата. В боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора. Отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя. Дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются центробежные форсунки для распыливания жидкости. 3 ил.

Description

Изобретение относится к системам утилизации и может быть использовано на тепловых электрических станциях, на углеобогатительных фабриках, нефтеперерабатывающих заводах при утилизации гидрошламов и нефтешламов, а также на энерготехнологических комплексах при утилизации осадков сточных вод.
Наиболее близким техническим решением к заявляемому объекту является утилизатор-золоуловитель по патенту РФ №2316380, С02В 1/10, содержащий утилизатор входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла (прототип).
Недостатком известного устройства является сравнительно невысокая степень ресурсосбережения и очистки дымовых газов.
Технический результат - повышение эффективности энерго-ресурсосбережения и очистки дымовых газов.
Это достигается тем, что в системе утилизации мокрых углеродсодержащих отходов, содержащей топку, теплообменник и золоуловитель, топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются центробежные широкофакельные форсунки для распыливания жидкости.
На фиг.1 изображена схема системы утилизации мокрых углеродсодержащих отходов, на фиг.2 - вид сверху золоуловителя, на фиг.3 - фронтальный разрез форсунки для распыливания жидкости.
Система утилизации мокрых углеродсодержащих отходов (фиг.1, 2) содержит топку кипящего слоя 1, содержащую сводчатый корпус из огнеупорного материала с колосником 2, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка 3, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки 2. В нижней части корпуса топки 1 установлен шнековый разгрузчик 4. На колосниковой решетке 2 расположен инертный носитель в виде крупнозернистого кварцевого песка или шариков из жаропрочного материала, размеры которых лежат в диапазоне 1÷3 мм, а высота насыпного слоя инертного носителя составляет порядка 0,4÷0,6 м. Внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем (на чертеже не показано). В сопла 3 подается теплоноситель (горячий воздух с температурой порядка 400÷600°С) от дутьевого вентилятора 5 (вентилятор высокого давления с расходом воздуха порядка 1000÷5000 м3/ч), соединенного теплопроводом 6 с выходом высокотемпературного воздухонагревателя 16 теплообменного аппарата 15. Для розжига и поддержания оптимального режима горения в боковой стенке котла установлено вихревое сопло-горелка 9, работающее от газообразного топлива, например биогаза, поступающего с биореактора 8.
Головной дутьевой вентилятор 17, соединенный со входом высокотемпературного воздухонагревателя 16, установлен последовательно с дутьевыми вентиляторами 5 и 12, которые создают требуемое давление в соплах. Дутьевой вентилятор 12 подает горячий воздух с температурой порядка 400÷600°С в распылительное устройство 10, вход которого соединен с выходом пневмозагрузочного устройства 11 для подачи мокрых углеродсодержащих отходов. Распылительное устройство 10 выполнено с тангенциальным подводом теплоносителя, что позволяет повысить его эффективность за счет вихревых процессов перемешивания жидких отходов с горячим воздухом, поступающим от высокотемпературного воздухонагревателя 16. Дымоход 13 может быть расположен в верхней сводчатой части корпуса или, по крайней мере, в одной из боковых его стенок; он соединен теплопроводом 14 с теплообменным аппаратом 15, выход которого воздуховодом 18 соединен с золоуловителем, содержащим входной патрубок 19 (фиг.1-2), корпус 20, выходной патрубок 21, бункер 22, оросительные 23 и распылительные сопла на входном патрубке 19, в качестве которых используются центробежные широкофакельные форсунки для распыливания жидкости (фиг.3).
Центробежная широкофакельная форсунка состоит из корпуса 24 длиной L с впускным отверстием 27, выполненным в виде конфузора длиной L1, соосного с ним дроссельного отверстия 26 диаметром d1, камеры завихрения 25, выполненной в виде цилиндрического стакана, ось которого в плоскости чертежа перпендикулярна оси впускного 27 и дроссельного 26 отверстий. При этом ось впускного 27 и дроссельного 26 отверстий в профильной плоскости расположена по касательной по отношению к цилиндрической поверхности камеры завихрения 25, т.е. имеет место тангенциальный ввод в камеру завихрения 25 в виде отверстия 32.
Соосно камере завихрения 25 расположен сопловый вкладыш 28 с внешним диаметром D1, выполненный из твердых материалов: карбида вольфрама, рубина, сапфира. Внутри вкладыша выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения 25 три калиброванных отверстия: коническое отверстие 29 с диаметром D нижнего основания усеченного конуса, центральное цилиндрическое отверстие 30 диаметром d2 и выходное цилиндрическое отверстие 31 диаметром d3. При этом диаметр d2 центрального цилиндрического отверстия 30 соплового вкладыша 28 равен диаметру верхнего основания усеченного конуса конического отверстия 29.
Для работы форсунки в оптимальном режиме предусмотрены следующие соотношения ее параметров: отношение диаметра d2 центрального цилиндрического отверстия соплового вкладыша к диаметру d1 дроссельного отверстия корпуса форсунки лежит в оптимальном интервале величин: d2/d1=1,4÷2,2; отношение диаметра d3 выходного цилиндрического отверстия соплового вкладыша к диаметру d2 центрального цилиндрического отверстия лежит в оптимальном интервале величин: d3/d2=1,5-2,5; отношение внешнего диаметра D1 соплового вкладыша к диаметру D нижнего основания усеченного конуса конического отверстия 6 вкладыша лежит в оптимальном интервале величин: D1/D=1,2÷1,8; отношение длины L корпуса 1 форсунки к длине L1 конфузора впускного отверстия лежит в оптимальном интервале величин: L/L1=2,0÷2,5.
Система утилизации мокрых углеродсодержащих отходов работает следующим образом.
Для розжига и поддержания оптимального режима горения в боковой стенке котла установлено вихревое сопло-горелка 9, работающее от газообразного топлива, например биогаза, поступающего с биореактора 8. Подаваемые сверху топки через распылительное устройство 10 на колосниковую решетку 2, на которой расположен инертный носитель в виде крупнозернистого кварцевого песка, мокрые углеродсодержащие отходы попадают на кипящий слой раскаленного кварцевого песка, при этом вода мгновенно испаряется, а твердые частички топлива интенсивно сгорают, отдавая теплоту водонагревательным трубам котла. Температура горения достигает порядка 800÷950°С, причем стабильность ее поддерживается за счет присутствия в зоне горения воды и пара и теплового аккумулятора в виде раскаленного инертного носителя, который обеспечивает необходимую инерционность процесса горения. В сопла 3 подается горячий воздух с температурой порядка 400÷600°С от дутьевого вентилятора 5 высокого давления с расходом воздуха порядка 1000÷5000 м3/ч, соединенного теплопроводом 6 с выходом высокотемпературного воздухонагревателя 16 теплообменного аппарата 15. Дымоход 13 может быть расположен в верхней сводчатой части корпуса или, по крайней мере, в одной из боковых его стенок; он соединен теплопроводом 14 с теплообменным аппаратом 15, выход которого воздуховодом 18 соединен с золоуловителем, содержащим входной патрубок 19.
В мокром золоуловителе (фиг.1, 2) отсепарированная за счет центробежных сил пыль оседает на пленке воды, стекающей по стенке аппарата, что уменьшает вторичный захват зольных частиц потока. Более высокая степень улавливания достигается при применении центробежных форсунок в качестве оросительных 23 и распылительные 24 сопел, а также мокрых скрубберов с устройством для предварительного увлажнения газа (например, предварительно включенным аппаратом Вентури с распылительными соплами 24).
Центробежная широкофакельная форсунка для распыливания жидкостей работает следующим образом. Жидкость подается по впускному отверстию 27, выполненному в виде конфузора длиной L1, затем проходит через соосное с ним дроссельное отверстие 26 диаметром d1 и поступает по тангенциальному вводу через отверстие 32 в камеру завихрения 25, выполненную в виде цилиндрического стакана. Вращающийся поток жидкости из камеры завихрения 25 проходит через калиброванное коническое отверстие 29 соплового вкладыша 28, центральное цилиндрическое отверстие 30 и выходное цилиндрическое отверстия 31 соплового вкладыша 28, в результате чего образуется факел распыленной жидкости, корневой угол которого определяется величиной угла при вершине конуса конического отверстия 29 соплового вкладыша 28.
Предложенная конструкция широкофакельной форсунки с диаметром центрального цилиндрического отверстия 30, равным 9 мм, при рабочих давлениях жидкости 150…250 кПа обеспечивает угол раскрытия водяного факела до 150° и сохраняет устойчивость факела при давлении жидкости перед форсунками от 40 кПа и выше, при этом производительность форсунки зависит от давления жидкости на входе впускного отверстия 27.
Предлагаемая система может быть использована на тепловых электрических станциях, на углеобогатительных фабриках, нефтеперерабатывающих заводах при утилизации гидрошламов и нефтешламов, а также на энерготехнологических комплексах при утилизации осадков сточных вод.

