RU2416435C1 - Способ антисептической обработки поверхности изделия из полимерного материала - Google Patents

Способ антисептической обработки поверхности изделия из полимерного материала Download PDF

Info

Publication number
RU2416435C1
RU2416435C1 RU2009146340/15A RU2009146340A RU2416435C1 RU 2416435 C1 RU2416435 C1 RU 2416435C1 RU 2009146340/15 A RU2009146340/15 A RU 2009146340/15A RU 2009146340 A RU2009146340 A RU 2009146340A RU 2416435 C1 RU2416435 C1 RU 2416435C1
Authority
RU
Russia
Prior art keywords
antiseptic
preparation
solvent
polymer
bentonite
Prior art date
Application number
RU2009146340/15A
Other languages
English (en)
Inventor
Вячеслав Иванович Беклемышев (RU)
Вячеслав Иванович Беклемышев
Игорь Иванович Махонин (RU)
Игорь Иванович Махонин
Умберто Орацио Джузеппе Мауджери (IT)
Умберто Орацио Джузеппе Мауджери
Михаил Мефодъевич Афанасьев (RU)
Михаил Мефодъевич Афанасьев
Ара Аршарович Абрамян (RU)
Ара Аршарович Абрамян
Владимир Александрович Солодовников (RU)
Владимир Александрович Солодовников
Original Assignee
Закрытое акционерное общество "Институт прикладной нанотехнологии"
Фонд Сальваторе Мауджери Клиника Труда и Реабилитации
СИБ Лэборетрис Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2009146340/15A priority Critical patent/RU2416435C1/ru
Application filed by Закрытое акционерное общество "Институт прикладной нанотехнологии", Фонд Сальваторе Мауджери Клиника Труда и Реабилитации, СИБ Лэборетрис Лимитед filed Critical Закрытое акционерное общество "Институт прикладной нанотехнологии"
Priority to EP10801569A priority patent/EP2512233A1/en
Priority to CN2010800568429A priority patent/CN102905524A/zh
Priority to PCT/EP2010/069632 priority patent/WO2011073193A1/en
Priority to JP2012543685A priority patent/JP2013513644A/ja
Priority to MX2012006747A priority patent/MX2012006747A/es
Priority to BR112012014615A priority patent/BR112012014615A2/pt
Priority to SG2012042073A priority patent/SG181574A1/en
Priority to US13/261,324 priority patent/US20120308737A1/en
Priority to CA2784229A priority patent/CA2784229A1/en
Priority to KR1020127018139A priority patent/KR20120123321A/ko
Application granted granted Critical
Publication of RU2416435C1 publication Critical patent/RU2416435C1/ru
Priority to CL2012001595A priority patent/CL2012001595A1/es
Priority to ZA2012/04826A priority patent/ZA201204826B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment

