RU2427936C1 - Комбинированная таблетка ядерного топлива - Google Patents

Комбинированная таблетка ядерного топлива Download PDF

Info

Publication number
RU2427936C1
RU2427936C1 RU2010105647/07A RU2010105647A RU2427936C1 RU 2427936 C1 RU2427936 C1 RU 2427936C1 RU 2010105647/07 A RU2010105647/07 A RU 2010105647/07A RU 2010105647 A RU2010105647 A RU 2010105647A RU 2427936 C1 RU2427936 C1 RU 2427936C1
Authority
RU
Russia
Prior art keywords
fuel
nuclear fuel
tablet
nuclear
pellet
Prior art date
Application number
RU2010105647/07A
Other languages
English (en)
Inventor
Виталий Георгиевич Баранов (RU)
Виталий Георгиевич Баранов
Александр Витальевич Хлунов (RU)
Александр Витальевич Хлунов
Ирина Семеновна Курина (RU)
Ирина Семеновна Курина
Александр Викторович Иванов (RU)
Александр Викторович Иванов
Андрей Вадимович Тенишев (RU)
Андрей Вадимович Тенишев
Георгий Валентинович Тихомиров (RU)
Георгий Валентинович Тихомиров
Игнат Сергеевич Тимошин (RU)
Игнат Сергеевич Тимошин
Original Assignee
Российская Федерация (РФ), от имени которой выступает Министерство образования и науки Российской Федерации (Минобрнауки России)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ "МИФИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация (РФ), от имени которой выступает Министерство образования и науки Российской Федерации (Минобрнауки России), Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ "МИФИ") filed Critical Российская Федерация (РФ), от имени которой выступает Министерство образования и науки Российской Федерации (Минобрнауки России)
Priority to RU2010105647/07A priority Critical patent/RU2427936C1/ru
Application granted granted Critical
Publication of RU2427936C1 publication Critical patent/RU2427936C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Изобретение относится к ядерной технике, а именно к конструкциям твэлов реакторов, в которых используется оксидное ядерное топливо на основе урана и/или плутония, в том числе с добавлением оксида гадолиния (Gd2O3). Таблетка выполнена из нескольких концентрических слоев, каждый из которых состоит из делящегося и воспроизводящего материла. Внешний концентрический слой, содержащий меньше делящегося ядерного материала на единицу объема по сравнению с внутренним цилиндрическим сердечником, дополнительно содержит выгорающий поглотитель в виде перовскитной фазы АВО3, где A=Gd, Er; B=Al, Mg, Ti, например, GdAlO3. Кроме того, во внутреннем цилиндрическом сердечнике средний размер зерна составляет более 20 мкм, а средний размер зерна во внешнем концентрическом слое комбинированной таблетки составляет менее 5 мкм. Внутренний цилиндрический сердечник комбинированной таблетки может иметь осевое отверстие. Технический результат - повышение степени выгорания топлива, уменьшение расхода ядерного топлива на единицу выработанной энергии, сокращение объема отработавшего ядерного топлива, снижение величины коэффициента начальной реактивности, увеличение длительности кампании при номинальной тепловой нагрузке на тепловыделяющие элементы. 4 з.п. ф-лы, 1 ил.

