RU2413958C2 - Радиолокационное устройство - Google Patents

Радиолокационное устройство Download PDF

Info

Publication number
RU2413958C2
RU2413958C2 RU2007131434/09A RU2007131434A RU2413958C2 RU 2413958 C2 RU2413958 C2 RU 2413958C2 RU 2007131434/09 A RU2007131434/09 A RU 2007131434/09A RU 2007131434 A RU2007131434 A RU 2007131434A RU 2413958 C2 RU2413958 C2 RU 2413958C2
Authority
RU
Russia
Prior art keywords
pulses
frequency
radar device
targets
pulse
Prior art date
Application number
RU2007131434/09A
Other languages
English (en)
Other versions
RU2007131434A (ru
Inventor
Барри УЭЙД (GB)
Барри УЭЙД
Original Assignee
Келвин Хьюз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Келвин Хьюз Лимитед filed Critical Келвин Хьюз Лимитед
Publication of RU2007131434A publication Critical patent/RU2007131434A/ru
Application granted granted Critical
Publication of RU2413958C2 publication Critical patent/RU2413958C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Судовое радиолокационное устройство предназначено для передачи групп импульсов энергии к целям и приеме групп импульсов энергии, отраженных от целей. Сущность изобретения заключается в том, что передает группы из трех импульсов А, В, С одинаковой амплитуды, но различной ширины, причем более короткий импульс позволяет выполнять обнаружение целей на малой дальности, а более длинные импульсы позволяют выполнять обнаружение целей на большей дальности. Импульсы кодируются различным образом, причем короткий импульс А представляет собой сигнал непрерывных колебаний, более длинные импульсы модулируются посредством частотной модуляции, причем один импульс С представляет собой частотно-модулированный импульс с увеличением частоты, а другой импульс В представляет собой частотно-модулированный импульс с уменьшением частоты, причем мощность радиолокационной станции составляет примерно 190 Вт. Достигаемый технический результат изобретения - возможность обнаружения целей на различных дальностях и снижение влияния помех. 2 н. и 21 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к радиолокационному устройству, предназначенному для передачи групп импульсов энергии к целям и приема групп импульсов энергии, отраженных от целей.
Судовая радиолокационная станция в основном применяет мощный магнетрон в качестве микроволнового источника для передаваемых импульсных сигналов. Чтобы уменьшить количество мешающих отражений на экране радиолокационной станции, вызванных отраженными сигналами от волн, дождя и т. п., устройство имеет пороговые схемы, настроенные так, чтобы исключать сигналы с малыми амплитудами. Это устройство работает удовлетворительно при наблюдении за большими судами, континентальными массивами и т. п., но снижает возможности отображения радиолокационной станцией сигналов от меньших объектов, представляющих интерес, таких как буи, прогулочные катера и быстроходные боевые катера.
Современные военные корабли часто проектируются так, чтобы их было труднее обнаруживать противником. Высокая мощность, вырабатываемая обычной радиолокационной станцией, однако, относительно легко может быть обнаружена другими кораблями, поэтому это является недостатком там, где кораблю необходимо оставаться ненаблюдаемым.
Хотя амплитуда передаваемой энергии радиолокационного излучения может быть уменьшена, это приводит к соответствующему уменьшению эффективной дальности устройства и обычно не всегда возможно. Амплитуда импульса может быть уменьшена, а его энергия сохранена посредством увеличения длительности импульса. Проблема с более длинными импульсами, однако, заключается в том, что невозможно обнаруживать цели на малой дальности, так как отраженный сигнал, создаваемый от близких целей, будет приниматься в течение передаваемого сигнала.
Задачей настоящего изобретения является создание альтернативного радиолокационного устройства.
Согласно одному аспекту настоящего изобретения создано радиолокационное устройство вышеопределенного типа, отличающееся тем, что каждая группа импульсов энергии включает в себя по меньшей мере два импульса различной длительности, причем более короткий импульс позволяет выполнять обнаружение целей на малой дальности, а более длинный импульс позволяет выполнять обнаружение целей на большей дальности, при этом импульсы различной длительности кодируются различным образом.