Abstract

Изобретение относится к области медицины и реабилитации (восстановительного лечения) и может быть использовано для антисептической обработки поверхностей изделий из полимерных материалов медицинского назначения, используемых в малой ортопедии. Способ заключается в образовании на поверхности изделия антисептического покрытия посредством препарата, содержащего биоцид на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра или/и меди в растворе полимерного связующего. Размер частиц порошка бентонита не более 150 нм. Процесс образования антисептического покрытия осуществляют в два этапа. На первом этапе поверхность изделия из полимерного материала на основе кремнийорганических каучуков с молекулярной массой 2·105-6·105 модифицируют в низкотемпературной кислородной плазме с расходом кислорода (О2) 0,8-7 л/ч, рабочем давлении, равном (70-135)±5 Па, при высокочастотном электромагнитном излучении с частотой 13,56 МГц и мощности 20-40 Вт, в течение (2-3)±1 мин. На втором этапе модифицированную поверхность изделия обрабатывают антисептическим препаратом, в котором в качестве полимерного связующего используют фторакриловый полимер в растворителе на основе перфторизобутилметилового и перфторбутилметилового эфиров при соотношении, мас.%: фторакриловый полимер - 1-3, растворитель - остальное, при этом берут перфторизобутилметиловый эфир - 20-80 мас.% и перфторбутилметиловый эфир - 20-80 мас.%. Антисептический препарат имеет следующее соотношение компонентов: биоцид: полимерное связующее в растворителе, как 1:(50-100) вес.ч. При использовании изобретения обеспечивается образование на поверхности изделий, изготовленных из кремнийорганических полимеров с молекулярной массой 2·105-6·105, эффективного по антисептическим и эксплуатационным свойствам покрытия. 1 з.п. ф-лы.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области медицины и реабилитации (восстановительного лечения) и может быть использовано для антисептической обработки поверхностей изделий из полимерных материалов медицинского назначения, используемых в малой ортопедии.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Основными факторами, влияющими на выбор того или иного антисептического средства, используемого для обработки поверхностей изделий, являются его эффективность по отношению к патогенным микроорганизмам, степень токсичности, длительность действия, удобство применения.
Поверхностная обработка изделий медицинского назначения проводится, предпочтительно, в антисептических водных или водно-спиртовых растворах.
В медицинской практике в качестве антисептических компонентов для обработки поверхностей изделий, в том числе из полимерных материалов, традиционно используют гуанидиновые соединения.
Биоцидную активность гуанидиновым соединениям придает несущий катион гуанидиния, который взаимодействует с отрицательно заряженной бактериальной клеткой, адсорбируется на ее поверхности, блокируя тем самым дыхание, питание и транспорт метаболитов через клеточную стенку, что приводит к гибели бактерии.
Для поверхностной обработки используют как низкомолекулярные (хлоргексидин), так и высокомолекулярные гуанидиновые соединения (полигексаметиленгуанидин (ПГМГ)).
Однако данные препараты являются токсичными, эффективность их действия к микроорганизмам различна.
В настоящее время значительное внимание уделяется получению антисептических препаратов на основе металлов бактерицидного действия: Ag, Аu, Pt, Pd, Сu, и Zn (см. Н.Е.Morton, Pseudomonas in Disinfection, Sterilisation and Preservation, ed. S.S. Block, Lea and Febider 1977 и N.Grier, Silver and Its Compounds in Disinfection, Sterilisation and Preservation, ed. S.S.Block, Lea and Febiger, 1977). При этом перспективными являются препараты, имеющие металлсодержащие компоненты с нанометровым диапазоном частиц и, в основном, ультрадисперсные биоциды, содержащие серебро, [см. кн. Благитко Е.М. и др. «Серебро в медицине», Новосибирск: Наука-центр, 2004, 256 с.].
Наиболее близким к заявляемому изобретению является техническое решение для антисептической обработки изделий из полимерных материалов (см. патент RU №2330673, публ. 2008 г.).
Данное техническое решение заключается в образовании на поверхности изделия антисептического покрытия при использовании препарата, содержащего биоцид на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра или/и меди в растворе полимерного связующего, при этом размер частиц порошка бентонита не более 150 нм.
Известный препарат используют для формирования антисептического покрытия на поверхности изделий из материалов на основе органических полимеров.
Вместе с тем процесс формирования антисептического покрытия малоэффективен при использовании известного препарата для образования покрытия на поверхности изделий, изготовленных из кремнийорганических (полидиметилсилоксановых) каучуков с молекулярной массой 2·105-6·105, которые используются для изготовления изделий малой ортопедии (корректора стопы, стелек, подпяточников и пр).
Объясняется это:
значительной гидрофобностью поверхности кремнийорганических (полидиметилсилоксановых) каучуков, для структуры которых характерна поверхностная ориентация углеводородных радикалов, снижающих адгезионные свойства названных материалов;
низкой стойкостью получаемого на обрабатываемой поверхности антисептического покрытия к истирающим нагрузкам, возникающим в процессе эксплуатации изделий малой ортопедии.
