RU2406234C2 - Способ и устройство для реализации пространственно-временной обработки с неравными схемами модуляции и кодирования - Google Patents

Способ и устройство для реализации пространственно-временной обработки с неравными схемами модуляции и кодирования Download PDF

Info

Publication number
RU2406234C2
RU2406234C2 RU2008132817/09A RU2008132817A RU2406234C2 RU 2406234 C2 RU2406234 C2 RU 2406234C2 RU 2008132817/09 A RU2008132817/09 A RU 2008132817/09A RU 2008132817 A RU2008132817 A RU 2008132817A RU 2406234 C2 RU2406234 C2 RU 2406234C2
Authority
RU
Russia
Prior art keywords
spatial
streams
coding
stream
data
Prior art date
Application number
RU2008132817/09A
Other languages
English (en)
Other versions
RU2008132817A (ru
Inventor
Роберт Л. ОЛЕСЕН (US)
Роберт Л. ОЛЕСЕН
Элдад М. ЗЕЙРА (US)
Элдад М. ЗЕЙРА
Питер Дж. ФОЛЬТЦ (US)
Питер Дж. ФОЛЬТЦ
Юнвэнь ЯН (US)
Юнвэнь ЯН
Циньюань ДАЙ (US)
Циньюань ДАЙ
Чанг-Соо КОО (US)
Чанг-Соо КОО
И-Тай ЛУ (US)
И-Тай ЛУ
КуньЦзюнь ЦАЙ (US)
КуньЦзюнь ЦАЙ
Original Assignee
Интердиджитал Текнолоджи Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Интердиджитал Текнолоджи Корпорейшн filed Critical Интердиджитал Текнолоджи Корпорейшн
Publication of RU2008132817A publication Critical patent/RU2008132817A/ru
Application granted granted Critical
Publication of RU2406234C2 publication Critical patent/RU2406234C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к системам беспроводной связи, в частности к способам и устройствам для реализации пространственной обработки со схемами модуляции и кодирования (MCS) или зависимыми от потока схемами MCS. Входные данные могут быть разобраны во множество потоков данных, и выполняется пространственная обработка потоков данных, чтобы сформировать множество пространственных потоков, а MCS для каждого потока данных выбирается независимым образом. Пространственные потоки передаются посредством множества передающих антенн. При обработке пространственных потоков/потоков данных используют одно из пространственно-частотного блочного кодирования (SFBC), пространственно-временного блочного кодирования (STBC), разнесения циклической задержки (SDD), квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с обращением времени. К пространственным потокам может быть применена матрица сопоставления антенн. Пространственные потоки передаются посредством множества передающих антенн. MCS для каждого потока данных может быть определена на основании отношения сигнал-шум каждого пространственного потока, связанного с этим потоком данных. Технический результат - обеспечить преимущества коэффициента усиления при разнесенном приеме для пространственного потока. 4 н. и 14 з.п ф-лы, 5 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к системам беспроводной связи. В частности, настоящее изобретение относится к способу и устройству для реализации пространственной обработки с неравными Схемами Модуляции и Кодирования (Modulation and Coding Schemes, сокращенно MCS).
Уровень техники
Объединенная группа IEEE 802.11n в настоящее время предлагает использование гибридной схемы Пространственно-Временного Блочного Кодирования (Space-Time Block Code, STBC) и Мультиплексирования с Пространственным Разделением (Spatial Division Multiplexing, SDM) для следующего поколения высокопроизводительных беспроводных сетей. Применение этой гибридной схемы STBC/SDM приводит к несбалансированному качеству обслуживания для потоков данных, что, в свою очередь, приводит к низкому остаточному значению Отношения Сигнала к Шуму (Signal-to-Noise Ratio, SNR) на выходе приемника. В обычных системах ко всем пространственным потокам применяются равные схемы модуляции и кодирования. Однако это приводит к потере преимуществ коэффициента усиления при разнесенном приеме для пространственного потока, обеспечиваемого предварительным кодированием STBC.
Следовательно, желательно предоставить способ и устройство для применения неравных схем MCS или зависимых от потока схем MCS, между тем выполняя пространственную обработку, такую как STBC.