Предпочтительно, что каждая группа импульсов включает в себя три импульса, причем каждый из трех импульсов имеет различную ширину. Импульсы могут иметь ширину примерно 0,1 мкс, 5 мкс и 33 мкс соответственно. Импульсы в каждой группе предпочтительно имеют одинаковую амплитуду. Радиолокационное устройство предпочтительно выполнено с возможностью выполнения сжатия импульсов при приеме. Импульсы предпочтительно кодируются посредством частотного кодирования, такого как нелинейная частотная модуляция. Каждая группа импульсов может включать в себя три импульса, причем самый короткий представляет собой сигнал непрерывного колебания, и два других имеют частотно-модулированный импульс с изменением частоты, один представляет собой частотно-модулированный импульс с увеличением частоты, а другой представляет собой частотно-модулированный импульс с уменьшением частоты. Выходная мощность устройства может составлять примерно 190 Вт.
Согласно другому аспекту настоящего изобретения создан способ обнаружения целей, включающий в себя этапы передачи последовательности импульсов радиолокационной энергии по направлению к целям и приема радиолокационной энергии, отраженной от целей, отличающийся тем, что последовательности импульсов включают в себя, по меньшей мере, два импульса различной ширины, при этом более короткий импульс пригоден для использования при обнаружении целей на малой дальности, более длинный импульс пригоден для использования при обнаружении целей на большей дальности, причем два импульса кодируются различным образом.
Ниже описывается судовое радиолокационное устройство и его способ работы согласно настоящему изобретению в качестве примера с ссылкой на прилагаемые чертежи, на которых:
фиг.1 представляет собой блок-схему устройства;
фиг.2 иллюстрирует структуру передаваемой импульсной последовательности; и
фиг.3 представляет собой блок-схему обработки сигнала, выполняемой в устройстве.
Устройство включает в себя обычную радиолокационную антенну 1, такую как LPA-A1 компании Kelvin Hughes. Генератор 2 сигнала, такой как использующий устройство прямого цифрового синтеза, управляется блоком 3 задающего генератора и синхронизации для получения кадра или группы импульсов, которая одинакова независимо от скорости вращения антенны 1 или настройки дальности действия устройства. Кадр или группа импульсов повторяется непрерывно и содержит три интервала А, В и С повторения импульсов, как показано на фиг.2, но не в масштабе. Импульсы А, В и С имеют одинаковую амплитуду, но имеют различную ширину или длительность. Только в качестве примера импульс А может иметь длительность 0,1 мкс, импульс В может иметь длительность 5 мкс, и импульс С может иметь длительность 33 мкс. Промежуток между импульсами А и В и В и С зависит от дальности действия радиолокационной станции. Когда генератор 2 сигнала принимает запускающий сигнал от блока 3 генератора и синхронизации, он вырабатывает или узкий импульс стробируемого сигнала непрерывного колебания или импульс, содержащий частотно-модулированный импульс с шириной полосы качания частоты примерно 20 МГц. Самый короткий импульс А представляет собой простой стробированный сигнал непрерывного колебания; более длинные импульсы В и С содержат частотно-модулированный импульс, причем один импульс имеет частотную модуляцию с увеличением частоты, а другой имеет частотную модуляцию с уменьшением частоты. Таким образом, три различных импульса А, В и С кодируются различным образом, так что они могут различаться друг от друга при приеме, причем самый короткий импульс кодируется отсутствием какой-либо частотной модуляции. Частотно-модулированный (ЧМ) импульс, применяемый к двум более длинным импульсам, использует предпочтительно нелинейный закон изменения частоты. Можно видеть поэтому, что каждый из трех импульсов в одном кадре является уникальным как по длительности, так и по кодированию.
Импульсы, вырабатываемые генератором 2 сигналов, являются когерентными пачками импульсов малой мощности на промежуточной частоте 60 МГц. Они подаются на смеситель 4 с сигналами от второго генератора 5 для преобразования на радиочастоту в диапазоне от 2,9 до 3,1 ГГц, например на 3,05 ГГц. Маломощный радиочастотный (РЧ) выходной сигнал смесителя 4 подается на многокаскадный усилитель 6 мощности для получения выходного сигнала мощностью примерно 190 Вт. Выходной сигнал усилителя 6 подается на дуплексер 7 и после него подается через вращающееся сочленение 8 в антенну 1 для передачи.
В режиме приема усилитель 6 отключается для предотвращения утечки паразитных сигналов. Сигналы, принимаемые антенной 1, проходят через дуплексер 7 на малошумящий приемник 8. Во входном каскаде приемника 8 твердотельное устройство 9 защиты приемника защищает приемник от сигналов высокой энергии, которые могут поступить во время передачи или от внешних источников излучения. Линейный динамический диапазон всего приемника 8 составляет предпочтительно 65 дБ или более. Этот динамический диапазон увеличивается посредством блока 10 временной автоматической регулировки усиления (ВАРУ) непосредственно после приемника 8 и реализуется переключаемым аттенюатором под управлением блока 3 синхронизации. РЧ-сигналы от блока 10 ВАРУ проходят на второй смеситель 11, где они преобразуются по частоте на промежуточную частоту 60 МГц. Сигналы промежуточной частоты (ПЧ-сигналы) подаются через ограничитель и полосовой фильтр 12 на аналого-цифровой преобразователь 13, который одновременно оцифровывает и преобразует сигналы на ПЧ 20 МГц. Выходной сигнал аналого-цифрового преобразователя (АЦП) 13 подается на процессор 20 сигналов, как показано на фиг.3.