Description

Изобретение относится к ядерной технике, а именно к конструкциям тепловыделяющих элементов (твэлов) реакторов, в которых используется оксидное ядерное топливо на основе урана и/или плутония, в том числе с добавлением оксида гадолиния (Gd2O3).
Одно из основных направлений повышения технико-экономических показателей атомных электростанций связано с увеличением степени выгорания ядерного топлива.
В настоящее время активные зоны водо-водяных энергетических реакторов формируют из тепловыделяющих сборок, содержащих оксидное ядерное топливо на основе диоксида урана, обогащенного по U235 до 4-5%, с добавкой выгорающего поглотителя нейтронов, например (Gd2O3), что позволяет компенсировать начальную реактивность, выравнивать энерговыделение по объему активной зоны и поддерживать температурный коэффициент реактивности на заданном уровне, повышая этим степень выгорания ядерного топлива.
Известна таблетка ядерного топлива, состоящая из диоксида урана или диоксида урана с добавлением оксида гадолиния, содержащая в своем составе алюмосиликатную фазу. Средний размер зерна в таких таблетках составляет от 20 до 60 мкм [1].
В известной таблетке ядерного топлива из диоксида урана (UO2) или диоксида урана (UO2) с оксидом гадолиния (Gd2O3) при ее приготовлении соответствующие порошки смешиваются с порошком предварительно спеченного агента, включающего 40-80% SiO2, остальное оксид алюминия Al2O3. Спекание таблеток после формования проводят при температуре от 1500 до 1800°С, спеченные таблетки имеют максимальную пористость 5 об.%. Наличие в таблетках алюмосиликатной фазы и оксида гадолиния, образующего твердый раствор замещения с UO2, приводит к снижению теплопроводности, например, при 600 К до 2,5 Вт/(м·К) [2], и уменьшению содержания урана, что не позволяет существенно повысить выгорание ядерного топлива без снижения линейной мощности твэла.
Наиболее близким к предлагаемому изобретению и принятым в качестве прототипа является изобретение [3], в котором предлагается комбинированная таблетка, выполненная из нескольких концентрических слоев, каждый из которых состоит из делящегося и воспроизводящего ядерного материала, при этом внешний концентрический слой содержит меньшее количество делящегося материала на единицу объема по сравнению с внутренним цилиндрическим сердечником.
Внешний концентрический слой согласно известному изобретению содержит низкообогащенный, природный или обедненный диоксид урана толщиной от 25 до 635 мкм, а внутренний цилиндрический сердечник выполнен из обогащенного UO2.
Выгорание в низкообогащенном внешнем цилиндрическом слое на начальном этапе работы реактора должно быть меньше, чем в стандартной топливной таблетке из-за более низкого содержания U235 во внешнем слое. Радиальный профиль наработки плутония (по радиусу стандартной топливной таблетки от периферии до центра), для таблеток с низким обогащением, естественным и обедненным диоксидом урана внешнего слоя будет примерно одинаковым как в комбинированной, так и в стандартной таблетках. Высокая наработка плутония в тонком периферийном слое таблетки обусловлена резонансными нейтронами, которые проникают на небольшую глубину, в результате чего она быстро снижается к центру таблетки из-за эффекта самоэкранирования.
Выгорание в периферийном слое стандартной топливной таблетки становится очень высоким из-за совместного вклада деления как U235, так и изотопов плутония, что приводит к образованию так называемого rim-слоя.
В процессе работы реактора резонансные нейтроны будут захватываться во внешнем цилиндрическом слое, который выполнен из низкообогащенного, природного или обедненного диоксида урана, и вследствие этого бридинг и деление плутония в этом слое таблетки будет происходить точно так же, как и в стандартной таблетке.
Однако, поскольку во внешнем слое U235 мало или вообще нет, то вклад в выгорание во внешнем слое будет снижен примерно на 9,6 ГВт·сут/т U на 1% снижения содержания U во внешнем слое по отношению к содержанию U235 во внутреннем сердечнике. Таким образом, в соответствии с известным изобретением формирование rim-слоя будет значительно запаздывать и сдвинется до среднего выгорания по сердечнику в интервале 50-60 ГВт·сут/т U.
Снижение количества U235 во внешнем слое топливной таблетки потребует увеличения обогащения по U235 внутреннего сердечника на небольшую величину для того, чтобы таблетка имела такую же реактивность, как и таблетка со стандартным составом.
Недостатком прототипа является повышение температуры топливного сердечника при высокой степени выгорания за счет существенного снижения теплопроводности диоксида урана в результате накопления растворимых в матрице UO2 продуктов деления, а также образования при выгорании выше 60 ГВт·сут/т U во внешнем слое rim-структуры, обладающей высокой пористостью и более низкой теплопроводностью по сравнению с внутренним сердечником. Таким образом достигнуть заявленного выгорания 60-90 ГВт·сут/т U на известных таблетках без снижения линейной мощности на 30-40% невозможно из-за того, что в центре топливного сердечника температура может превысить температуру плавления высоковыгоревшего оксидного ядерного топлива, которая уменьшается с увеличением выгорания.
Задачей настоящего изобретения является разработка и создание комбинированной таблетки ядерного топлива, обладающей улучшенными экономическими показателями, такими как повышение длительности использования тепловыделяющих сборок в ядерном реакторе, снижение эксплуатационных расходов, повышение коэффициента использования мощности АЭС с одновременным повышением уровня радиационной безопасности АЭС.
В результате решения данной задачи получен новый технический результат, заключающийся в том, что повышается степень выгорания топлива, уменьшается расход ядерного топлива на единицу выработанной энергии, вводится в энергетический оборот неликвидный обедненный уран («урановые хвосты») и сокращается объем отработавшего ядерного топлива, снижается величина коэффициента начальной реактивности, увеличивается длительность кампании при номинальной тепловой нагрузке на тепловыделяющие элементы, уменьшается за счет снижения радиальной неравномерности тепловыделения в твэле риск фрагментарного разрушения таблеток, деформации и растрескивания оболочек твэлов, выхода продуктов деления в теплоноситель первого контура реактора.
