RU2420450C2 - Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике - Google Patents

Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике Download PDF

Info

Publication number
RU2420450C2
RU2420450C2 RU2006133682/05A RU2006133682A RU2420450C2 RU 2420450 C2 RU2420450 C2 RU 2420450C2 RU 2006133682/05 A RU2006133682/05 A RU 2006133682/05A RU 2006133682 A RU2006133682 A RU 2006133682A RU 2420450 C2 RU2420450 C2 RU 2420450C2
Authority
RU
Russia
Prior art keywords
reactor
heat exchanger
charge
water vapor
stream
Prior art date
Application number
RU2006133682/05A
Other languages
English (en)
Other versions
RU2006133682A (ru
Inventor
Александр РОЖЕЙ (FR)
Александр РОЖЕЙ
Стефан БЕРТОЛЭН (FR)
Стефан БЕРТОЛЭН
Фабрис ЖИРУДЬЕР (FR)
Фабрис ЖИРУДЬЕР
Эрик ЛЕНГЛЕ (FR)
Эрик ЛЕНГЛЕ
Original Assignee
Энститю Франсэ Дю Петроль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Энститю Франсэ Дю Петроль filed Critical Энститю Франсэ Дю Петроль
Publication of RU2006133682A publication Critical patent/RU2006133682A/ru
Application granted granted Critical
Publication of RU2420450C2 publication Critical patent/RU2420450C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к области химии. Синтез-газа получают из общей загрузки, содержащей углеводороды и возможно рециркулируемые соединения. Общая загрузка содержит первую загрузку, вторую загрузку и третью загрузку. Поток, содержащий первую загрузку с добавлением водяного пара, подвергают конверсии с водяным паром для получения по меньшей мере одной фракции синтез-газа в по меньшей мере одном мультитрубчатом реакторе-теплообменнике, имеющем множество реакционных труб, содержащих катализатор, и камеру, в которой находятся эти трубы. Первая загрузка с добавлением водяного пара циркулирует внутри множества труб в одном направлении. Реакционные трубы нагревают путем циркуляции в камере текучего теплоносителя снаружи по отношению к трубам, локально в режиме перекрестного потока, но в целом в режиме противотока всей первой загрузки, в котором текучий теплоноситель содержит по меньшей мере первый поток газа частичного или полного горения второй загрузки, который подвергают циркуляции в реакторе-теплообменнике для нагревания реакционных труб, который затем смешивают в по меньшей мере одной дополнительной зоне горения внутри камеры с по меньшей мере частью третьей загрузки и газом, содержащим кислород, чтобы повысить температуру указанного первого потока. Полученный таким образом поток смеси циркулирует в реакторе-теплообменнике для дополнительного нагревания реакционных труб до выхода из реактора-теплообменника. Синтез-газ получают из потока первой загрузки и возможно части или всего потока текучего теплоносителя. Изобретение позволяет повысить экономичность процесса. 2 н. и 10 з.п. ф-лы, 6 ил., 1 табл.

