RU125306U1 - Система утилизации мокрых углеродсодержащих отходов - Google Patents

Система утилизации мокрых углеродсодержащих отходов Download PDF

Info

Publication number
RU125306U1
RU125306U1 RU2012135786/03U RU2012135786U RU125306U1 RU 125306 U1 RU125306 U1 RU 125306U1 RU 2012135786/03 U RU2012135786/03 U RU 2012135786/03U RU 2012135786 U RU2012135786 U RU 2012135786U RU 125306 U1 RU125306 U1 RU 125306U1
Authority
RU
Russia
Prior art keywords
nozzle
heat exchanger
conical
heat
boiler
Prior art date
Application number
RU2012135786/03U
Other languages
English (en)
Inventor
Алексей Владимирович Трофимов
Олег Савельевич Кочетов
Original Assignee
Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) filed Critical Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий)
Application granted granted Critical
Publication of RU125306U1 publication Critical patent/RU125306U1/ru

Links

Images

Abstract

Полезная модель относится к системам утилизации и может быть использовано на тепловых электрических станциях, на углеобогатительных фабриках, нефтеперерабатывающих заводах при утилизации гидрошламов и нефтешламов, а также на энерготехнологических комплексах при утилизации осадков сточных вод.
Технический результат - повышение эффективности энерго-ресурсосбережения и очистки дымовых газов.
Это достигается тем, что в системе утилизации мокрых углеродсодержащих отходов, содержащей топку, теплообменник и золоуловитель топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используется мелкодисперсный распылитель жидкости.