Понятно, что блоки, представленные на фиг.3, могут представлять или дискретные блоки или этапы программирования. Дискретизированный сигнал с АЦП 13 преобразуется в полосу частот модулирующих сигналов блоком 21 разделителя синфазного и квадратурного сигналов, который выполняет функцию, обычно связанную с аналоговым смешением и фильтрацией нижних частот. Так как сигнал теперь находится в полосе частот модулирующих сигналов, частота дискретизации понижается в блоке 21 с коэффициентом два до 40 мегавыборок/с. Блок 22 выполняет сжатие импульсов по выборкам, принимаемым соответственно средним и длинным импульсам В и С, и выполняет фильтрацию нижних частот по коротким импульсам А. Сжатие импульсов и фильтрация нижних частот предпочтительно выполняется в частотной области посредством выполнения преобразования Фурье для выборок, принимаемых в течение интервалов повторения импульсов, умножения преобразованного сигнала на хранимое, предварительно вычисленное множество весовых коэффициентов и затем выполнения обратного преобразования Фурье для произведения обратно во временную область. Частота дискретизации затем дополнительно понижается с коэффициентом два до 20 мегавыборок/с блоком 23 прореживания. С него сигнал подается на банк 24 фильтров доплеровских частот, содержащий банк полосовых фильтров, которые охватывают и делят однозначную скорость цели на N каналов, где N представляет собой количество когерентно интегрируемых импульсов. Банк 24 фильтров доплеровских частот создается посредством преобразования выборок сигнала, получаемых из элемента дальности в течение пачки импульсов, в частотную область, используя взвешенное преобразование Фурье. Выходной сигнал каждого банка фильтров затем пропускается через процесс 25 постоянной вероятности ложных тревог (ПВЛТ) перед подачей на пороговый блок 26, где сигналы сравниваются с порогом и идентифицируются в качестве обнаруженных целей для подачи на средство использования, такое как экран дисплея, обычным образом. Доплеровская информация дает возможность идентифицировать цели с различными скоростями и, следовательно, способствует различению информации о целях на фоне мешающих отражений от моря и дождя, которые будут идентифицироваться как неподвижные. Когерентная сущность системы дополнительно позволяет уменьшать шум.
Описанное выше устройство использует значительно меньшую мощность, чем было возможно ранее из-за ограничений по дальности, которые обычно вызываются. Мощность стандартной судовой радиолокационной станции обычно составляет примерно 30 кВт по сравнению с мощностью в настоящем изобретении, которая может быть примерно 190 Вт. Меньшая используемая мощность снижает риск обнаружения противником корабля, несущего радиолокационную станцию. Устройство согласно настоящему изобретению обеспечивает надежную работу при малой мощности и большой дальности посредством обеспечения импульсов энергии, которые имеют большую длительность, чем использовалось ранее, например, до примерно 22 мкс по сравнению со стандартной радиолокационной станцией, использующей относительно короткие импульсы примерно 50 нс. Чтобы решить проблему, заключающуюся в невозможности обнаружения на малой дальности импульсами с большей длительностью, настоящее устройство создает импульсы с более короткой длительностью в дополнение к импульсам с большей длительностью. Хотя система, использующая только два различных по длительности импульса (один - короткий и один - длинный), имеет некоторое преимущество, было обнаружено, что лучше использовать три различные длительности импульсов: короткую, среднюю и длинную, чтобы обеспечивать надежное обнаружение целей на средней дальности. Нет необходимости передавать импульсы в порядке увеличения длительности. Посредством кодирования импульсов можно сопоставлять отраженные сигналы по их кодированию и таким образом снижать влияние помех; это также позволяет уменьшать обнаружение эхо-сигналов, принимаемых от целей за пределами нормальной дальности.
Понятно, что относительная длительность импульсов может изменяться и что могут использоваться различные формы кодирования, такие как шумовое кодирование и коды Баркера.