Description

Область изобретения
Объектом изобретения является получение синтез-газа из природного газа или легких углеводородов: метана, этана, пропана, бутана, углеводородов, содержащих менее 10 атомов углерода, а также их смесей.
Синтез-газ представляет собой смесь, содержащую главным образом (после удаления воды) водород, моноксид углерода и диоксид углерода. Он часто содержит малые количества остаточных углеводородов, обычно метана.
Синтез-газ может применяться для получения водорода. Его также можно использовать для получения жидких соединений путем химического превращения, например, кислородосодержащих соединений (метанола, простого диметилэфира …) или углеводородов, в частности олефиновых или парафиновых.
Уровень техники
Известно множество способов получения синтез-газа, в частности способ конверсии с водяным паром (наиболее часто применяемый способ), частичное окисление и автотермический способ.
Конверсия с водяным паром (известная под аббревиатурой SMR, которая происходит от английского "steam methane reforming", что означает "конверсия метана с водяным паром") заключается в том, что вводят во взаимодействие загрузку на катализаторе в присутствии водяного пара для получения синтез-газа, который содержит главным образом (кроме водяного пара) смесь оксида углерода и водорода. Эта операция является эндотермической. Обычно ее проводят путем циркуляции загрузки в присутствии водяного пара в трубах, заполненных катализатором (обычно катализатором, содержащим, например, от 6 до 25 мас.% никеля, нанесенного на носитель, содержащий главным образом оксид алюминия или смесь оксида алюминия и одного или нескольких других огнеупорных соединений). Обычно трубы нагревают излучением в трубчатых печах. Наиболее высокие температуры пламени должны находиться на достаточном расстоянии от труб, чтобы не происходило чрезмерного перегрева, и поэтому используемые печи являются крупногабаритными и дорогостоящими.
Уже предлагалось проводить конверсию с водяным паром в реакторе-теплообменнике (это означает, что тепло передается главным образом путем конвекции, а не путем излучения, как в печи), при этом реакционную среду подвергают непрямому нагреву дымовыми газами при очень высокой температуре.
Использование высокотемпературных дымовых газов в теплообменнике оказалось, тем не менее, трудным.
Частичное окисление (известное под аббревиатурой POX, которая происходит от английского "partial oxydation", что означает частичное окисление) заключается в образовании путем горения в условиях стехиометрического недостатка высокотемпературной смеси, обычно от 1000 до 1600°С, углеводородов и воздуха или кислорода для окисления углеводородов и получения синтез-газа. В этом способе используют значительные количества кислорода, если нельзя использовать воздух (если нужно получить синтез-газ без азота).
При автотермическом способе проводят частичное окисление, непосредственно после которого осуществляют каталитическую конверсию с водяным паром в адиабатическом режиме при высокой температуре, например в интервале температур на выходе от 900 до 1000°С. Этот способ представляет собой последовательную комбинацию двух предыдущих способов. Он потребляет меньше кислорода, чем способ РОХ, но требует наличия каталитического слоя.
Задача настоящего изобретения заключается в получении синтез-газа из легких углеводородов в гораздо более компактной установке, чем традиционная установка для конверсии с водяным паром (содержащая печь), обычно со значительно меньшим потреблением кислорода, чем в способах РОХ и автотермическом, даже совсем без кислорода, и с ограничением используемых средств горения. Таким образом, способ согласно изобретению является очень эффективным с энергетической точки зрения, при этом используется установка меньших размеров и стоимость является ограниченной.
Изобретение позволяет также понизить самые высокие температуры, сохраняя энергетическую эффективность на высоком уровне. Это позволяет повысить надежность и продолжительность срока службы установки.
Краткое описание изобретения
Для достижения указанных задач в способе согласно изобретению используют преимущественно текучий теплоноситель HF для осуществления теплопередачи, необходимой для эндотермических реакций конверсии с водяным паром.
Один из наиболее важных аспектов этого способа заключается в использовании в реакторе-теплообменнике R, в котором происходит конверсия с водяным паром, текучего теплоносителя HF, полученного путем ступенчатого горения, позволяющего многократно осуществлять передачу тепла реакционной среде конверсии с водяным паром с одним или несколькими промежуточными операциями горения с тем, чтобы поднять температуру указанного текучего теплоносителя HF. Таким образом, благодаря многократным операциям нагрева используют меньший объем газа для передачи данного количества тепла. В результате получают выигрыш в энергетическом плане. К тому же установка является существенно более компактной, чем традиционная установка для проведения конверсии с водяным паром в печи. Многократные операции нагрева (горения) HF позволяют также ограничивать максимальные используемые температуры и, следовательно, продлевать срок службы установки.
Было также обнаружено в соответствии с отличительным вариантом способа согласно изобретению, что можно осуществлять ступенчатое горение в более компактной и экономичной установке в компактном реакторе-теплообменнике при условии, что на уровне труб для конверсии с водяным паром не будет пламени, высоких температур которого следует избегать, т.к. они могут привести к порче или разрушению этих труб.
Таким образом, изобретение обеспечивает также осуществление конверсии с водяным паром в реакторе-теплообменнике R путем проведения на уровне текучего теплоносителя реакции горения без пламени внутри камеры реактора-теплообменника R по крайней мере на уровне труб для конверсии с водяным паром.
Подробное описание изобретения
Указанные ниже обозначения соответствуют тем, которые используют далее для описания прилагаемых чертежей. Далее в тексте выражения «частичное горение» и «частичное окисление» или РОХ используются в одном и том же значении. Горение может означать полное или частичное горение.
Изобретение относится к способу получения синтез-газа SG из общей загрузки F, содержащей углеводороды и возможно рециркулируемые соединения, при этом F содержит первую загрузку F1, вторую загрузку F2 и третью загрузку F3, в ходе которого:
поток, содержащий первую загрузку F1 с добавлением водяного пара, подвергают конверсии с водяным паром для получения по меньшей мере одной фракции синтез-газа SG в по меньшей мере одном мультитрубчатом реакторе-теплообменнике R, имеющем множество реакционных труб (38), содержащих катализатор конверсии с водяным паром, и паровую камеру, в которой находятся эти трубы;