Description

Полезная модель относится к системам утилизации и может быть использовано на тепловых электрических станциях, на углеобогатительных фабриках, нефтеперерабатывающих заводах при утилизации гидрошламов и нефтешламов, а также на энерготехнологических комплексах при утилизации осадков сточных вод.
Наиболее близким техническим решением к заявляемому объекту является система утилизации мокрых углеродсодержащих отходов по патенту РФ №2435102, C02B 1/10, содержащая утилизатор входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла (прототип).
Недостатком известного устройства является сравнительно невысокая степень ресурсосбережения и очистки дымовых газов.
Технический результат - повышение эффективности энерго-ресурсосбережения и очистки дымовых газов.
Это достигается тем, что в системе утилизации мокрых углеродсодержащих отходов, содержащей топку, теплообменник и золоуловитель топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используется мелкодисперсный распылитель жидкости.
На фиг.1 изображена схема системы утилизации мокрых углеродсодержащих отходов, на фиг.2 - вид сверху золоуловителя, на фиг.3 - схема мелкодисперсного распылителя жидкости.
Система утилизации мокрых углеродсодержащих отходов (фиг.1, 2) содержит топку кипящего слоя 1, содержащую сводчатый корпус из огнеупорного материала с колосником 2, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка 3, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки 2. В нижней части корпуса топки 1 установлен шнековый разгрузчик 4. На колосниковой решетке 2 расположен инертный носитель в виде крупнозернистого кварцевого песка или шариков из жаропрочного материала, размеры которых лежат в диапазоне 1÷3 мм, а высота насыпного слоя инертного носителя составляет порядка 0,4÷0,6 м. Внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем (на чертеже не показано). В сопла 3 подается теплоноситель (горячий воздух с температурой порядка 400÷600°C) от дутьевого вентилятора 5 (вентилятор высокого давления с расходом воздуха порядка 1000÷5000 м3/ч), соединенного теплопроводом 6 с выходом высокотемпературного воздухонагревателя 16 теплообменного аппарата 15. Для розжига и поддержания оптимального режима горения в боковой стенке котла установлено вихревое сопло-горелка 9, работающее от газообразного топлива, например биогаза, поступающего с биореактора 8.
Головной дутьевой вентилятор 17, соединенный со входом высокотемпературного воздухонагревателя 16, установлен последовательно с дутьевыми вентиляторами 5 и 12, которые создают требуемое давление в соплах. Дутьевой вентилятор 12 подает горячий воздух с температурой порядка 400÷600°C в распылительное устройство 10, вход которого соединен с выходом пневмозагрузочного устройства 11 для подачи мокрых углеродсодержащих отходов. Распылительное устройство 10 выполнено с тангенциальным подводом теплоносителя, что позволяет повысить его эффективность за счет вихревых процессов перемешивания жидких отходов с горячим воздухом, поступающим от высокотемпературного воздухонагревателя 16. Дымоход 13 может быть расположен в верхней сводчатой части корпуса или, по крайней мере, в одной из боковых его стенок; он соединен теплопроводом 14 с теплообменным аппаратом 15, выход которого воздуховодом 18 соединен с золоуловителем, содержащим входной патрубок 19 (фиг.1-2), корпус 20, выходной патрубок 21, бункер 22, оросительные 23 и распылительные сопла на входном патрубке 19, в качестве которых используется мелкодисперсный распылитель жидкости.
Мелкодисперсный распылитель жидкости (фиг.3) содержит полый корпус, состоящий из цилиндрической части 24 с внешней резьбой для подсоединения к штуцеру распределительного трубопровода для подвода жидкости, и двух, последовательно соединенных и соосных с ним, полых цилиндро-конических поясов 25 и 26.
Соосно корпусу, в его нижней части закреплено сопло 27, образованное наружной конической поверхностью и торцевой, перпендикулярной оси сопла, глухой перегородкой 28, в которой выполнены центральное дроссельное отверстием 29 и, по крайней мере три, наклонных отверстия 30 под углом 45° к оси сопла. На конической поверхности сопла 27 выполнен цилиндрический буртик с наружной резьбой для соединения сопла с нижним цилиндро-коническим поясом 26 корпуса.
Корпус и сопло 27 образуют между собой несколько соосных внутренних цилиндрических камер 31, 33, 34, 35 и коническую камеру 32.