Claims (23)

1. Судовое радиолокационное устройство, содержащее средство (24) для формирования доплеровской информации, дающей возможность идентифицировать цели с разными скоростями, причем устройство выполнено с возможностью передачи непрерывно повторяющихся групп импульсов энергии по направлению к целям и приема групп импульсов энергии, отраженных обратно от целей, причем каждая группа импульсов энергии включает в себя три импульса (А, В, С) различной ширины, причем между каждым из импульсов имеется промежуток, причем более короткий импульс (А) позволяет выполнять обнаружение целей на малой дальности, а более длинные импульсы (В, С) позволяют выполнять обнаружение целей на большей дальности, при этом импульсы с различной длительностью кодируются различным образом.
2. Радиолокационное устройство по п.1, выполненное с возможностью отображения сигналов от малых морских целей, включающих в себя буи, прогулочные катера и быстроходные боевые катера.
3. Радиолокационное устройство по п.1 или 2, в котором каждая группа импульсов имеет три импульса с шириной в диапазоне от 0,1 мкс до 33 мкс.
4. Радиолокационное устройство по п.1 или 2, в котором более короткий импульс (А) имеет ширину примерно 0,1 мкс.
5. Радиолокационное устройство по п.1 или 2, в котором самый длинный импульс (С) имеет ширину примерно 33 мкс.
6. Радиолокационное устройство по п.1 или 2, содержащее процессор сигналов, который формирует доплеровскую информацию.
7. Радиолокационное устройство по п.6, в котором процессор сигналов содержит банк фильтров доплеровских частот.
8. Радиолокационное устройство по п.7, в котором банк фильтров доплеровских частот содержит банк полосовых фильтров.
9. Радиолокационное устройство по пп.6 или 7, в котором процессор сигналов дополнительно содержит блок разделителя синфазного и квадратурного сигналов, блок сжатия импульсов и блок прореживания.
10. Радиолокационное устройство по п.1 или 2, в котором более длинные импульсы (В, С) кодируются посредством частотного кодирования.
11. Радиолокационное устройство по п.1 или 2, в котором более длинные импульсы (В, С) кодируются по частоте посредством нелинейной частотной модуляции.
12. Радиолокационное устройство по п.1 или 2, в котором самый короткий импульс (А) представляет собой сигнал непрерывных колебаний, а другие два импульса (В, С) имеют частотную модуляцию, причем один представляет собой частотно-модулированный импульс с увеличением частоты, и другой представляет собой частотно-модулированный импульс с уменьшением частоты.
13. Радиолокационное устройство по п.1 или 2, отличающееся тем, что устройство выполнено с возможностью выполнения сжатия более длинных импульсов (В, С) при приеме и выполнения фильтрации нижних частот более короткого импульса (А).
14. Радиолокационное устройство по п.1 или 2, в котором импульсы в каждой группе (А, В, С) имеют одинаковую амплитуду.
15. Радиолокационное устройство по п.1 для применения на судне, причем устройство имеет малую выходную мощность для уменьшения риска обнаружения судна, несущего радиолокационное устройство.
16. Радиолокационное устройство по п.1, имеющее выходную мощность примерно 190 Вт.
17. Способ обнаружения морских целей, включающий в себя этапы передачи непрерывно повторяющихся групп импульсов по направлению к целям и приема радиолокационной энергии, отраженной от целей, причем каждая группа импульсов включает в себя три импульса (А, В, С) различной ширины с промежутком между каждым из импульсов, причем более короткий импульс (А) позволяет выполнять обнаружение целей на малой дальности, и более длинные импульсы (В, С) позволяют выполнять обнаружение целей на большей дальности, причем упомянутые импульсы с различной длиной кодируются различным образом, причем способ содержит дополнительный этап обработки принятых сигналов и формирования доплеровской информации (24), дающей возможность идентифицировать цели с разными скоростями.
18. Способ по п.17 с возможностью приема радиолокационной энергии, отраженной от малых морских целей, включающих в себя буи, прогулочные катера и быстроходные боевые катера.
19. Способ по п.17 или 18, содержащий этап формирования и передачи группы импульсов, имеющей три импульса с шириной в диапазоне от 0,1 мкс до 33 мкс.
20. Способ по п.17, содержащий этап обработки принятых сигналов с помощью банка фильтров доплеровских частот.
21. Способ по п.17, в котором более длинные импульсы (В, С) кодируются посредством частотного кодирования.
22. Способ по п.17, в котором более длинные импульсы (В, С) кодируются по частоте посредством нелинейной частотной модуляции.
23. Способ по п.17, в котором самый короткий импульс (А) представляет собой сигнал непрерывных колебаний, а другие два импульса (В, С) имеют частотную модуляцию, причем один представляет собой частотно-модулированный импульс с увеличением частоты, и другой представляет собой частотно-модулированный импульс с уменьшением частоты.
RU2007131434/09A 2005-01-19 2006-01-12 Радиолокационное устройство RU2413958C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0501043.4 2005-01-19
GBGB0501043.4A GB0501043D0 (en) 2005-01-19 2005-01-19 Radar apparatus