Раскрытие изобретения
Настоящее изобретение относится к способу и устройству для реализации пространственной обработки с неравными схемами MCS или зависимыми от потока схемами MCS. Входные данные могут быть преобразованы во множество потоков данных, и выполняется пространственная обработка потоков данных, чтобы сформировать множество пространственных потоков. Схема MCS для каждого потока данных выбирается независимым образом. Пространственные потоки передаются посредством множества передающих антенн. При обработке пространственных потоков/потоков данных может быть применен, по меньшей мере, один из следующих способов: STBC, Пространственно-Частотное Блочное Кодирование (Space Frequency Block Coding, SFBC), квазиортогональное кодирование Аламути, Пространственно-Временное Блочное Кодирование с Обращением Времени (Time Reversed Space Time Block Coding), Линейная Пространственная Обработка (Linear Spatial Processing) и Разнесение Циклической Задержки (Cyclic Delay Diversity, CDD). К пространственным потокам может быть применена матрица сопоставления антенн. Получающиеся в результате пространственные потоки передаются посредством множества передающих антенн. Схема MCS для каждого потока данных может быть определена на основании SNR каждого пространственного потока, связанного с этим потоком данных.
Краткое описание чертежей
Изобретение станет понятным из следующего описания предпочтительного варианта осуществления, приведенного в качестве примера и рассматриваемого вместе с сопутствующими чертежами, на которых:
фиг.1 - структурная схема передатчика, сконфигурированного согласно настоящему изобретению;
фиг.2 - структурная схема приемника, сконфигурированного согласно настоящему изобретению;
фиг.3 - структурная схема примера блока пространственной обработки, сконфигурированного так, чтобы выполнять STBC и/или линейное пространственное сопоставление; и
фиг.4 и 5 - иллюстрации результатов имитации для каналов E и B согласно стандарту IEEE 802.11n в случае использования конфигурации антенн 3x2 и приемника с функцией Линейной Минимальной Среднеквадратичной Ошибки (Linear Minimum Mean Square Error, LMMSE).
Осуществление изобретения
Согласно настоящему изобретению неравные схемы MCS или зависимые от потока схемы MCS применяются к различным пространственным потокам. Настоящее изобретение может быть применено к системе с Множеством Входов и Множеством Выходов (Multiple-Input Multiple-Output, MIMO), в которой используется Мультиплексирование с Ортогональным Разделением Частот (Orthogonal Frequency Division Multiplexing, OFDM), системе Множественного Доступа с Кодовым Разделением и Множеством Несущих (Multi-Carrier Code Division Multiple Access, MC-CDMA), системе CDMA и т.п. Неравные схемы MCS применяются к различным потокам данных, чтобы использовать преимущества неравных SNR для различных потоков данных. Например, схема MCS высшего порядка может применяться к пространственному потоку с кодированием разнесения, а схема MCS низшего порядка может применяться к пространственному потоку без кодирования разнесения, чтобы уменьшить общее количество самовозбужденных помех. При использовании неравных схем MCS или зависимых от потока схем MCS, благодаря уменьшению самовозбужденных помех может применяться более простой алгоритм приемника (например, алгоритм линейной минимальной среднеквадратичной ошибки, сокращенно LMMSE).
Фиг.1 представляет собой структурную схему передатчика 100, сконфигурированного согласно настоящему изобретению. Передатчик 100 включает в себя кодировщик 102 канала, блок 104 согласования скорости, пространственный анализатор 106, множество перемежителей 108a-108nss, множество блоков 110a-110nss сопоставления, множество мультиплексоров 116a-116nss, блок 120 пространственной обработки, множество блоков 122a-122ntx Обратного Быстрого Преобразования Фурье (Inverse Fast Fourier Transform, IFFT), множество блоков 124a-124ntx вставки Циклического Префикса (Cyclic Prefix, CP) и множество передающих антенн 126a-126ntx. Следует отметить, что показанная на фиг.1 конфигурация предоставлена в качестве примера, а не ограничения, и выполняемая компонентами обработка может быть выполнена меньшим или большим количеством компонентов, и порядок обработки может быть изменен.
Кодировщик 102 канала кодирует входные данные 101. Применяется адаптивная модуляция и кодирование, и может использоваться любая скорость кодирования и любая схема кодирования. Например, скорость кодирования может быть равна 1/2, 1/3, 1/5, 3/4 и т.п. В качестве схемы кодирования может использоваться Турбо-кодирование, сверточное кодирование, блочное кодирование, кодирование с Контролем Четности Низкой Плотности (Low Density Parity Check, LDPC) и т.п. Кодированные данные 103 прореживаются посредством блока 104 согласования скорости.