Камера 31 служит для подвода жидкости, камеры 32, 33 и 35 являются расширительными камерами, а камера 34 выполняет функции нагнетательной камеры повышенного давления. На сопле 27, со стороны, противоположной подводу жидкости, выполнен дополнительный ряд жиклеров, которые образованы, по крайней мере, тремя парами взаимно перпендикулярных вертикальных каналов 39 для прохода жидкости и горизонтальных каналов 38, которые пересекаются на конической боковой поверхности сопла 27 и образуют выходные отверстия каждого из жиклера. Парные каналы 28 и 29 расположены под прямым углом друг к другу в продольных плоскостях корпуса. Коническая боковая поверхность 27 сопла выполнена с углом при вершине, равным 90°.
На цилиндро-коническом поясе 25, жестко соединенном с цилиндрической частью 24 корпуса с внешней резьбой выполнены два ряда дроссельных отверстий: один ряд представляет собой, по крайней мере, три горизонтальных отверстия 26, выполненных на цилиндрической поверхности, другой ряд представляет собой, по крайней мере, три наклонных отверстия 40 под углом 45°, выполненных на конической поверхности. При этом в горизонтальной плоскости проекции осей отверстий 36 и 40 в этих рядах отстоят друг от друга на угол 7,5…60°.
На цилиндро-коническом поясе 26, соединенном с соплом 27 посредством внутренней резьбы выполнен ряд, состоящий по крайней мере, из трех горизонтальных дроссельных отверстий 37. При этом в горизонтальной плоскости проекции осей отверстий 37 и жиклеров, которые образованы, по крайней мере, тремя парами взаимно перпендикулярных вертикальных 39 и горизонтальных 38 каналов на конической боковой поверхности сопла 27, отстоят друг от друга на угол, лежащий в оптимальном диапазоне величин: 7,5…60°.
Система утилизации мокрых углеродсодержащих отходов работает следующим образом.
Для розжига и поддержания оптимального режима горения в боковой стенке котла установлено вихревое сопло-горелка 9, работающее от газообразного топлива, например биогаза, поступающего с биореактора 8. Подаваемые сверху топки через распылительное устройство 10 на колосниковую решетку 2, на которой расположен инертный носитель в виде крупнозернистого кварцевого песка, мокрые углеродсодержащие отходы попадают на кипящий слой раскаленного кварцевого песка, при этом вода мгновенно испаряется, а твердые частички топлива интенсивно сгорают, отдавая теплоту водонагревательным трубам котла. Температура горения достигает порядка 800÷950°C, причем стабильность ее поддерживается за счет присутствия в зоне горения воды и пара и теплового аккумулятора в виде раскаленного инертного носителя, который обеспечивает необходимую инерционность процесса горения. В сопла 3 подается горячий воздух с температурой порядка 400÷600°C от дутьевого вентилятора 5 высокого давления с расходом воздуха порядка 1000÷5000 м3/ч, соединенного теплопроводом 6 с выходом высокотемпературного воздухонагревателя 16 теплообменного аппарата 15. Дымоход 13 может быть расположен в верхней сводчатой части корпуса или, по крайней мере, в одной из боковых его стенок; он соединен теплопроводом 14 с теплообменным аппаратом 15, выход которого воздуховодом 18 соединен с золоуловителем, содержащим входной патрубок 19.
В мокром золоуловителе (фиг.1, 2) отсепарированная за счет центробежных сил пыль оседает на пленке воды, стекающей по стенке аппарата, что уменьшает вторичный захват зольных частиц потока. Более высокая степень улавливания достигается при применении центробежных форсунок в качестве оросительных 23 и распылительные 24 сопел, а также мокрых скрубберов с устройством для предварительного увлажнения газа (например, предварительно включенным аппаратом Вентури с распылительными соплами 24).
Работа мелкодисперсного распылителя жидкости осуществляется следующим образом.
Распылитель устанавливается в рабочее состояние в вертикальном положении. При подаче жидкости в корпус 24 под действием перепада давления 0,4…0,8 МПа в каналах и дроссельных отверстиях образуются капиллярные турбулентные потоки жидкости, устремляющиеся к выходным сечениям этих отверстий.
После столкновения потоков жидкости в каналах 38 и 39, и истечения через выходные отверстия жиклеров происходит образование веерообразного газожидкостного потока в виде пелены, т.е. реализуется механизм дробления капель жидкости, но генерируемый пеленообразный поток отклоняется от горизонтальной плоскости на больший угол, в диапазоне от 45 до 60°, в направлении к центральной области орошаемой поверхности, расположенной непосредственно под центральным дроссельным отверстием 29 в глухой перегородке 28 распылителя. Такое распределение распыляемой жидкости позволяет повысить равномерность распыления жидкости над центральной частью орошаемой поверхности.