Publications (2)

Publication Number Publication Date
RU2007131434A RU2007131434A (ru) 2009-02-27
RU2413958C2 true RU2413958C2 (ru) 2011-03-10

Family

ID=34639871

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007131434/09A RU2413958C2 (ru) 2005-01-19 2006-01-12 Радиолокационное устройство

Country Status (15)

Country Link
US (1) US7764223B2 (ru)
EP (1) EP1839071B1 (ru)
JP (1) JP2008527391A (ru)
KR (1) KR101249695B1 (ru)
CN (1) CN101107539B (ru)
AU (1) AU2006248845B2 (ru)
CA (1) CA2587622C (ru)
DK (1) DK1839071T3 (ru)
ES (1) ES2487490T3 (ru)
GB (1) GB0501043D0 (ru)
NO (1) NO342921B1 (ru)
PL (1) PL1839071T3 (ru)
RU (1) RU2413958C2 (ru)
SG (1) SG161298A1 (ru)
WO (1) WO2006123084A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549153C1 (ru) * 2011-05-23 2015-04-20 Ион Джиофизикал Корпорейшн Система мониторинга и защиты от морской угрозы
US10071791B2 (en) 2013-11-12 2018-09-11 Ion Geophysical Corporation Comparative ice drift and tow model analysis for target marine structure