указанные реакционные трубы (38) нагревают главным образом посредством конвекции путем циркуляции в указанной паровой камере текучего теплоносителя HF снаружи по отношению к трубам, в котором HF содержит по меньшей мере первый поток газа частичного или полного горения второй загрузки F2, который циркулирует в реакторе-теплообменнике R для нагревания реакционных труб, который затем смешивают в по меньшей мере одной дополнительной зоне горения (32, 34, 42, 44) с по меньшей мере частью третьей загрузки F3 и газом, содержащим кислород, чтобы повысить температуру указанного первого потока, затем поток полученной таким образом смеси циркулирует в реакторе-теплообменнике R для дополнительного нагрева реакционных труб (38) до выхода из этого реактора-теплообменника;
получают синтез-газ SG из потока после конверсии с водяным паром F1 и возможно части или всего HF.
Загрузки F1, F2 и F3 могут быть разными, газообразными и/или жидкими. Они могут иметь одинаковый или разный состав. Тем не менее, наиболее часто загрузки F1, F2 и F3 представляют собой углеводороды, главным образом, газообразные под давлением 2 МПа и при температуре 20°С. Обычно F1, F2 и F3 имеют одинаковый состав и происходят из природного или очищенного газа или из газообразной смеси, главным образом состоящей из (в молярных %) углеводородов, содержащих менее 5 атомов углерода.
Согласно изобретению термин "загрузка" означает как углеводородную загрузку, так и поток, рециркулируемый из углеводородной загрузки. Так F2 и/или F3 могут также содержать или состоять из рециркулируемого потока, в частности потока, содержащего фракцию, отделенную ниже, такую как фракция SG, отделенную адсорбцией и десорбцией при балансировке давления для получения водорода (обычно продувочный газ адсорбции, называемый PSA). Таким образом можно, в частности, использовать для F2 и/или F3 продувочный газ, содержащий СО и остаточный метан и в частых случаях СО2. Как вариант, можно использовать для F2 и/или F3 по существу чистый водород, в частности фракцию водорода, полученного при использовании SG для получения водорода.
Обычно можно использовать одну, или две, или три, даже от 4 до 8 дополнительных зон горения. Предпочтительно используют от 1 до 4 дополнительные зоны горения и более предпочтительно 2 или 3 дополнительные зоны горения. Такое ступенчатое горение обеспечивает передачу значительного количества тепла путем приращения температуры с промежуточными охлаждениями (теплопередача для конверсии с водяным паром), без достижения чрезвычайно высоких температур, которые могли бы быть получены при горении в одну стадию. И, наоборот, при ограничении максимальной температуры газа горения ступенчатое горение с одной или несколькими промежуточными теплопередачами позволяет передавать значительно большее количество тепла при данном объеме газа горения или идентичное количество тепла при меньшем объеме газа горения.
Эти зоны горения (первоначальная и/или одна или несколько дополнительных) могут быть внутренними и/или внешними по отношению к камере реактора-теплообменника R. Горение может быть частичным или полным с использованием в качестве горючего кислорода или воздуха, или воздуха, обогащенного кислородом.
Более конкретно в качестве текучего теплоносителя HF можно использовать поток частичного окисления углеводородов кислородом, обычно под давлением от 0,5 до 12 МПа, по существу не содержащий азота и предпочтительно содержащий водяной пар. Эта жидкость HF, находящаяся под высоким давлением и содержащая водород, обладает хорошими свойствами текучего теплоносителя (высокий коэффициент теплообмена).
Также в качестве текучего теплоносителя HF часто используют газ полного горения углеводородов на воздухе, обычно под давлением от 0,4 до 4 МПа.
В соответствии с первым вариантом, характерным для изобретения, одна или несколько дополнительных зон горения расположены внутри паровой камеры реактора-теплообменника R. Первичная зона горения может также являться внутренней зоной реактора-теплообменника.
Обычно дополнительная зона горения является зоной, не содержащей реакционных труб и по существу совмещенной с внутренней стенкой камеры реактора-теплообменника R.
В соответствии с этим первым вариантом, характерным для изобретения, очень предпочтительно избегать контакта пламени с реакционными трубами.
В соответствии с первым вариантом горения это можно осуществить путем ограничения присутствия пламени в одной или нескольких зонах горения, которые не содержат реакционных труб, в частности, совмещенных с внутренней стенкой паровой камеры реактора-теплообменника R. Более конкретно можно использовать одну или несколько плоскопламенных или короткопламенных горелок известного типа и/или множество горелок малого размера, пламя которых меньше.
В соответствии с другим вариантом осуществления горения в точку, расположенную внутри паровой камеры реактора-теплообменника, впрыскивают по меньшей мере часть F3 и газ, содержащий кислород (например, воздух или О2), в условиях турбулентности и/или рециркуляции, достаточных для получения зоны горения в гомогенном режиме в реакторе-теплообменнике R.
Для получения наиболее возможно гомогенных условий горения можно осуществлять процесс при относительно умеренных температурах (например, с конечной температурой ниже 1200°С, даже 1150°С, например от 1000°С до 1180°С), облегчая гомогенное горение (без пламени). Интервал адекватных для такого режима гомогенного горения условий (концентрации и температуры) можно определить с точностью путем моделирования горения и/или путем опытных испытаний, изменяя рециркуляцию газа и турбулентность. Действительно, гомогенному горению способствует высокая турбулентность смеси реактивов и их рециркуляция. Горение в гомогенном режиме предпочтительно используют в непосредственной близости от труб для конверсии с водяным паром и осуществляют непосредственную передачу тепла от горения трубам. Горение в гомогенном режиме можно таким образом осуществлять на уровне труб для конверсии с водяным паром, т.к. оно не дает высоких температур, которые могут их повредить. Таким образом становится возможным достичь более однородных температур в реакторе-теплообменнике, что позволяет оптимизировать теплопередачу, уменьшить количество дополнительных зон горения и/или ограничить максимальную эффективную локальную температуру текучей среды HF, что является благоприятным с точки зрения продолжительности срока службы оборудования.
В соответствии с третьим вариантом горения в точку, расположенную внутри паровой камеры реактора-теплообменника, впрыскивают по меньшей мере часть F3 и газ, содержащий кислород, перед зоной каталитического горения в условиях, при которых температура полученной смеси ниже температуры, при которой горение происходит с пламенем.