Данный технический результат достигается тем, что комбинированная таблетка ядерного топлива выполнена из нескольких (двух или более) концентрических слоев, каждый из которых состоит из делящегося и воспроизводящего материала, при этом внешний концентрический слой, содержащий меньше делящегося ядерного материала на единицу объема по сравнению с внутренним цилиндрическим сердечником, дополнительно содержит выгорающий поглотитель в перовскитной фазе, который, в частности, представляет собой соединение ABO3, где A=Gd, Er; B=Al, Mg, например, GdAlO3. При создании более чем двух слоев наиболее целесообразной является структура таблетки, при которой каждый последующий от цилиндрического сердечника концентрический слой содержит меньше делящегося ядерного материала на единицу объема, чем смежный с ним внутренний слой.
Отличительная особенность описываемого изобретения состоит в следующем.
Добавление выгорающего поглотителя нейтронов в виде АВО3 в оксидное топливо позволяет не только снизить начальный коэффициент реактивности, но и повысить за счет увеличения теплопроводности степень выгорания ядерного топлива. Размещение гадолиния во внешнем слое позволяет использовать во внутреннем сердечнике оксидное топливо с обогащением по U и/или Pu, равным обогащению окружающих твэлов, и более глубокое выгорание изотопов гадолиния. Но введение гадолиния, в частности, в UO3 в виде Gd2O3 приводит к образованию твердого раствора (U,Gd)O2 как в процессе высокотемпературного спекания таблеток, так и при дальнейшем облучении в реакторе. В результате теплопроводность такого ядерного топлива уже при выгорании 40 ГВт·сут/т U снижается до 1,5 Вт/(м·К) при 600 К [2]. Для того чтобы сохранить теплопроводность топливного сердечника при 600 К на уровне 3,0-3,5 Вт/(м·К) во внешний слой толщиной 0,1-0,8 мм выгорающий поглотитель вводится в виде перовскитной фазы АВО3, например, GdAlO3, коэффициент теплопроводности которой при 600 К составляет 3,7 Вт/(м·К) [4]. Поскольку теплопроводность оксида урана при растворении продуктов деления в решетке UO2 в процессе глубокого выгорания снижается с 6,0 до 3,2 Вт/(м·К) при 600 К, то в результате теплопроводность внешнего слоя комбинированной топливной таблетки при выгорании 100 ГВт·сут/т U будет составлять не менее 3 Вт/(м·К) при 600 К, что позволит сохранить линейную мощность твэла на уровне 300-350 Вт/см до выгорания 100 ГВт·сут/т U.
Кроме того, внутренний цилиндрический сердечник имеет средний размер (средний эффективный диаметр) зерна в интервале 20-40 мкм. Требуемую зернистость получают в процессе спекания таблетки с помощью имплантата U3O8 в количестве от 3 до 8 мас.%, заранее введенного во внутренний цилиндрический сердечник. Если содержание U3O8 будет ниже 3 мас.%, размер зерна не достигнет 20 мкм, а при содержании U3O8 более 8 мас.% пористость таблетки может превысить 5 об.%. Таблетки со средним размером зерна выше 20 мкм обеспечивают повышенное удержание продуктов деления, снижая тем самым выход газообразных и химически активных продуктов деления, таких как Cs, I, Те и др., а повышенная температура внутреннего сердечника обеспечивает ему достаточную пластичность.
При этом оптимальный средний размер зерна во внешнем концентрическом слое таблетки составляет менее 5 мкм, что позволяет повысить пластичность материала, более равномерно распределить нагрузки на оболочке и снизить тем самым механическое взаимодействие ядерного топлива с циркониевой оболочкой.
В том случае, когда внутренний цилиндрический сердечник комбинированной таблетки ядерного топлива имеет осевое отверстие, снижается температура в центре таблетки, что особенно важно при высокой линейной мощности, а также для компенсации распухания при глубоком выгорании (100 ГВт·сут/т U).
На фиг.1 представлена комбинированная таблетка ядерного топлива высотой h, диаметром d, состоящая из внутреннего цилиндрического сердечника 1 диаметром d1, внешнего концентрического слоя 2 и осевого отверстия 3 диаметром d2. Высота таблетки может быть как сопоставима с ее диаметром (h~d), так и значительно превышать ее диаметр (h>>d), включая случай, когда одна таблетка является топливным керном твэла.
Пример реализации: 1) Предлагаемая комбинированная таблетка ядерного топлива диаметром 7,6 мм состоит из внешнего слоя толщиной 0,6 мм, выполненного из UO2, содержащего 0,71% U235 и 34 об.% GdAlO3, что соответствует 5 мас.% Gd2O3 во всей таблетке, и внутреннего сердечника диаметром 6,4 мм с центральным отверстием диаметром 1,2 мм, выполненного из UO2, обогащенного по U до 5%. Для получения крупного зерна при спекании во внутренний сердечник вводится 5% U3O8 в виде имплантата. Высота таблетки 10-12 мм. Предлагаемая таблетка сравнима со стандартной уран-гадолиниевой таблеткой ядерного топлива, имеющей обогащение 4,0% по U235.
2) Предлагаемая комбинированная таблетка ядерного топлива диаметром 7,6 мм состоит из внешнего слоя толщиной 0,3 мм, выполненного из UO2, содержащего 0,2% U235 и 65 об.% GdAlO3, что соответствует по концентрации гадолиния 5 мас.% Gd2O3 во всей таблетке, и внутреннего сердечника диаметром 7,0 мм с центральным отверстием 1,2 мм, выполненного из UO2, обогащенного по U235 до 4,9%. Для получения крупного зерна при спекании во внутренний сердечник вводится 8% U3O8 в виде имплантата. Высота таблетки 10-12 мм. Предлагаемая таблетка сравнима со стандартной уран-гадолиниевой таблеткой ядерного топлива, имеющей обогащение 4,4% по U235.
Таким образом, предлагаемое изобретение по сравнению с прототипом позволяет в процессе эксплуатации повысить выгорание топлива до 100 ГВт·сут/т U, уменьшить расход ядерного топлива на единицу выработанной энергии, снизить коэффициент начальной реактивности и увеличить длительность кампании при номинальной тепловой нагрузке на тепловыделяющие элементы.
Литература:
[1] Патент ЕР 0502395, МПК: G21C 3/62, 1992 г.
[2] Minato K., Shiratori T., Serizawa H. et al. Thermal conductivities of irradiated UO2 and (U,Gd)O2. - Journal of Nuclear Materials, 2001, v.288, p.57-65.
[3] Патент US 6002735, МПК: G21C 3/16, ПК 376/435, 1999 г.
[4] Kim H.S., Joung C.Y., Lee B.H. et al. Characteristics of GdxMyOz (M=Ti, Zr or Al) as a burnable absorber. - Journal of Nuclear Materials, 2008, v.372, p.340-349.