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589666B2 (en) 2004-12-30 2009-09-15 Vaisala, Inc. System and method for processing data in weather radar
US7583222B2 (en) 2005-08-26 2009-09-01 Vaisala Oyj Method for using pulse compression in weather radar
EP1804077A1 (en) * 2005-12-23 2007-07-04 Vaisaila Inc. Frequency based hybrid pulse for detection of meteorological phenoma in radar systems
JP4928171B2 (ja) 2006-06-13 2012-05-09 古野電気株式会社 レーダ装置及びレーダ画像表示方法
US7773028B2 (en) 2006-12-06 2010-08-10 Raytheon Company Method and system for concatenation of radar pulses
DE102007010236B4 (de) 2007-03-02 2008-11-20 Toposys Topographische Systemdaten Gmbh Vorrichtung und Verfahren zur Entfernungsbestimmung mittels Lichtpulsen
US20080278371A1 (en) * 2007-05-11 2008-11-13 Honeywell International Inc. Methods and systems for reducing acquisition time in airborne weather radar
GB0717031D0 (en) 2007-08-31 2007-10-10 Raymarine Uk Ltd Digital radar or sonar apparatus
GB0817570D0 (en) * 2008-09-25 2008-11-05 Secr Defence Improved weather radar
GB2465755A (en) * 2008-11-26 2010-06-02 Qinetiq Ltd FMCW radar system employing a Direct Digital Synthesizer (DDS)
JP5398306B2 (ja) * 2009-03-04 2014-01-29 古野電気株式会社 レーダ装置
US7688257B1 (en) 2009-03-24 2010-03-30 Honeywell International Inc. Marine radar systems and methods
KR101019075B1 (ko) 2009-05-18 2011-03-07 (주)밀리시스 비선형 주파수 변조 파형을 이용한 레이더 신호처리 장치 및 그 방법
KR100940577B1 (ko) * 2009-06-12 2010-02-04 이엠와이즈 통신(주) 진폭변조 레이더 및 그 거리 측정 방법
KR101473870B1 (ko) * 2009-06-19 2014-12-18 삼성전자 주식회사 청소장치
CN103948353B (zh) * 2009-06-19 2016-07-06 三星电子株式会社 用于机器人清洁器的对接站和向机器人清洁器发射对接导向信号的方法
JP5697877B2 (ja) * 2010-02-01 2015-04-08 古野電気株式会社 送信装置、送信方法、物標探知装置、および物標探知方法
US8305262B1 (en) * 2010-03-08 2012-11-06 Lockheed Martin Corporation Mismatched pulse compression of nonlinear FM signal
CN101873286A (zh) * 2010-05-07 2010-10-27 周运伟 一种兼容FM和FM/Chirp调制的半双工调制解调器
KR101419733B1 (ko) * 2010-06-21 2014-07-15 주식회사 만도 레이더 및 그의 신호처리방법
JP2012108075A (ja) * 2010-11-19 2012-06-07 Furuno Electric Co Ltd レーダ装置及び物標検出方法
US8427359B1 (en) * 2011-01-06 2013-04-23 Sandia Corporation Tracking moving radar targets with parallel, velocity-tuned filters
DE102012102185A1 (de) * 2011-03-16 2012-09-27 Electronics And Telecommunications Research Institute Radarvorrichtung, die den kurz- und langreichweitigen Radarbetrieb unterstützt
CN102739588B (zh) * 2011-04-02 2015-04-22 周运伟 一种基于FM/Chirp调制的应急通播系统
WO2014042134A1 (ja) * 2012-09-13 2014-03-20 古野電気株式会社 レーダ装置
US10120069B2 (en) * 2014-08-19 2018-11-06 Navico Holding As Multiple ranges for pulse compression radar
US9739873B2 (en) 2014-08-19 2017-08-22 Navico Holding As Range sidelobe suppression
US10222454B2 (en) * 2014-08-19 2019-03-05 Navico Holding As Combining Reflected Signals
US9921295B2 (en) * 2014-12-30 2018-03-20 Texas Instruments Incorporated Multiple chirp generation in a radar system
US10001548B2 (en) 2015-01-23 2018-06-19 Navico Holding As Amplitude envelope correction
JP6438321B2 (ja) * 2015-02-23 2018-12-12 古野電気株式会社 レーダ装置
US9810772B2 (en) 2015-02-27 2017-11-07 Navico Holding As Radar signal generator
KR102189108B1 (ko) * 2015-06-18 2020-12-09 사브 에이비 펄스 레이더 시스템 및 펄스 레이더 시스템의 작동 방법
US9952312B2 (en) 2015-07-06 2018-04-24 Navico Holding As Radar interference mitigation
JP6671968B2 (ja) * 2016-01-13 2020-03-25 株式会社東芝 信号処理装置、レーダ受信機、信号処理方法及びプログラム
WO2018024343A1 (en) * 2016-08-05 2018-02-08 Wärtsilä SAM Electronics GmbH Adaptive pulse train layout
US10620298B2 (en) * 2016-08-26 2020-04-14 Infineon Technologies Ag Receive chain configuration for concurrent multi-mode radar operation
CN106772266B (zh) * 2016-12-14 2019-05-31 中国电子科技集团公司第二十研究所 应用于船舶导航雷达的双体制发射机