Каталитическое горение является технологией, хорошо известной в области горения, и может осуществляться с использованием различных катализаторов. Например, можно сослаться на патенты или патентные заявки US 20050081443, US 5980843, US 5405260, EP 0689870 B1, EP 0712661 B1.
Зоны первичной и конечной температур, обеспечивающие осуществление каталитического горения в оптимальных условиях, можно определить опытным путем для данного катализатора. Предпочтительные первичные температуры смеси (до горения) составляют менее 900°С, часто от 800 до 880°С. Предпочтительные конечные температуры (после горения) ниже 1000°С, часто составляют от 800°С до 980°С. Также можно преимущественно ограничить каталитическое горение в наименее горячей части реактора-теплообменника R. Так, если поток, содержащий первую загрузку F1 с добавление водяного пара, входит с одного торца реактора теплообменника, зона каталитического горения обычно находится в первой половине реактора-теплообменника относительно этого торца.
В соответствии со вторым вариантом осуществления способа по изобретению одна или несколько дополнительных зон горения (42, 44) и/или зона первичного горения могут находиться снаружи от камеры (37) реактора-теплообменника R. В этом варианте размеры менее компактны, но габариты горелок и зон горения являются стандартными.
Можно также комбинировать одну или две внешние зоны горения (например, первичную зону) и одну или две или несколько внутренних зон горения.
Циркуляцию текучего теплоносителя HF можно осуществлять разными способами.
Наиболее часто поток, содержащий первую загрузку F1 с добавлением водяного пара, циркулирует в реакторе-теплообменнике главным образом в одном направлении, и текучий теплоноситель HF циркулирует по меньшей мере полностью в режиме противотока по отношению к F1 (т.е. или в виде чистого противотока, при этом HF циркулирует параллельно трубам, или локально в виде перекрестного потока, но в целом в виде противотока).
Однако прямоточная циркуляция является возможной. В этом случае, если поток, содержащий первую загрузку F1 с добавлением водяного пара, циркулирует в реакторе-теплообменнике главным образом в одном направлении, текучий теплоноситель HF циркулирует по меньшей мере полностью в прямоточном режиме по отношению к F1 (чистый или общий прямоток).
Соответствующие величины давления Р1 и Р2 вытекающих потоков после конверсии с водяным паром, обозначаемых SG1, и HF на выходе из реактора-теплообменника обычно являются следующими:
0,8 МПа<Р1<12 МПа, предпочтительно 1,5 МПа<Р1<5 МПа и более предпочтительно 1,8 МПа<Р1<4,5 МПа;
0,4 МПа<Р2<12 МПа, предпочтительно 0,4 МПа<Р2<5 МПа и более предпочтительно 0,8 МПа<Р2<4,5 МПа;
Относительно высокое давление HF обеспечивает более высокие свойства теплопередачи.
В целом на выходе из реактора-теплообменника R текучий теплоноситель HF обычно при относительно высокой температуре, например порядка 1000°С, передает тепло потоку, содержащему первую загрузку F1 с добавлением водяного пара, для предварительной частичной конверсии с водяным паром загрузки F1 в другом реакторе-теплообменнике, который далее будет обозначен (2b), непосредственно перед входом F1 в главный реактор-теплообменник R. Эту предварительную конверсию с водяным паром обычно проводят способом, подобным основной конверсии с водяным паром, в реакторе-теплообменнике (2b) с реакционными трубами, содержащем катализатор конверсии с водяным паром, и обычно осуществляют при температурах, которые на 100°С-200°С ниже, чем температуры основной конверсии с водяным паром в реакторе-теплообменнике R.
На выходе из реактора-теплообменника (2b) текучий теплоноситель HF обычно передает остаточное тепло потоку, содержащему первую загрузку F1 с добавлением водяного пара в реакторе-теплообменнике (2а), расположенном непосредственно перед (2b) по отношению к F1. Таким образом, эффективно используют тепловой потенциал HF, который на выходе из R передает калории при относительно высокой температуре, необходимые для проведения конверсии с водяным паром в (2b), затем калории при относительно низкой температуре, необходимые для предварительного нагрев потока, содержащего первую загрузку F1 с добавлением водяного пара.
Поток, содержащий первую загрузку F1 с добавлением водяного пара, обычно предварительно нагревают до температуры от 500°С до 740°С и (предпочтительно от 580°С до 700°С) до его ввода в реактор-теплообменник R. Температура потока после конверсии с водяным паром SG1 на выходе из реактора-теплообменника R обычно составляет от 800°С до 950°С (и предпочтительно от 820°С до 900°С), и температура HF на выходе из реактора-теплообменника R обычно составляет от 850°С до 1150°С и предпочтительно от 900 до 1050°С.
Изобретение также относится к способу получения водорода из синтез-газа, содержащего синтез-газ SG, полученный способом, описанным выше в соответствии с любым из его вариантов.
Горючая часть текучего теплоносителя HF (или F2 и/или F3) может главным образом состоять из по существу чистой водородной фракции, полученной из SG.
F2 и/или F3 могут также содержать продувочный газ, полученный на стадии очистки путем адсорбции PSA (с балансировкой давления) потока, полученного из SG. Это позволяет преимущественно использовать этот продувочный газ.
Изобретение можно лучше понять при чтении описания прилагаемых фигур, в котором изобретение описано для случая, когда текучий теплоноситель HF является потоком частичного окисления газообразных углеводородов кислородом.
На фиг.1 изображена упрощенная схема осуществления способа согласно изобретению.
На фиг.2 изображена другая упрощенная схема осуществления способа согласно изобретению, на которой более подробно представлен реактор-теплообменник, содержащий внутренние зоны частичного окисления.
На фиг.3 изображен разрез реактора-теплообменника по фиг.2.
На фиг.4 изображена другая упрощенная схема осуществления способа согласно изобретению, на которой более подробно представлен реактор-теплообменник, содержащий внешние зоны частичного окисления.
На фиг.5а и 5b изображены упрощенные схемы осуществления способа согласно изобретению в установках, содержащих несколько реакторов-теплообменников.
Описание чертежей
Фиг.1