При разработке технологического процесса по антисептической обработке полимерных материалов авторы учитывали, что кремнийорганические каучуки с молекулярной массой 2·105-6·105 по своей плотности, упругости, твердости оптимальны для изготовления из этих материалов ортопедических изделий, эксплуатация которых требует эффективной антисептической обработки. Вместе с тем, учитывая химическую, термическую стойкость и высокую гидрофобность данных материалов, авторы изобретения считали целесообразным использовать для модификации обрабатываемой поверхности изделия процесс плазмохимической обработки, который широко используется в различных отраслях техники, в том числе в медицине для модификации поверхности полимерных материалов. Однако в известных процессах модификации поверхностей полимерных материалов плазмохимическая обработка сопровождается, например, металлизацией поверхностного слоя, что нецелесообразно для изделий из кремнийорганических каучуков, эксплуатация которых требует сохранения их функциональных свойств (плотность, упругость, твердость).
При создании изобретения авторы учитывали также, что образование покрытия с антисептическими свойствами на поверхности изделий, изготовленных из кремнийорганических каучуков и используемых в малой ортопедии, требует получения эксплуатационно надежного антисептического покрытия.
Использование для этих целей антисептического препарата по известному техническому решению (патент RU №2330673) малоэффективно в виду низких эксплуатационных свойств образуемого покрытия при контактном взаимодействии с живой тканью.
Задача изобретения свелась к созданию способа антисептической обработки медицинского изделия из полимерных материалов, технический результат которого состоит:
в получении эффективного по антисептическим и эксплуатационным свойствам покрытия на поверхности изделий, изготавливаемых из полимерных материалов на основе кремнийорганических (полидиметилсилоксановых) каучуков с молекулярной массой 2·105-6·105;
в сохранении функциональных свойств этих материалов при эксплуатации изделий.
Для решения поставленной технической задачи предложен способ антисептической обработки поверхности медицинского изделия из полимерного материала, заключающийся в образовании на поверхности изделия антисептического покрытия посредством препарата, содержащего биоцид на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра или/и меди в растворе полимерного связующего, при этом размер частиц порошка бентонита не более 150 нм, согласно изобретению, процесс образования антисептического покрытия осуществляют в два этапа, на первом - поверхность изделия, изготовленного из полимерного материала на основе кремнийорганических каучуков с молекулярной массой 2·105-6·105, модифицируют в низкотемпературной кислородной плазме с расходом кислорода (О2) 0,8-7 л/ч, рабочем давлении, равном (70-135)±5 Па, при высокочастотном электромагнитном излучении с частотой 13,56 МГц и мощности 20-40 Вт, в течение (2-3)±1 мин, а на втором - модифицированную поверхность изделия обрабатывают антисептическим препаратом, в котором в качестве полимерного связующего используют фторакриловый полимер в растворителе на основе перфторизобутилметилового и перфторбутилметилового эфиров при соотношении, мас.%:
фторакриловый полимер 1-3
растворитель остальное,
причем растворитель на основе перфторизобутилметилового эфира и перфторбутилметилового эфира берут при соотношении, мас.%:
перфторизобутилметиловый эфир 20-80
перфторбутилметиловый эфир 20-80,
при этом антисептический препарат имеет следующее соотношение компонентов: биоцид: полимерное связующее в растворителе, как 1:(50-100) вес.ч.
Согласно изобретению, в качестве биоцида в антисептическом препарате используют смесь нанодисперсных порошков бентонита, интеркалированных ионами серебра и ионами меди при соотношении:
бентонит, интеркалированный ионами серебра: бентонит, интеркалированный ионами меди, как 1:(0,5-1) вес.ч.
При реализации изобретения на поверхности изделий, изготавливаемых из полимерных материалов на основе кремнийорганических (полидиметилсилоксановых) каучуков с молекулярной массой 2·105-6·105 формируют покрытие с эффективными антисептическими и эксплуатационными свойствами с сохранением функциональных свойств материалов, используемых для изготовления изделий, предпочтительно ортопедических.
Данные обстоятельства объясняются:
осуществлением процесса образования антисептического покрытия в два этапа;
наличием на первом этапе обработки процесса модифицирования поверхности изделия, изготовленного из полимерного материала на основе кремнийорганических каучуков с молекулярной массой 2·105-6·105;
использованием плазмохимической обработки для процесса модифицирования поверхности изделия в среде низкотемпературной кислородной плазмы (с учетом заданного технологического процесса). В результате поверхность изделия из названных материалов приобретает гидрофильные свойства, т.к. на поверхности изделия образуются силанольные (Si-OH) и силоксановые (Si-O-Si) группы;
использованием на втором этапе обработки антисептического препарата, содержащего нанодисперсию минерального биоцида, полимерное связующее в виде фторакрилового полимера и растворителя на основе перфторизобутилметилового и перфторбутилметилового эфиров. Использование данного препарата обеспечивает эффективное адгезионное взаимодействие с модифированной поверхностью изделия. В результате на обрабатываемой поверхности изделия образуется новое покрытие с антисептическим эффектом, не нарушающее физико-химических свойств материала, используемого для изготовления изделия, и не вызывающее раздражающего воздействия на кожу человека.
При анализе известного уровня техники не выявлено технических решений с совокупностью признаков, соответствующих заявляемому техническому решению и реализующих вышеописанный результат.