CN116545488A (zh) * 2017-03-28 2023-08-04 高通股份有限公司 基于距离的传输参数调节
US10305611B1 (en) 2018-03-28 2019-05-28 Qualcomm Incorporated Proximity detection using a hybrid transceiver
US10935631B2 (en) 2018-04-24 2021-03-02 Navico Holding As Radar transceiver with a switched local oscillator
CN109557510A (zh) * 2018-11-30 2019-04-02 安徽四创电子股份有限公司 一种线性调频连续波雷达信号处理器
EP4067936A4 (en) * 2019-11-21 2023-11-29 Furuno Electric Co., Ltd. SOLID STATE RADAR DEVICE
US11650318B2 (en) 2020-04-06 2023-05-16 Gm Cruise Holdings Llc Characterizing linearity of an optical frequency chirp output by an FMCW laser
JP7567221B2 (ja) * 2020-06-12 2024-10-16 株式会社アイシン 物体検出装置
CN113258907B (zh) * 2021-03-31 2023-12-12 西安空间无线电技术研究所 基于脉冲压缩技术获取超高重频高功率微波的装置及方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL264776A (ru) * 1960-05-18
US3344426A (en) * 1965-12-01 1967-09-26 Raytheon Co Radar system
CA1118874A (en) * 1976-08-13 1982-02-23 Merle W. Faxon Radar system with stable power output
NL183210C (nl) * 1976-11-12 1988-08-16 Hollandse Signaalapparaten Bv Met twee soorten pulsen werkzaam radarsysteem.
DE3016569A1 (de) * 1980-04-30 1981-11-05 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von alkylarylketoximethern
GB2088667B (en) * 1980-09-27 1985-02-20 Marconi Co Ltd A radar system emloying pulses of different types
US4724441A (en) * 1986-05-23 1988-02-09 Ball Corporation Transmit/receive module for phased array antenna system
US4983979A (en) 1989-03-28 1991-01-08 Canadian Marconi Company Radar detection of targets at short and long range
US5140332A (en) * 1989-07-13 1992-08-18 Westinghouse Electric Corp. Short pulse radar system with a long pulse transmitter
JPH0527690U (ja) * 1991-09-24 1993-04-09 三菱電機株式会社 測距装置
JPH0682550A (ja) 1992-09-02 1994-03-22 Mitsubishi Heavy Ind Ltd レーダ受信機
DE4420432C2 (de) * 1994-06-10 1996-05-15 Siemens Ag Anordnung zur ortsselektiven Geschwindigkeitsmessung nach dem Doppler-Prinzip
US5442359A (en) * 1994-06-30 1995-08-15 Unisys Corporation Apparatus and method for mitigating range-doppler ambiguities in pulse-doppler radars
US5552793A (en) * 1994-12-02 1996-09-03 Hughes Missile Systems Company Self calibrated act pulse compression system
US5940346A (en) * 1996-12-13 1999-08-17 Arizona Board Of Regents Modular robotic platform with acoustic navigation system
US6117660A (en) * 1997-06-10 2000-09-12 Cytopulse Sciences, Inc. Method and apparatus for treating materials with electrical fields having varying orientations
JP2002006031A (ja) * 2000-06-16 2002-01-09 Japan Radio Co Ltd パルス圧縮式レーダ装置
GB0019825D0 (en) * 2000-08-12 2000-09-27 Secr Defence Signal processing
JP2002139565A (ja) * 2000-11-02 2002-05-17 Toshiba Corp レーダ装置
DE10213987A1 (de) * 2002-03-27 2003-10-16 Bosch Gmbh Robert Einrichtung für insbesondere bistatische Anwendungen
JP4093109B2 (ja) * 2003-05-15 2008-06-04 株式会社デンソー 車両用レーダ装置
US6989782B2 (en) * 2003-05-22 2006-01-24 General Atomics Ultra-wideband radar system using sub-band coded pulses
JP4283170B2 (ja) * 2003-12-17 2009-06-24 株式会社デンソー 物体検出装置
US7333051B2 (en) * 2004-11-19 2008-02-19 Lockheed Martin Corporation Methods and devices for determining the linearity of signals
TWI295756B (en) * 2004-12-14 2008-04-11 Int Rectifier Corp Boost type power supply circuit for providing a dc output voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2549153C1 (ru) * 2011-05-23 2015-04-20 Ион Джиофизикал Корпорейшн Система мониторинга и защиты от морской угрозы
US10032381B2 (en) 2011-05-23 2018-07-24 Ion Geophysical Corporation Marine threat monitoring and defense system
US10071791B2 (en) 2013-11-12 2018-09-11 Ion Geophysical Corporation Comparative ice drift and tow model analysis for target marine structure