Claims (1)

  1. Система утилизации мокрых углеродсодержащих отходов, содержащая топку, теплообменник и золоуловитель, отличающаяся тем, что топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются центробежные форсунки для распыливания жидкости, корпус каждой из форсунок выполнен со впускным отверстием, выполненным в виде конфузора и соосного с ним дроссельного отверстия, а камера завихрения выполнена в виде цилиндрического стакана, ось которого в плоскости чертежа перпендикулярна оси впускного и дроссельного отверстий, при этом ось впускного и дроссельного отверстий в профильной плоскости расположена касательно по отношению к камере завихрения, причем соосно камере завихрения расположен сопловый вкладыш, внутри которого выполнены последовательно расположенные и соосные друг другу и цилиндрической поверхности камеры завихрения три калиброванных отверстия: коническое отверстие, центральное цилиндрическое отверстие и выходное цилиндрическое отверстие, при этом диаметр центрального цилиндрического отверстия соплового вкладыша равен диаметру верхнего основания усеченного конуса конического отверстия.
RU2010129610/03A 2010-07-19 2010-07-19 Система утилизации мокрых углеродсодержащих отходов RU2435102C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010129610/03A RU2435102C1 (ru) 2010-07-19 2010-07-19 Система утилизации мокрых углеродсодержащих отходов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010129610/03A RU2435102C1 (ru) 2010-07-19 2010-07-19 Система утилизации мокрых углеродсодержащих отходов