После блока 105 согласования скорости кодированные данные преобразуются во множество (NSS) пространственных потоков 107a-107nss посредством пространственного анализатора 106. Биты данных в каждом потоке 107a-107nss данных предпочтительно перемежаются посредством перемежителя 108a-108nss. После перемежения 109a-109nss биты данных сопоставляются символам 111a-111nss посредством блоков 110a-110nss сопоставления созвездия согласно выбранной схеме модуляции. В качестве схемы модуляции может использоваться Квадратурная Фазовая Манипуляция (Quadrature phase shift keying, QPSK), 8-ми позиционная Фазовая Манипуляция (8PSK), 16-ти позиционная Квадратурная Амплитудная Модуляция (Quadrature Amplitude Modulation, QAM), 64 QAM и т.п. Управляющие данные 112a-112nss и/или пилот-сигналы 114a-114nss мультиплексируются с символами 111a-111nss посредством мультиплексора 116a-116nss. Символы 117a-117nss (включая мультиплексированные управляющие данные 112a-112nss и/или пилот-сигналы 114a-114nss) обрабатываются посредством блока 120 пространственной обработки.
Альтернативно входные данные 101 могут быть разделены до кодирования канала, и разделенные входные данные могут кодироваться двумя или более отдельными кодировщиками. Альтернативно вместо или в дополнение к преобразованию одного потока данных во множество потоков данных, несколько потоков входных данных, которые принадлежат одному или более пользователям, могут быть обработаны так, чтобы передать их посредством нескольких пространственных потоков.
Блок 120 пространственной обработки селективно выполняет пространственную обработку символов 117a-117nss на основании информации 118 состояния канала и выводит NTX потоков 121a-121ntx данных. Пространственная обработка может представлять собой Пространственно-Временное Кодирование (Space Time Coding, STC), пространственное мультиплексирование (Spatial Multiplexing, SM), линейное пространственное сопоставление или формирование луча передачи. Для STC может использоваться любая форма STC, включая STBC, SFBC, квазиортогональное кодирование Аламути для четырех (4) передающих антенн, TR-STBC, CDD и т.п.
В качестве информации 118 состояния канала может использоваться, по меньшей мере, одно из следующих информационных элементов: матрица V для каждой поднесущей, SNR, ранг матрицы канала, номер состояния канала, разнесение задержки или краткосрочная и/или долгосрочная статистика канала. Матрица V представляет собой унитарную матрицу, которая получается путем выполнения операции расположения по сингулярным числам матрицы канала. Номер состояния канала связан с рангом матрицы канала. Канал с плохим состоянием может иметь дефицит ранга. Канал с низким рангом или канал с плохим состоянием может обеспечивать лучшую устойчивость при использовании схемы разнесения, такой как STBC, поскольку у канала не будет достаточной степени свободы для поддержки пространственного мультиплексирования с формированием луча передачи. Канал с высоким рангом будет поддерживать более высокие скорости передачи путем использования пространственного мультиплексирования с формированием луча передачи. Информация 118 состояния канала может быть получена, используя традиционные технологии, такие как Обратная Связь Прямого Канала (Direct Channel Feedback, DCFB).
Потоки 121a-121ntx данных из блока 120 пространственной обработки обрабатываются блоками 122a-122ntx IFFT, которые выводят данные 123a-123ntx временной области. Циклический префикс добавляется к каждому блоку данных 123a-123ntx временной области посредством блока 124a-124ntx вставки циклического префикса. Далее данные 125a-125ntx временной области с циклическим префиксом передаются посредством множества передающих антенн 126a-126ntx.
Фиг.2 представляет собой структурную схему приемника 200, сконфигурированного согласно настоящему изобретению. Приемник 200 содержит множество приемных антенн 202a-202nrx, оценщик 204 канала, оценщик 206 шума, вычислитель 208 матрицы корреляции канала, вычислитель 210 постоянной нормы SNR, множество блоков 212a-212nrx обработки OFDM, пространственный декодер 214, множество блоков 216a-216nss обратного сопоставления созвездия, множество блоков 218a-218nss нормализации SNR, множество 220a-220nss обращенных перемежителей, пространственный деанализатор 222 и декодер 224. Следует отметить, что показанная на фиг.2 конфигурация предоставлена в качестве примера, а не ограничения, и выполняемая компонентами обработка может быть выполнена меньшим или большим количеством компонентов, и порядок обработки может быть изменен.