Claims (5)

1. Комбинированная таблетка ядерного топлива, выполненная из нескольких концентрических слоев, каждый из которых состоит из делящегося и воспроизводящего ядерного материала, при этом внешний концентрический слой содержит меньшее количество делящегося ядерного материала на единицу объема по сравнению с внутренним цилиндрическим сердечником, внешний концентрический слой дополнительно содержит выгорающий поглотитель нейтронов в перовскитной фазе.
2. Комбинированная таблетка ядерного топлива по п.1, отличающаяся тем, что выгорающий поглотитель нейтронов в перовскитной фазе представляет собой соединение ABO3, где A - Gd, Er; В - Al, Mg, Ti, например GdAlO3.
3. Комбинированная таблетка ядерного топлива по п.1, отличающаяся тем, что во внутреннем цилиндрическом сердечнике средний размер зерна составляет более 20 мкм.
4. Комбинированная таблетка ядерного топлива по п.1, отличающаяся тем, что средний размер зерна во внешнем концентрическом слое составляет менее 5 мкм.
5. Комбинированная таблетка ядерного топлива по любому из пп.1 - 4, отличающаяся тем, что внутренний цилиндрический сердечник имеет осевое отверстие.
RU2010105647/07A 2010-02-18 2010-02-18 Комбинированная таблетка ядерного топлива RU2427936C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010105647/07A RU2427936C1 (ru) 2010-02-18 2010-02-18 Комбинированная таблетка ядерного топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010105647/07A RU2427936C1 (ru) 2010-02-18 2010-02-18 Комбинированная таблетка ядерного топлива