Also Published As

Publication number Publication date
CA2587622A1 (en) 2006-11-23
RU2007131434A (ru) 2009-02-27
AU2006248845A1 (en) 2006-11-23
US7764223B2 (en) 2010-07-27
NO342921B1 (no) 2018-09-03
CN101107539B (zh) 2010-04-21
ES2487490T3 (es) 2014-08-21
US20080018526A1 (en) 2008-01-24
KR20070089789A (ko) 2007-09-03
DK1839071T3 (da) 2014-08-11
SG161298A1 (en) 2010-05-27
PL1839071T3 (pl) 2014-10-31
EP1839071A1 (en) 2007-10-03
GB0501043D0 (en) 2005-06-01
WO2006123084A1 (en) 2006-11-23
CN101107539A (zh) 2008-01-16
EP1839071B1 (en) 2014-05-07
CA2587622C (en) 2013-10-22
JP2008527391A (ja) 2008-07-24
NO20074226L (no) 2007-08-29
KR101249695B1 (ko) 2013-04-05
AU2006248845B2 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
RU2413958C2 (ru) Радиолокационное устройство
US4219812A (en) Range-gated pulse doppler radar system
US9075138B2 (en) Efficient pulse Doppler radar with no blind ranges, range ambiguities, blind speeds, or Doppler ambiguities
US5784026A (en) Radar detection of accelerating airborne targets
US5898401A (en) Continuous wave radar altimeter
CN104991247B (zh) 一种低截获测速方法及雷达装置
CN113093123B (zh) 一种对抗脉冲多普勒雷达的干扰机及其干扰方法
EP0292556B1 (en) Frequency domain, pulse compression radar apparatus for eliminating clutter
JP2010538251A (ja) デジタルレーダーまたはソナー装置
US6184820B1 (en) Coherent pulse radar system
US5140332A (en) Short pulse radar system with a long pulse transmitter
US20120280854A1 (en) Signal processing system and method
US6683561B1 (en) Radar systems
US3918055A (en) Clutter signal suppression radar
WO2005109032A1 (en) Methods and apparatus for randomly modulating radar altimeters
EP0418205A2 (en) Radar arrangement
US4222049A (en) Circuit arrangement for eliminating fixed echoes in a pulse
US4003053A (en) Target adaptive radar system
O'Donnell Radar Systems Engineering Lecture 11 Waveforms and Pulse Compression
US6433730B1 (en) Noise riding threshold control with immunity to signals with high pulse repetition frequencies and high duty cycles
JPH01207682A (ja) レーダ装置
JPH06123772A (ja) 符号化パルスドップラレーダ方式
KR102310244B1 (ko) 근거리 클러터 신호를 제거하는 fmcw 레이더 시스템
JP2596360B2 (ja) ソーナー装置
RU2124221C1 (ru) Радиолокационная станция