Приведенный анализ известного уровня техники свидетельствует о соответствии заявляемого технического решения критериям «новизна», «изобретательский уровень».
Заявляемое техническое решение может быть промышленно реализовано с использованием известного технологического оборудования и соответствующих для реализации изобретения продуктов и материалов, что подтверждается ниже приведенным описанием изобретения.
Сущность изобретения поясняется рекомендациями относительно выбора используемых для реализации изобретения оборудования, продуктов и материалов, примерами реализации изобретения.
Для осуществления способа антисептической обработки поверхности изделия из полимерного материала используют:
биоцид - нанодисперсный порошок бентонита, интеркалированный ионами металлов серебра (Ag+) или/и цинка (Zn2+). Данный биоцид изготовлен в соответствии с изобретением по патенту RU №2330673. Для изготовления биоцида по известному техническому решению используют бентонит (монтмориллонит) Na-формы, натрий хлористый (NaCl), нитрат серебра (AgNO3), сульфат меди (Cu2SO4). Процесс изготовления дисперсного порошка биоцида осуществляют в два этапа. На первом этапе получают полуфабрикат бентонита, активированного ионами натрия, а на втором этапе полуфабрикат интеркалируют ионами серебра или меди путем реакций ионного замещения натрия на ионы серебра или меди.
Предпочтительно для реализации изобретения использование нанодисперсного порошка бентонита, интеркалированного ионами серебра, или смесей порошков бентонита, интеркалированных ионами серебра и меди при соотношении 1:1 (в.ч.), что снижает затратную часть;
коммерческий продукт EGC-1700, торговая марка Novec, производитель компании 3М (US). Данный продукт изготовлен на основе фторакрилового полимера и перфторизобутилметилового и перфторбутилметилового эфиров. Продукт на основе фторакрилового полимера с растворителями в виде перфторизобутилметилового эфира и перфторбутилметилового эфира используется, в том числе, для формирования покрытий на изделиях медицинского назначения, имеет биологическую совместимость. Продукт нетоксичен и используется также для формирования покрытий на изделиях из силиконовых резин, используемых для изготовления контактных линз;
лабораторно-исследовательская установка, предназначенная для плазмохимической обработки изделий. Установка содержит рабочую камеру с системой загрузки и выгрузки изделий, системы вакуумирования и подачи кислорода в камеру, генератор высокочастотного электромагнитного излучения с рабочей частотой - 13,56 МГц и мощностью до 1 кВт, систему управления;
образцы из кремнийорганических каучуков с молекулярной массой 3·105. Площадь поверхности образцов 5 см2. Указанный вид кремнийорганических каучуков используется для изготовления продукции малой ортопедии, например корректоров стопы.
На основе выше указанных материалов, продуктов и оборудования осуществляется технологический процесс по образованию антисептических покрытий на поверхности изделий из кремнийорганических (полидиметилсилоксановых) каучуков с молекулярной массой 2·105-6·105. Выбранный тип материалов для антисептической обработки наиболее оптимален по своим функциональным особенностям (плотность ориентировочно 1,5-1,6 г/см3) для изготовления изделий медицинского назначения, в частности малой ортопедии.
Использование для реализации изобретения заданных технологических операций, режимов, используемых материалов и продуктов обеспечивает получение на обрабатываемых поверхностях изделий антисептического покрытия пролонгированного действия, биологически совместимого с живыми тканями и обладающего эффективными эксплуатационными характеристиками в процессе контактного взаимодействия с ними.
Изменение заданных по изобретению технологических операций, режимов, используемых продуктов и материалов не целесообразно и приведет либо к ухудшению получаемых результатов, либо к увеличению затратной части на осуществление процесса в целом, либо к изменению физико-химических свойств материала обрабатываемого изделия. В частности, при увеличении параметров высокочастотного электромагнитного излучения нарушаются физико-химические свойства материала обрабатываемого изделия, а при уменьшении не обеспечивается эффективная модификация поверхности.
Реализации изобретения поясняется следующими конкретными примерами его выполнения:
Пример 1.
На поверхности образцов из кремнийорганических каучуков с молекулярной массой 3·105 формировали антисептическое покрытие. Процесс образования антисептического покрытия осуществляли в два этапа.
На первом этапе поверхность образцов модифицировали. С этой целью образцы загружали в камеру лабораторно-исследовательской установки. Камеру вакуумировали до 133 Па. Осуществляли подачу кислорода (О2), расход 0,8 л/час. Процесс осуществляли при мощности высокочастотного электромагнитного излучения - 30 Вт и частоте - 13.56 МГц. Обработку образцов в камере производили в течение 2 мин. В результате плазмохимической обработки, при указанных режимах в среде низкотемпературной кислородной плазмы поверхность образца модифицируется, поверхность приобретает гидрофильные свойства.
На втором этапе модифицированную поверхность образцов обрабатывали антисептическим препаратом. Используемый для обработки антисептический препарат образован при смешивании:
биоцида на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра (Ag+), с размерностью частиц порошка не более 100 нм. Нанодисперсный порошок бентонита получен в соответствии с техническим решением по патенту RU №2330673;