Загрузки F1, F2 и F3 имеют одинаковый состав и состоят из смеси по существу очищенного газа, содержащего обычно более 80 молярных % метана и от 2 до 15% этана. Поток, содержащий первую загрузку F1 с добавлением водяного пара, имеет молярное отношение Н2О/F1, составляющее обычно от 1,8 до 3,5. Этот поток входит по линии 1 в теплообменник предварительного нагрева 2а, затем проходит через реактор-теплообменник 2b, в котором проводят предварительную конверсию с водяным паром при относительно умеренной температуре выхода, обычно от 650°С до 770°С, предпочтительно от 670°С до 740°С. Реактор-теплообменник 2b является мультитрубчатым теплообменником, трубы которого содержат катализатор конверсии с водяным паром, например один из катализаторов, описанных в примерах патента US 4906603. На выходе из реактора-теплообменника 2b поток, содержащий первую загрузку F1 с добавлением водяного пара, частично превращенный в синтез-газ, подается по линии 3 в главный реактор-теплообменник R, также являющийся мультитрубчатым, в котором находится катализатор конверсии с водяным паром, обычно того же типа, что и в реакторе-теплообменнике 2b. Этот поток затем распределяется по множеству реакционных труб 38, расположенных внутри камеры 37 реактора-теплообменника R, затем после проведения конверсии с водяным паром выходит из реактора-теплообменника R по линии 4, образуя первый синтез-газ SG1, и охлаждается в теплообменнике 2а в смеси со вторым синтез-газом SG2.
Загрузку F2 подают через вход для углеводородов 41а в камеру 40 частичного окисления, в которую, кроме того, подают кислород по линии 41b. В загрузку F2 и/или в подаваемый кислород обычно можно добавлять водяной пар (например, от 20 до 50 мол.% водяного пара) для снижения риска образования углерода (сажи). Температура на выходе из камеры 40 частичного окисления обычно составляет от 1100°С до 1250°С, предпочтительно от 1140°С до 1200°С. Регулировать эту температуру можно путем изменения молярного отношения О2/(углеводороды, содержащиеся в F2), часто составляющего от 0,48 до 0,85.
Текучий теплоноситель HF, полученный таким образом, входит в реактор-теплообменник R, где возможно может продолжаться беспламенное горение, и передает значительную часть тепла от частичного окисления реакционным трубам 38, обеспечивая проведение конверсии с водяным паром загрузки F1. В реактор-теплообменник R вводят фракцию F3 загрузки и кислород (при помощи средств, изображенных на фиг.2) для проведения ступенчатого горения в реакторе-теплообменнике R и передачи большого количества тепла трубам для конверсии с водяным паром. Поток HF выходит из реактора-теплообменника R по линии 27 с образованием второго синтез-газа SG2. Этот синтез-газ SG2, температура которого на выходе из реактора-теплообменника R еще остается высокой, например порядка 1000°С, подают в реактор-теплообменник 2b предварительной конверсии с водяным паром загрузки F1, где его используют в качестве текучего теплоносителя, затем выходит из 2b по линии 28, смешивается с синтез-газом SG1, циркулирующим по линии 4, затем смесь SG, полученную таким образом, охлаждают в теплообменнике 2а, откуда она выходит по линии 29. Синтез-газ SG можно затем подвергнуть дополнительным видам обработки, таким как более сильное охлаждение, превращение СО при помощи пара, химическое превращение и т.д. Благодаря 2а и 2b установка на фиг.1 рекуперирует большое количество тепла, в частности, из наиболее горячего потока, выходящего из реактора-теплообменника R, т.е. SG2.
На фиг.2: реактор-теплообменник R на фиг.2 содержит 3 камеры или зоны частичного окисления, расположенные последовательно, так, что это ступенчатое частичное окисление обеспечивает более существенную передачу тепла трубам 38 для конверсии с водяным паром и/или применение максимально более низких температур HF. Эти 3 зоны: 30 (первичная зона), 32 и 34 (дополнительные зоны), находятся внутри паровой камеры 37 реактора-теплообменника R. В эти зоны 30, 32 и 34 подают углеводороды загрузки F2 (обычно с добавлением водяного пара) соответственно по линиям 31а, 33а и 35а. В них также поступает кислород соответственно по линиям 31b, 33b и 35b. Может также присутствовать водяной пар в тех же условиях, что и в установке по фиг.1.
Текучий теплоноситель циркулирует внутри R в перекрестном потоке и в общем режиме противотока по линии циркуляции, изображенной на фиг.2 и обозначенной позициями 22, 23, 24, 25 и 26. Эту циркуляцию вызывает присутствие поперечин или перегородок 36 в реакторе-теплообменнике R, аналогичных поперечинам или перегородкам камеры трубчатого теплообменника и традиционной паровой камеры.
Рекуперация тепла из потоков, выходящих из реактора-теплообменника R устройства, изображенного на фиг.2, также является эффективной, но отличается от рекуперации по фиг.1: используют также два теплообменника, обозначенные 2 и 2с, но только теплообменник 2 передает тепло загрузке F1 для конверсии с водяным паром, тогда как теплообменник 2с передает тепло загрузке F2 частичного окисления с добавлением водяного пара. Таким образом происходит предварительный нагрев нескольких потоков, подаваемых в R, и в частности, загрузки для конверсии с водяным паром и загрузки F2 для частичного окисления. Можно также предварительно нагревать текучие среды, добавленные в HF в процессе ступенчатого частичного окисления, в частности углеводороды и/или водяной пар, и/или предварительно нагревать кислород.
На фиг.3, которая изображает вид сверху в разрезе реактора-теплообменника R по фиг.2 над зоной 32, показан вид сверху указанных перегородок 36. Зона частичного окисления 32 содержит горелку, в которую углеводороды и кислород подают по линиям 33а и 33b, служащим для подачи по касательной в две концентрически расположенные трубы 33d и 33с с тем, чтобы осуществлять быстрое смешивание посредством вихревого контрвращения.
Торцы реактора-теплообменника R на фиг.2 обычно имеют традиционные выпуклые днища, не изображенные на фигуре, чтобы фигура была более понятной, и R включает в себя все реакционные трубы 38.
Установка на фиг.2 изображена только с одним теплообменником 2, но может также содержать реакторы-теплообменники и/или теплообменники, такие как 2а и 2b установки, изображенной на фиг.1.
Реактор-теплообменник R на фиг.2 и 3 представляет собой только один тип реактора-теплообменника, который можно использовать для осуществления способа согласно изобретению, и другие типы реактора-теплообменника R можно использовать не выходя за рамки изобретения, включая реакторы-теплообменники со «штыковыми трубами». В этом типе реакторов-теплообменников каждая из реакционных труб 38 содержит две концентрически расположенные трубы, и загрузка для конверсии с водяным паром циркулирует последовательно в круговом пространстве, затем во внутренней центральной трубе или в противоположном направлении циркуляции, при этом входящие потоки F1 и поток SG1 соответственно входят и выходят с одного торца R.