Claims (2)

1. Система утилизации мокрых углеродсодержащих отходов, содержащая топку, теплообменник и золоуловитель, отличающаяся тем, что топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30-50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используется мелкодисперсный распылитель жидкости.
2. Система утилизации мокрых углеродсодержащих отходов по п.1, отличающаяся тем, что мелкодисперсный распылитель жидкости содержит полый цилиндрический корпус, соединенный с соплом, в котором выполнены жиклеры во взаимно-перпендикулярных плоскостях, при этом полый корпус состоит из цилиндрической части с внешней резьбой для подсоединения к штуцеру распределительного трубопровода и двух последовательно соединенных и соосных с ним полых цилиндро-конических поясов, а соосно корпусу в его нижней части закреплено сопло, образованное наружной конической поверхностью и торцевой, перпендикулярной оси сопла глухой перегородкой, в которой выполнены центральное дроссельное отверстие и, по крайней мере, три наклонных отверстия под углом 45° к оси сопла, причем на конической поверхности сопла выполнен цилиндрический буртик с наружной резьбой для соединения сопла с нижним цилиндро-коническим поясом корпуса, при этом на сопле со стороны, противоположной подводу жидкости, выполнен дополнительный ряд жиклеров, которые образованы, по крайней мере, тремя парами взаимно перпендикулярных вертикальных каналов для прохода жидкости и горизонтальных каналов, которые пересекаются на конической боковой поверхности сопла и образуют выходные отверстия каждого из жиклера, причем парные каналы расположены под прямым углом друг к другу в продольных плоскостях корпуса, при этом коническая боковая поверхность сопла выполнена с углом при вершине, равным 90°, а на цилиндро-коническом поясе, жестко соединенном с цилиндрической частью корпуса, выполнены два ряда дроссельных отверстий: один ряд представляет собой, по крайней мере, три горизонтальных отверстия, выполненных на цилиндрической поверхности, другой ряд представляет собой, по крайней мере, три наклонных отверстия под углом 45°, выполненных на конической поверхности, при этом в горизонтальной плоскости проекции осей отверстий в этих рядах отстоят друг от друга на угол, лежащий в оптимальном диапазоне величин 7,5…60°, причем на цилиндро-коническом поясе, соединенном с соплом посредством внутренней резьбы, выполнен ряд, состоящий, по крайней мере, из трех горизонтальных дроссельных отверстий, при этом в горизонтальной плоскости проекции осей отверстий и жиклеров, которые образованы, по крайней мере, тремя парами взаимно перпендикулярных вертикальных и горизонтальных каналов на конической боковой поверхности сопла, отстоят друг от друга на угол, лежащий в оптимальном диапазоне величин: 7,5…60°.
Figure 00000001
RU2012135786/03U 2012-08-21 Система утилизации мокрых углеродсодержащих отходов RU125306U1 (ru)

Publications (1)

Publication Number Publication Date
RU125306U1 true RU125306U1 (ru) 2013-02-27

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543910C1 (ru) * 2013-11-20 2015-03-10 Олег Савельевич Кочетов Теплообменный аппарат кочетова для распылительной сушилки

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543910C1 (ru) * 2013-11-20 2015-03-10 Олег Савельевич Кочетов Теплообменный аппарат кочетова для распылительной сушилки

Similar Documents

Publication Publication Date Title
RU2435102C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN107405567B (zh) 复式喷射格栅布置
TWI633256B (zh) 雙相燃料給料器、具有此燃料給料器之鍋爐,及於此鍋爐中燃燒固體燃料之方法
RU2385438C1 (ru) Система утилизации мокрых углеродсодержащих отходов
KR101211035B1 (ko) 폐기물 고형연료용 보일러
CN107036283B (zh) 一种生物质成型燃料气化燃烧常压热水锅炉
KR20090019377A (ko) 유동층 보일러의 유동화용 공기분배노즐 및 그의 설치방법
RU2659983C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN203757694U (zh) 一种节能减排高效燃烧生物质锅炉
RU2705528C1 (ru) Комплексная котельная установка
RU125306U1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN103104912A (zh) 燃水煤浆循环流化床锅炉
KR20160008283A (ko) 보일러 일체형 기포유동층 연소로
RU2544650C1 (ru) Система утилизации мокрых углеродсодержащих отходов
EA014014B1 (ru) Способ сжигания гранулированного биотоплива и котел для осуществления такого способа
CN205388316U (zh) 蒸汽锅炉余热利用系统
KR102078139B1 (ko) 고체 연료 보일러
RU2471726C1 (ru) Система утилизации мокрых углеродсодержащих отходов
RU2625189C1 (ru) Система утилизации мокрых углеродсодержащих отходов
RU2460014C1 (ru) Устройство для сжигания водоугольного топлива
CN107883366B (zh) 一种生物质燃料蒸汽发生器
CN208894425U (zh) 一种脉动式雾化器
CN216477578U (zh) 燃煤型燃气轮机
KR101496299B1 (ko) 열매체 보일러와 스팀 보일러 복합형 고형연료 보일러
CN203284379U (zh) 用于流化床热水锅炉的炉前可燃气体发生器