коммерческого продукта EGC-1700, имеющего фторакриловый полимер - 2%, растворитель (перфторизобутилметиловый эфир и перфторбутилметиловый эфир) - остальное.
Используемый для обработки поверхности образцов антисептический препарат содержит: биоцид: продукт EGC-1700, как 1:50 (вес.ч.).
Пример 2.
То же, что по примеру 1, но для образования антисептического покрытия на образцах из кремнийорганического каучука был использован препарат, в котором биоцид содержит смесь нанодисперсных порошков бентонита, интеркалированных ионами серебра и меди при соотношении их, как 1:1 (вес.ч.).
Пример 3 (контрольный).
То же, что по примеру 1, но для образования антисептического покрытия на образцах из кремнийорганических каучуков был использован препарат по изобретению патент RU №2330673, в соответствии с которым препарат содержит:
биоцид на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра (Ag+), с размерностью частиц порошка не более 100 нм. Нанодисперсный порошок бентонита получен в соответствии с техническим решением по патенту №2330673;
раствор полимерного связующего в виде 0,75% спиртового раствора продукта Пента-1009 (блок-сополимер полидиметилсилоксана и полеуретана) в соответствии с патентом №2330673. Антисептический препарат по примеру 3 содержит: биоцид:раствор полимерного связующего, как 1:100 (вес.ч.).
На указанных образцах (примеры 1-3) осуществляли диагностирование и тестирование их по следующим показателям:
определение энергетических характеристик поверхностей образцов путем их оценки по краевому углу смачивания. Данный метод является наиболее чувствительным методом контроля качества поверхностей и покрытия, образуемого на обрабатываемой поверхности. Краевой угол смачивания определялся по пробной капли жидкости к поверхности исследуемого образца;
биотестирование по антимикробным свойствам. При проведении данного метода тестирования оценивались названные свойства исследуемых образцов при моделировании процесса эксплуатации изделий.
Краевой угол смачивания (θ, θ1, θ2, θ3, θ4 и θ5) пробной капли жидкости (деионизованная вода) на поверхности исследуемого образца определяли:
на поверхности исходного образца из кремнийорганических каучуков (молекулярная масса 3·105) до этапа обработки низкотемпературной кислородной плазмой, величина краевого угла смачивания (θ) - 108°;
на поверхности образца (пример 1) после модификации в низкотемпературной плазме, угол смачивания θ1 - 73°;
на поверхности образца (пример 1) после второго этапа обработки, угол смачивания θ2 - 95°;
на поверхности образца (пример 3) после второго этапа обработки, угол смачивания (θ3) - 85°;
на поверхности образцов (соответственно, примеры 1 и 3) после второго этапа обработки через 24 часа выдержки образцов при комнатной температуре, угол смачивания θ4 (образец по примеру 1) - 92°, угол смачивания θ5 (образец по примеру 3) - 80°.
Приведенные результаты исследования свидетельствуют:
о целесообразности использования в технологическом процессе образования антисептического покрытия процесса модифицирования поверхности низкотемпературной кислородной плазмой (для повышения их адгезивных свойств);
о целесообразности использования на втором этапе обработки антисептического препарата по изобретению. Использование данного препарата свидетельствует о повышении адгезии получаемого покрытия к поверхности изделия.
Биотестирование исследуемых образцов (примеры 1-3) оценивались по их антимикробным свойствам.
Оценку антимикробных свойств осуществляли по стандартной методике с использованием культуры Staphylococcus aureas. Культура была выращена на среде мясо-пептонного агара (МГТА) при температуре 37°С в течение 24 часов. Затем готовили однородную суспензию клеток в деионизованной воде. Приготовленную структуру вносили по 1 мл суспензии в чашки Петри с подсушенной средой МПА и равномерно распределяли по поверхности среды стерильным шпателем для прорастания культуры сплошным газоном. Затем стерильным пинцетом на поверхность агара плотно накладывали кусочки исследуемых образцов (1×1) (см2). Кусочки исследуемых образцов размещали на расстоянии 2 см друг от друга и на расстоянии около 2,5 см от центра чашки. Засеянные чашки с образцами термостатировали при 37°С. Антимикробные свойства каждого кусочка исследуемого образца оценивали по образованию зон угнетения (зон ингибирования) роста штамма микроорганизма, которые четко выделялись на фоне сплошного газона роста тестируемой культуры. Оценку антимикробных свойств производили путем моделирования процесса эксплуатации изделий. За основу моделирования был выбран процесс многократной (5-ти разовой) промывки исследуемых образцов водой.
В результате исследований установлено, что рост штамма Staphylococcus aureas при обработке образцов антисептическим составом (примеры 1-2) после пятой промывки на 30% ниже образцов по примеру 3.
Оценка антимикробных свойств по примерам 1 и 2 также показала, что антимикробные свойства антисептического покрытия, полученного по примеру 1, более эффективны относительно аналогичных свойств покрытия, полученного по примеру 2. Это подтверждает известные данные о серебросодержащих препаратах, обладающих широким спектром антимикробной активности. Вместе с тем затратная часть на производство данного продукта значительно повышается, что нецелесообразно.
Таким образом, проведенные исследования в целом свидетельствуют об эффективности заявляемого по изобретению способа антисептической обработки поверхности изделия из полимерных материалов на основе кремнийорганических каучуков с молекулярной массой 2·105-6·105.