Установка на фиг.4 аналогична установке на фиг.2, но в ней используют внешние зоны частичного окисления, не являющиеся внутренними для R, позволяющие за счет менее компактного осуществления использовать стандартные горелки и/или зоны окисления без проблем, связанных с габаритами. В эти зоны 40, 42, 44 и 46 подают углеводороды F2 и F3 по линиям 41а, 43а, 45а и 47а соответственно. В них также подают кислород по линиям 41b, 43b, 45b и 47b соответственно. Там может также присутствовать водяной пар в тех же условиях, что и в установке по фиг.1.
На фиг.5а изображена установка, содержащая три реактора-теплообменника R1, R2 и R3, через которые параллельно проходят части потока, содержащего первую загрузку F1 с добавлением водяного пара, и последовательно проходит поток HF ступенчатого частичного окисления с промежуточным нагревом HF между двумя последовательными реакторами-теплообменниками. Такая установка может содержать не три, а два, четыре или в общем множество реакторов-теплообменников Ri.
Установка на фиг.5b достаточно похожа на установку по фиг.5а, но в ней поток, содержащий первую загрузку F1 с добавлением водяного пара, циркулирует последовательно (ступенчатая конверсия с водяным паром) в теплообменниках R1, R2 и R3 в общем режиме противотока с потоком частичного окисления HF, также ступенчатым. Эта конфигурация обеспечивает очень высокую рекуперацию тепла и энергетическую эффективность, при этом реактор-теплообменник R1, в котором происходит предварительная конверсия с водяным паром, может работать при относительно низкой температуре. Установка на фиг.5b также может содержать не три, а два, четыре или, в общем, множество реакторов-теплообменников Ri.
Примеры
Моделируют получение синтез-газа SG под давлением 2,5 МПа из природного газа в установке типа изображенной на фиг.2. Загрузки F1 и F2 имеют идентичный состав (природный газ в сочетании с метаном).
Условия ввода (линия 1) следующие: F1=природный газ с расходом (метана) 50000 нм3/час; в F1 вводят Н2О (водяной пар) в молярном отношении Н2О/F1=3 (Н2О и F1 в мол.%). Поток F1+Н2О предварительно нагревают до 600°С в теплообменнике 2, затем подают в реактор-теплообменник R под давлением 2,5 МПа, которое является давлением в установке (при моделировании потери загрузки не учитывались). После каталитической конверсии с водяным паром при температуре выхода 850°С (на линии 4) полученный первый синтез-газ SG1 смешивают со вторым синтез-газом SG2, циркулирующим на линии 27, причем смесь SG1+SG2 подают в теплообменник 2.
В первую зону частичного окисления 30 по линии 31а подают 100433 нм3/час метана с добавлением насыщающего водяного пара (отношение Н2О/метан=1 мол.%), а по линии 31b 64650 нм3/час кислорода для получения путем частичного окисления первого текучего теплоносителя HF при 1150°С, который охлаждают до 1000°С в реакторе-теплообменнике R перед повторным нагреванием во второй дополнительной зоне частичного окисления 32. В эту зону 32 подают 20883 НМ3/час метана и 19776 НМ3/час кислорода с водяным паром (Н2О/метан=1 мол.%). Метан подают при 20°С, а водяной пар - в условиях насыщающего пара. Это дополнительное частичное окисление повышает температуру HF до 1150°С.HF снова передает тепло трубам 38 и его температура понижается до 845°С.
Затем во вторую дополнительную зону частичного окисления 34 подают метан с расходом 28285 нм3/час и кислород с расходом 12993 нм3/час с водяным паром (Н2О/метан=1 мол.%) в тех же условиях, что и в зону 32. Эта зона 34 является зоной каталитического окисления, и используется катализатор, содержащий 5 мас.% родия, такой, как описан в примере 1 патентной заявки US 2002/0004450 А1 или в примере 1 патента US 5510056. Общая смесь с HF этого дополнительного частичного каталитического окисления (эта смесь является также текучей средой HF) поднимает первоначальную температуру HF до 900°С. HF снова передает тепло трубам 38 с понижением температуры до 750°С на выходе из R с образованием второго синтез-газа SG2, который циркулирует по линии 27.
Второй синтез-газ SG2 смешивают с SG1 для образования общего синтез-газа SG, который охлаждают до 662°С в теплообменнике 2, затем по линии 28 вводят в теплообменник 2с, в котором его охлаждают до 546°С. Этот теплообменник 2с позволяет предварительно нагреть загрузку F2 с добавлением водяного пара до 500°С.
Синтез-газы SG1, SG2 и полученный конечный синтез-газ SG (который содержит 469182 нм3 Н2+СО) имеют следующий состав в молярных % и с учетом Н2О:
Мол.% SG1: поток после конверсии с водяным паром (линия 4) SG2:поток после РОХ (линии 27, 28) SG: конечный синтез-газ (линия 29)
Н2 47,9 45 46
СО 8,9 16,3 13,8
СО2 5,3 7,5 6,8
СН4 3,7 2,3 2,8
Н2О 34,2 28,9 30,6
Из предыдущего описания специалист может легко понять концепцию установки для осуществления изобретения, а также ее работу в случае, когда текучий теплоноситель HF получают в результате обычно полного горения главным образом газообразных углеводородов на воздухе, а не частичного окисления кислородом в присутствии водяного пара. В этом случае поток HF, циркулирующий по линии 28, состоит из дымовых газов под давлением и не смешивается с синтез-газом SG1, полученным после конверсии с водяным паром, циркулирующим по линии 4. Температуры, используемые для HF, в частности, на выходе из одной или нескольких дополнительных зон горения, являются одинаковыми. Этот вариант осуществления изобретения дает возможность избежать получения кислорода. Используемый воздух может быть сжат в компрессорной части газовой турбины, и текучий теплоноситель HF, полученный в результате ступенчатого горения согласно способу по изобретению, может расширяться в турбинной части газовой турбины или другой турбины после использования в качестве текучего теплоносителя для конверсии с водяным паром и предпочтительно предварительной конверсии с водяным паром. Может оказаться целесообразным проводить дополнительное горение до расширения в турбине в целях максимального использования рекуперированной механической энергии.
Синтез-газ SG можно затем подвергнуть конверсии СО паром для получения водорода. В этом случае часть полученного водорода после удаления СО2 (например, путем промывки аминов) можно использовать как горючее для нагревания реактора-теплообменника R, в качестве загрузки F2 и/или загрузки F3, введенной в HF в процессе ступенчатого окисления. Можно также использовать в качестве F2 и/или F3 (горючая часть HF) продувочный газ (обычно содержащий СО и остаточный метан и в частых случаях СО2), полученный после очистки выходящего потока SG путем адсорбции с балансировкой давления (адсорбция, известная также под названием PSA). Эта адсорбция обычно является конечной очисткой после конверсии с водяным паром СО, содержащегося в SG.
Синтез-газ можно также использовать обычно после регулировки отношения Н2/СО (например, путем отделения избыточного водорода) для химического превращения, например, в спирты или другие кислородсодержащие соединения, или в олефины и/или в парафины.