Publications (1)

Publication Number Publication Date
RU2427936C1 true RU2427936C1 (ru) 2011-08-27

Family

ID=44756908

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010105647/07A RU2427936C1 (ru) 2010-02-18 2010-02-18 Комбинированная таблетка ядерного топлива

Country Status (1)

Country Link
RU (1) RU2427936C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467414C1 (ru) * 2011-12-14 2012-11-20 Скрипник Анастасия Андреевна Тепловыделяющий элемент ядерного реактора на быстрых нейтронах (варианты)
RU2467410C1 (ru) * 2011-12-14 2012-11-20 Скрипник Анастасия Андреевна Таблетка смешанного ядерного топлива (варианты)
RU2469427C1 (ru) * 2011-12-14 2012-12-10 Скрипник Анастасия Андреевна Таблетка ядерного топлива (варианты)
RU2639712C2 (ru) * 2013-10-30 2017-12-22 Тор Энерджи Ас Тепловыделяющая сборка для ядерного реактора
CN113874955A (zh) * 2020-04-27 2021-12-31 Tvel 股份公司 核燃料芯块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467414C1 (ru) * 2011-12-14 2012-11-20 Скрипник Анастасия Андреевна Тепловыделяющий элемент ядерного реактора на быстрых нейтронах (варианты)
RU2467410C1 (ru) * 2011-12-14 2012-11-20 Скрипник Анастасия Андреевна Таблетка смешанного ядерного топлива (варианты)
RU2469427C1 (ru) * 2011-12-14 2012-12-10 Скрипник Анастасия Андреевна Таблетка ядерного топлива (варианты)
RU2639712C2 (ru) * 2013-10-30 2017-12-22 Тор Энерджи Ас Тепловыделяющая сборка для ядерного реактора
CN113874955A (zh) * 2020-04-27 2021-12-31 Tvel 股份公司 核燃料芯块

Similar Documents

Publication Publication Date Title
RU2735243C2 (ru) Полностью керамическое микроинкапсулированное топливо, изготовленное с выгорающим поглотителем в качестве интенсификатора спекания
RU2723561C2 (ru) Способ производства полностью керамического микроинкапсулированного ядерного топлива
US9620248B2 (en) Dispersion ceramic micro-encapsulated (DCM) nuclear fuel and related methods
US9299464B2 (en) Fully ceramic nuclear fuel and related methods
KR101733832B1 (ko) 핵연료, 핵연료 요소, 핵연료 어셈블리 및 핵연료의 제조 방법
US4636352A (en) Nuclear fuel rod with burnable plate and pellet-clad interaction fix
RU2427936C1 (ru) Комбинированная таблетка ядерного топлива
CN103214231B (zh) 用于热中子反应堆的改进性能氧化物陶瓷芯体及制备方法
US11049625B2 (en) Nuclear fuel pellet with central burnable absorber
EP3437106A1 (en) Enhancing toughness in microencapsulated nuclear fuel
US20130114781A1 (en) Fully ceramic microencapsulated replacement fuel assemblies for light water reactors
EP3257050B1 (en) Nuclear fuel containing a neutron absorber mixture
Rabir et al. The neutronics effect of TRISO duplex fuel packing fractions and their comparison with homogeneous thorium‐uranium fuel
JPS58135989A (ja) 沸騰水型原子炉燃料集合体
JP2556876B2 (ja) 燃料要素及び燃料集合体
CN112334991B (zh) 燃料芯块
JPH04357493A (ja) 燃料集合体の構造
Hartanto et al. A physics study on alternative reflectors in a compact sodium-cooled breed-and-burn fast reactor
JP2839516B2 (ja) 沸騰水型原子炉燃料集合体
RU2141693C1 (ru) Тепловыделяющая сборка водоохлаждаемого ядерного реактора
RU42128U1 (ru) Топливная таблетка тепловыделяющего элемента ядерного реактора с выгорающим поглотителем
RU2142170C1 (ru) Таблетка ядерного топлива
Yaylı Production of annular and compact type burnable absorber nuclear fuel pellets by powder metallurgy and sol gel route
RU2431206C2 (ru) Ядерное топливо для реактора с расплавленной активной зоной
JP2000329884A (ja) プルトニウム燃焼型高速炉

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190219