Claims (2)

1. Способ антисептической обработки поверхности медицинского изделия из полимерного материала, заключающийся в образовании на поверхности изделия антисептического покрытия посредством препарата, содержащего биоцид на основе нанодисперсного порошка бентонита, интеркалированного ионами серебра или/и меди, в растворе полимерного связующего, при этом размер частиц порошка бентонита не более 150 нм, отличающийся тем, что процесс образования антисептического покрытия осуществляют в два этапа, на первом поверхность изделия, изготовленного из полимерного материала на основе кремнийорганических каучуков с молекулярной массой 2·105-6·105, модифицируют в низкотемпературной кислородной плазме с расходом кислорода (О2) 0,8-7 л/ч, при рабочем давлении 70-135 Па ±5 Па, при высокочастотном электромагнитном излучении с частотой 13,56 МГц и мощности 20-40 Вт, в течение 2-3 мин ±1 мин, а на втором модифицированную поверхность изделия обрабатывают антисептическим препаратом, в котором в качестве полимерного связующего используют фторакриловый полимер в растворителе на основе перфторизобутилметилового и перфторбутилметилового эфиров при соотношении, мас.%:
фторакриловый полимер 1-3 растворитель остальное

причем растворитель на основе перфторизобутилметилового эфира и перфторбутилметилового эфира берут при соотношении, мас.%:
перфторизобутилметиловый эфир 20-80 перфторбутилметиловый эфир 20-80