Claims (12)

1. Способ получения синтез-газа SG из общей загрузки F, содержащей углеводороды и возможно рециркулируемые соединения, при этом F содержит первую загрузку F1, вторую загрузку F2 и третью загрузку F3, в ходе которого:
поток, содержащий первую загрузку F1 с добавлением водяного пара, подвергают конверсии с водяным паром для получения по меньшей мере одной фракции синтез-газа SG в по меньшей мере одном мультитрубчатом реакторе-теплообменнике R, имеющем множество реакционных труб, содержащих катализатор конверсии с водяным паром, и камеру, в которой находятся эти трубы, причем первая загрузка F1 с добавлением водяного пара циркулирует внутри множества труб в одном направлении;
указанные реакционные трубы нагревают главным образом посредством конвекции путем циркуляции в указанной камере текучего теплоносителя HF снаружи по отношению к трубам, локально в режиме перекрестного потока, но в целом в режиме противотока всей F1, в котором HF содержит по меньшей мере первый поток газа частичного или полного горения второй загрузки F2, который подвергают циркуляции в реакторе-теплообменнике R для нагревания реакционных труб, который затем смешивают в по меньшей мере одной дополнительной зоне горения внутри камеры с по меньшей мере частью третьей загрузки F3 и газом, содержащим кислород, чтобы повысить температуру указанного первого потока, затем поток полученной таким образом смеси циркулирует в реакторе-теплообменнике R для дополнительного нагревания реакционных труб до выхода из этого реактора-теплообменника;
получают синтез-газ SG из потока после конверсии с водяным паром F1 и возможно части или всего HF.
2. Способ по п.1, в котором впрыскивают по меньшей мере часть F3 и газ, содержащий кислород, в условиях турбулентности и/или рециркуляции, достаточных для горения в гомогенном режиме в по меньшей мере одной зоне камеры реактора-теплообменника R.
3. Способ по любому из пп.1 или 2, в котором впрыскивают по меньшей мере часть F3 и газ, содержащий кислород, перед зоной каталитического горения в условиях, когда температура полученной смеси ниже температуры, при которой происходит горение с пламенем.
4. Способ по п.3, в котором указанный поток, содержащий первую загрузку F1 с добавлением водяного пара, вводят в реактор-теплообменник R с торца R, и указанная зона каталитического горения расположена в первой половине реактора-теплообменника относительно этого торца.
5. Способ по любому из пп.1 и 2, в котором дополнительная зона горения является зоной, не содержащей реакционных труб и по существу прилегающей к внутренней стенке камеры реактора-теплообменника.
6. Способ по любому из пп.1 и 2, в котором на выходе из реактора-теплообменника R происходит теплообмен между указанным текучим теплоносителем HF и указанным потоком, содержащим первую загрузку F1 с добавлением водяного пара, для осуществления предварительной конверсии с водяным паром F1 в реакторе-теплообменнике (2b) до его ввода в реактор-теплообменник R.
7. Способ по любому из пп.1 и 2, в котором указанный поток, содержащий первую загрузку F1 с добавлением водяного пара, предварительно нагревают до 500-740°С до его ввода в реактор-теплообменник R, температура потока после конверсии с водяным паром на выходе из реактора-теплообменника R составляет от 800 до 950°С, а температура HF на выходе из реактора-теплообменника R составляет от 850 до 1150°С.
8. Способ по любому из пп.1 и 2, в котором указанный текучий теплоноситель HF является потоком частичного окисления углеводородов кислородом под давлением от 0,5 до 12 МПа, по существу не содержащим азота и предпочтительно содержащим водяной пар.
9. Способ по любому из пп.1 и 2, в котором указанный текучий теплоноситель HF является газом полного горения углеводородов на воздухе под давлением от 0,4 до 4 МПа.
10. Способ получения водорода из синтез-газа, содержащего синтез-газ SG, полученный способом по любому из пп.1-9.
11. Способ по п.10, в котором горючая часть указанного текучего теплоносителя HF состоит по существу из фракции по существу чистого водорода, полученного из SG.
12. Способ по п.10, в котором F2 и/или F3 содержит продувочный газ, полученный на стадии очистки путем адсорбции PSA потока, полученного из синтез-газа SG.
RU2006133682/05A 2005-09-21 2006-09-20 Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике RU2420450C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509668 2005-09-21
FR0509668A FR2890955B1 (fr) 2005-09-21 2005-09-21 Procede de production de gaz de synthese par vaporeformage dans un reacteur-echangeur