Publications (1)

Publication Number Publication Date
RU2435102C1 true RU2435102C1 (ru) 2011-11-27

Family

ID=45318245

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010129610/03A RU2435102C1 (ru) 2010-07-19 2010-07-19 Система утилизации мокрых углеродсодержащих отходов

Country Status (1)

Country Link
RU (1) RU2435102C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2536201C1 (ru) * 2013-10-18 2014-12-20 Олег Савельевич Кочетов Автоматическая система пожаротушения
RU2536202C1 (ru) * 2013-10-18 2014-12-20 Олег Савельевич Кочетов Дренчерная система пожаротушения
RU2540744C1 (ru) * 2013-12-26 2015-02-10 Федеральное государственное бюджетное уреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
RU2544650C1 (ru) * 2013-10-18 2015-03-20 Олег Савельевич Кочетов Система утилизации мокрых углеродсодержащих отходов
CN104791807A (zh) * 2015-04-28 2015-07-22 无锡华光锅炉股份有限公司 一种固体燃料气化焚烧锅炉
RU2573884C1 (ru) * 2015-01-16 2016-01-27 Олег Савельевич Кочетов Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
RU2576679C1 (ru) * 2014-12-25 2016-03-10 Олег Савельевич Кочетов Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
CN105570913A (zh) * 2016-02-25 2016-05-11 四川省宜宾惠美线业有限责任公司 一种循环砂子吹灰装置
RU2625189C1 (ru) * 2016-10-17 2017-07-12 Олег Савельевич Кочетов Система утилизации мокрых углеродсодержащих отходов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Распыливающие устройства в химической промышленности./ Под ред. Д.Г. Пажи. - М.: Химия, 1975, с.7-9, 95, 101, 102. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2536201C1 (ru) * 2013-10-18 2014-12-20 Олег Савельевич Кочетов Автоматическая система пожаротушения
RU2536202C1 (ru) * 2013-10-18 2014-12-20 Олег Савельевич Кочетов Дренчерная система пожаротушения
RU2544650C1 (ru) * 2013-10-18 2015-03-20 Олег Савельевич Кочетов Система утилизации мокрых углеродсодержащих отходов
RU2540744C1 (ru) * 2013-12-26 2015-02-10 Федеральное государственное бюджетное уреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
RU2576679C1 (ru) * 2014-12-25 2016-03-10 Олег Савельевич Кочетов Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
RU2573884C1 (ru) * 2015-01-16 2016-01-27 Олег Савельевич Кочетов Установка для утилизации защитных экранов видеотерминалов и автомобильных стекол типа "триплекс", пришедших в негодность в результате дорожных и чрезвычайных происшествий
CN104791807A (zh) * 2015-04-28 2015-07-22 无锡华光锅炉股份有限公司 一种固体燃料气化焚烧锅炉
CN105570913A (zh) * 2016-02-25 2016-05-11 四川省宜宾惠美线业有限责任公司 一种循环砂子吹灰装置
RU2625189C1 (ru) * 2016-10-17 2017-07-12 Олег Савельевич Кочетов Система утилизации мокрых углеродсодержащих отходов

Similar Documents

Publication Publication Date Title
RU2435102C1 (ru) Система утилизации мокрых углеродсодержащих отходов
KR100821124B1 (ko) 열회수용 연소장치
JP4766562B2 (ja) 木質ペレット焚き蒸気ボイラ
RU2385438C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN101586805B (zh) 一种生物质颗粒燃料燃烧装置
CN104819472A (zh) 一种生物质类固废及危废燃烧制汽系统
TWI615542B (zh) 先進式超超臨界蒸汽發電機
KR101209022B1 (ko) 열회수율이 향상된 열회수시스템 및 이를 이용한 열병합 발전시스템
RU2659983C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN203757694U (zh) 一种节能减排高效燃烧生物质锅炉
RU2705528C1 (ru) Комплексная котельная установка
RU2544650C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN103104912A (zh) 燃水煤浆循环流化床锅炉
RU2625189C1 (ru) Система утилизации мокрых углеродсодержащих отходов
RU2471726C1 (ru) Система утилизации мокрых углеродсодержащих отходов
KR20160008283A (ko) 보일러 일체형 기포유동층 연소로
RU51178U1 (ru) Водогрейная газотрубная установка для сжигания отходов растительного происхождения
RU125306U1 (ru) Система утилизации мокрых углеродсодержащих отходов
KR102078139B1 (ko) 고체 연료 보일러
CN107883366B (zh) 一种生物质燃料蒸汽发生器
CN201497188U (zh) 有机热载体锅炉
RU177021U1 (ru) Котел
RU2704923C1 (ru) Горелочное устройство (варианты)
JP7346008B2 (ja) バイオマス燃料用燃焼炉及びボイラシステム並びにバイオマス燃料の燃焼方法
CN112020486B (zh) 一种用于燃料气产生和燃烧的装置