при этом антисептический препарат имеет следующее соотношение компонентов: биоцид: полимерное связующее в растворителе как 1:(50-100) вес.ч.
2. Способ по п.1, отличающийся тем, что в качестве биоцида в антисептическом препарате используют смесь нанодисперсных порошков бентонита, интеркалированных ионами серебра и ионами меди, при соотношении их:
бентонит интеркалированный ионами серебра: бентонит интеркалированный ионами меди как 1:(0,5-1) вес.ч.
RU2009146340/15A 2009-12-15 2009-12-15 Способ антисептической обработки поверхности изделия из полимерного материала RU2416435C1 (ru)

Priority Applications (13)

Application Number Priority Date Filing Date Title
RU2009146340/15A RU2416435C1 (ru) 2009-12-15 2009-12-15 Способ антисептической обработки поверхности изделия из полимерного материала
US13/261,324 US20120308737A1 (en) 2009-12-15 2010-12-14 Method for antiseptic processing of the surface of a product made of silicone rubber material
PCT/EP2010/069632 WO2011073193A1 (en) 2009-12-15 2010-12-14 Method for antiseptic processing of the surface of a product made of silicone rubber materials
JP2012543685A JP2013513644A (ja) 2009-12-15 2010-12-14 シリコーンゴム材料で作られた製品の表面を消毒処理するための方法
MX2012006747A MX2012006747A (es) 2009-12-15 2010-12-14 Metodo para procesamiento antiseptico de la superficie de un producto elaborado de materiales de caucho de silicona.
BR112012014615A BR112012014615A2 (pt) 2009-12-15 2010-12-14 método para tratamento anti-séptico da superfície de um produto feito de materiais poliméricos
EP10801569A EP2512233A1 (en) 2009-12-15 2010-12-14 Method for antiseptic processing of the surface of a product made of silicone rubber materials
CN2010800568429A CN102905524A (zh) 2009-12-15 2010-12-14 用于抗菌处理由硅橡胶材料制成的制品的表面的方法
CA2784229A CA2784229A1 (en) 2009-12-15 2010-12-14 Method for antiseptic processing of the surface of a product made of silicone rubber materials
KR1020127018139A KR20120123321A (ko) 2009-12-15 2010-12-14 실리콘 고무 재질로 된 제품의 표면에 대한 살균처리 방법
SG2012042073A SG181574A1 (en) 2009-12-15 2010-12-14 Method for antiseptic processing of the surface of a product made of silicone rubber materials
CL2012001595A CL2012001595A1 (es) 2009-12-15 2012-06-14 Metodo para el procedimiento antiseptico de la superficie de un producto hecho de materiales de caucho de silicona que consiste en que dicha superficie es modificada mediante tratamiento en plasma con oxigeno, y se aplica preparacion antiseptica que contiene biocida de polvo de bentonita nanodispersado y agente polimerico fluoroacrilico.
ZA2012/04826A ZA201204826B (en) 2009-12-15 2012-06-28 Method for antiseptic processing of the surface of a product made of silicone rubber materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009146340/15A RU2416435C1 (ru) 2009-12-15 2009-12-15 Способ антисептической обработки поверхности изделия из полимерного материала

Publications (1)

Publication Number Publication Date
RU2416435C1 true RU2416435C1 (ru) 2011-04-20

Family

ID=43640596

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009146340/15A RU2416435C1 (ru) 2009-12-15 2009-12-15 Способ антисептической обработки поверхности изделия из полимерного материала

Country Status (13)