Publications (2)

Publication Number Publication Date
RU2006133682A RU2006133682A (ru) 2008-03-27
RU2420450C2 true RU2420450C2 (ru) 2011-06-10

Family

ID=36178223

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006133682/05A RU2420450C2 (ru) 2005-09-21 2006-09-20 Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике

Country Status (6)

Country Link
US (1) US8025862B2 (ru)
EP (1) EP1767492B1 (ru)
JP (1) JP5124117B2 (ru)
CA (1) CA2559850C (ru)
FR (1) FR2890955B1 (ru)
RU (1) RU2420450C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606439C2 (ru) * 2011-09-06 2017-01-10 Линде Акциенгезелльшафт Обработка обогащенной диоксидом углерода фракции с установки получения водорода и моноксида углерода

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292737B1 (ko) 2007-11-02 2013-08-05 에스케이이노베이션 주식회사 수증기 개질반응을 이용한 수소발생장치
FR2932173B1 (fr) * 2008-06-05 2010-07-30 Air Liquide Procede de reformage a la vapeur avec ecoulement des fumees ameliore
JP5408001B2 (ja) * 2010-03-31 2014-02-05 宇部興産株式会社 ポリイミドフィルム
FR2966814B1 (fr) * 2010-10-28 2016-01-01 IFP Energies Nouvelles Procede de production d'hydrogene par vaporeformage d'une coupe petroliere avec production de vapeur optimisee.
FR2967249B1 (fr) * 2010-11-09 2012-12-21 Valeo Systemes Thermiques Echangeur de chaleur et procede de formation de perturbateurs associe
US9556025B2 (en) 2011-12-06 2017-01-31 Hydrip, Llc Catalyst-containing reactor system with helically wound tubular assemblies
KR101422630B1 (ko) * 2011-12-30 2014-07-23 두산중공업 주식회사 열교환형 선개질기
FR3040167B1 (fr) * 2015-08-18 2020-12-25 Air Liquide Procede de production de gaz de synthese au moyen de reacteurs de vaporeformage
PL3153464T3 (pl) * 2015-10-05 2020-03-31 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Reformer parowy do wytwarzania gazu syntezowego
KR102605432B1 (ko) 2016-11-09 2023-11-24 8 리버스 캐피탈, 엘엘씨 통합 수소 생산을 구비하는 동력 생산을 위한 시스템들 및 방법들
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
FR3102070B1 (fr) * 2019-10-17 2021-09-24 Commissariat Energie Atomique Réacteur échangeur à tubes et calandre permettant l’injection étagée d’un réactif
US20230416085A1 (en) 2020-11-13 2023-12-28 Technip Energies France A process for producing a hydrogen-comprising product gas from a hydrocarbon
WO2023089571A1 (en) 2021-11-18 2023-05-25 8 Rivers Capital, Llc Method for hydrogen production
CN114250092B (zh) * 2022-01-12 2023-04-25 清华大学 一种用于减排低浓度可燃气体的系统和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839194A (en) * 1971-11-01 1974-10-01 Exxon Research Engineering Co High severity reforming process with a platinum-iridium catalyst
US4337170A (en) * 1980-01-23 1982-06-29 Union Carbide Corporation Catalytic steam reforming of hydrocarbons
US4650651A (en) * 1983-06-09 1987-03-17 Union Carbide Corporation Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
JPS62210047A (ja) * 1986-03-10 1987-09-16 Toyo Eng Corp 反応用装置
US5229102A (en) * 1989-11-13 1993-07-20 Medalert, Inc. Catalytic ceramic membrane steam-hydrocarbon reformer
DE4221837C1 (en) * 1992-07-03 1993-08-19 Uhde Gmbh, 4600 Dortmund, De Shrouded catalytic reformer tube - with partially enclosed gas mixing zone, for prodn. of synthesis gas
US5938800A (en) * 1997-11-13 1999-08-17 Mcdermott Technology, Inc. Compact multi-fuel steam reformer
EP0924162A3 (de) * 1997-12-16 1999-10-20 dbb fuel cell engines GmbH Wasserstoffabtrennmembran, damit ausgerüstete Methanolreformierungsanlage und Betriebsverfahren hierfür
US6497856B1 (en) * 2000-08-21 2002-12-24 H2Gen Innovations, Inc. System for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
CA2413388C (en) * 2000-06-29 2009-12-22 H2Gen Innovations Inc. Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
US6394043B1 (en) * 2000-12-19 2002-05-28 Praxair Technology, Inc. Oxygen separation and combustion apparatus and method
US6881394B2 (en) * 2001-10-09 2005-04-19 Conocophillips Company Steam reformer for methane with internal hydrogen separation and combustion
FR2890956B1 (fr) * 2005-09-21 2008-04-18 Inst Francais Du Petrole Procede de production de gaz de synthese par vaporeformage et oxydation partielle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606439C2 (ru) * 2011-09-06 2017-01-10 Линде Акциенгезелльшафт Обработка обогащенной диоксидом углерода фракции с установки получения водорода и моноксида углерода

Also Published As

Publication number Publication date
EP1767492A2 (fr) 2007-03-28
JP5124117B2 (ja) 2013-01-23
FR2890955B1 (fr) 2008-02-01
JP2007084429A (ja) 2007-04-05
EP1767492B1 (fr) 2011-08-24
EP1767492A3 (fr) 2007-04-04
US8025862B2 (en) 2011-09-27
US20070092436A1 (en) 2007-04-26
RU2006133682A (ru) 2008-03-27
FR2890955A1 (fr) 2007-03-23
CA2559850A1 (fr) 2007-03-21
CA2559850C (fr) 2013-12-03

Similar Documents

Publication Publication Date Title
RU2420450C2 (ru) Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике
RU2418739C2 (ru) Способ получения синтез-газа путем конверсии с водяным паром в реакторе-теплообменнике
KR960014902B1 (ko) 플레이트-핀 열교환기를 이용한 개질 공정법
US6981994B2 (en) Production enhancement for a reactor
US7504048B2 (en) Axial convective reformer
JPS6158801A (ja) 炭化水素を改質する方法及び反応器
CN100548881C (zh) 伪等温合成氨方法和设备
JP2003525115A (ja) 吸熱反応工程およびその装置
JPS62163268A (ja) 燃料 電池を用いた電気発生方法
CN1318798C (zh) 燃料转化器燃烧方法
WO1998014536A1 (fr) .procede de reformage d&#39;hydrocarbures a l&#39;aide de vapeur
US6793700B2 (en) Apparatus and method for production of synthesis gas using radiant and convective reforming
JP5963848B2 (ja) 非触媒性の復熱式改質装置
US9803153B2 (en) Radiant non-catalytic recuperative reformer
EP4105170A1 (en) Process and plant for flexible production of syngas from hydrocarbons
KR20240017375A (ko) 금속 더스팅이 감소된 열교환 반응기
KR20010049386A (ko) 비단열공정을 실행하기 위한 반응기
KR20240017021A (ko) Co2 시프트를 위한 열교환 반응기
CN117414767A (zh) 组合式重整器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200921