Country Link
US (1) US20120308737A1 (ru)
EP (1) EP2512233A1 (ru)
JP (1) JP2013513644A (ru)
KR (1) KR20120123321A (ru)
CN (1) CN102905524A (ru)
BR (1) BR112012014615A2 (ru)
CA (1) CA2784229A1 (ru)
CL (1) CL2012001595A1 (ru)
MX (1) MX2012006747A (ru)
RU (1) RU2416435C1 (ru)
SG (1) SG181574A1 (ru)
WO (1) WO2011073193A1 (ru)
ZA (1) ZA201204826B (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098795B (zh) * 2013-01-28 2014-07-02 阎昭良 一种银离子杀菌分散片及其制备工艺和在清洁果蔬残留细菌中的应用
JP6739439B2 (ja) * 2015-01-30 2020-08-12 ザ ユニバーシティ オブ ウェスタン オーストラリア 物質の力学的特性を評価するためのシステム
CN107981702A (zh) * 2016-10-26 2018-05-04 佛山市顺德区美的电热电器制造有限公司 一种抗菌不粘锅具及其制造方法
CN111347701A (zh) * 2018-12-20 2020-06-30 博西华电器(江苏)有限公司 制造洗衣机门封的方法、门封及具有门封的洗衣机
PL433423A1 (pl) * 2020-04-01 2021-10-04 Przybysz Kazimierz Natural Fibers Advanced Technologies Modyfikowany bentonit, kompozycja na bazie modyfikowanego bentonitu oraz sposób wytwarzania modyfikowanego bentonitu

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003702A1 (en) * 2003-11-17 2007-01-04 Fumito Nishida Method of preparing a metal-silicone rubber composite
RU2330673C1 (ru) 2006-11-22 2008-08-10 Закрытое акционерное общество "Институт прикладной нанотехнологии" Способ получения антимикробного препарата
JP5152198B2 (ja) * 2007-12-19 2013-02-27 株式会社島津製作所 分注デバイス

Also Published As

Publication number Publication date
ZA201204826B (en) 2013-05-29
EP2512233A1 (en) 2012-10-24
JP2013513644A (ja) 2013-04-22
SG181574A1 (en) 2012-07-30
WO2011073193A1 (en) 2011-06-23
US20120308737A1 (en) 2012-12-06
WO2011073193A9 (en) 2011-10-13
CN102905524A (zh) 2013-01-30
BR112012014615A2 (pt) 2015-09-15
MX2012006747A (es) 2012-07-30
CL2012001595A1 (es) 2013-01-11
KR20120123321A (ko) 2012-11-08
CA2784229A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
Taglietti et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria
TWI405536B (zh) 用於防止微生物附著之非濾出型界面活性膜組成物
US9888691B2 (en) Antimicrobial silver compositions
CN103300065B (zh) 具有抗菌作用的物质
RU2416435C1 (ru) Способ антисептической обработки поверхности изделия из полимерного материала
CN100551450C (zh) 一种抗菌型生物活性钛涂层的制备方法
EP2874671A1 (en) Anti-microbial gel formulations containing a silver (i) periodate
JP2001508041A (ja) 接触殺傷性・非侵出性抗菌材料
US20120052105A1 (en) Nanostructural composition of biocide and process of obtaining nanostructural biocide nanocomposition
CN107583112A (zh) 一种医用聚氨酯抗菌纳米银涂层的制备方法
WO2006049378A1 (en) Nano-silicasilver and method for the preparation thereof
EP2389419A1 (en) Antimicrobial coatings
Donnadio et al. PVC grafted zinc oxide nanoparticles as an inhospitable surface to microbes
WO2000064264A1 (fr) Materiau polymere organique bactericide
EP2747572A1 (en) A family of silver(i) periodate compounds having broad antimicrobial properties
Kaygusuz et al. Antimicrobial nano-Ag-TiO2 coating for lining leather
NL2031339B1 (en) Antibacterial coating formed by copolymerization of chlorhexidine and catecholamine as well as preparation method and application thereof
CN112830486B (zh) 具有压电性Te纳米线活性炭纤维材料及制备方法和应用
RU2474471C2 (ru) Коллоидный раствор наночастиц серебра, металл-полимерный нанокомпозитный пленочный материал, способы их получения, бактерицидный состав на основе коллоидного раствора и бактерицидная пленка из металл-полимерного материала
Yoon et al. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect
Tabbasum et al. Sol–gel nanocomposite coatings for preventing biofilm formation on contact lens cases
RU2379042C1 (ru) Биологически активный препарат
JPH04231062A (ja) 抗菌性医療用品
RU2426560C1 (ru) Состав для антисептической обработки тканых материалов
CN108559118A (zh) 一种抗菌型载银硅橡胶材料及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141216