Множество принятых потоков 203a-203nrx данных вводится в оценщик 204 канала, оценщик 206 шума и блоки 212a-212nrx обработки OFDM. Оценщик 204 канала выполняет оценку канала, чтобы сформировать матрицу 205 канала, используя обычный способ. Оценщик 206 шума вычисляет изменение 207 шума. Вычислитель 208 матрицы корреляции канала генерирует на основании матрицы 205 канала матрицу корреляции 209, которая описана более подробно ниже. Вычислитель 210 постоянной нормы SNR вычисляет постоянные 211a-211nss нормы SNR на основании матрицы 209 корреляции и изменения 207 шума, что более подробно описано ниже.
Каждый блок 212a-212nrx обработки OFDM удаляет циклический префикс из каждого принятого потока 203a-203nrx данных и выполняет Быстрое Преобразование Фурье (Fast Fourier Transform, FFT), чтобы вывести данные 213a-213nrx частотной области. Выводы 213a-213nrx из блоков 212a-212nrx обработки OFDM обрабатываются посредством пространственного декодера 214. Пространственный декодер 214 может представлять собой декодер Минимальной Среднеквадратичной Ошибки (Minimum Mean Square Error, MMSE), декодер Последовательного Подавления Помех с MMSE (MMSE-successive interference cancellation, SIC) или декодер Максимального Правдоподобия (Maximum Likelihood, ML).
После пространственного декодирования декодированные данные 215a-215nss обрабатываются посредством блоков 216a-216nss обратного сопоставления созвездия, чтобы сформировать битовые потоки 217a-217nss. Битовые потоки 2l7a-217nss нормализуются посредством блоков 218a-218nss нормализации SNR на основании постоянных 211a-211nss норм SNR. Далее нормализованные битовые потоки 219a-219nss обрабатываются обращенными перемежителями 220a-220nss. Биты 221a-221nss, к которым было применено обратное перемежение, объединяются в один битовой поток 223 посредством пространственного деанализатора 222. Далее битовый поток 223 обрабатывается декодером 224, чтобы восстановить входные данные 225.
Ниже описана выполняемая в передатчике 100 и приемнике 200 пространственная обработка, где в качестве примера применяется STBC. В следующем описании используются следующие обозначения:
N TX - количество передающих антенн;
N SS - количество пространственных потоков;
N STS - количество потоков после STBC;
d k,n - вектор данных в символьное время n;
s k,n - вектор после STBC в символьное время n;
x k,n - вектор после матрицы P с фиг.3 в символьное время n; и
y k,n - принятый вектор в символьное время n.
Фиг.3 представляет собой структурную схему примера блока 120 пространственной обработки, сконфигурированного так, чтобы выполнять STBC и/или линейное пространственное сопоставление. Блок 120 пространственной обработки может включать в себя блок 302 STBC, блок 304 CDD и блок 306 сопоставления антенн. Каждый из символов 117a-117nss представляет собой поток комплексных чисел. Комплексный символ, передаваемый в пространственном потоке i поднесущей k OFDM-символа n, обозначается как d k,i,n. Блок 302 STBC обрабатывает два последовательных OFDM-символа в каждой поднесущей. Выходные символы из блока 302 STBC в выходном пространственно-временном потоке i STS на поднесущей k по OFDM-символам 2m и 2m+1 выражаются следующим образом:
Figure 00000001
где
Figure 00000002
и
Figure 00000003
определяются согласно Таблице.
Таблица
NSTS NSS i STS
Figure 00000004
Figure 00000005
2 1 1 d k,1,2m d k,1,2m+1
2 -d *k,1,2m+1 d *k,1,2m
3 2 1 d k,1,2m d k,1,2m+1
2 -d *k,1,2m+1 d *k,1,2m
3 d k,2,2m d k,2,2m+1
4 2 1 d k,1,2m d k,1,2m+1
2 -d *k,1,2m+1 d *k,1,2m
3 d k,2,2m d k,2,2m+1
4 -d *k,2,2m+1 d *k,2,2m
3 1 d k,1,2m d k,1,2m+1
2 -d *k,1,2m+1 d *k,1,2m
3 d k,2,2m d k,2,2m+1
4 d k,3,2m d k,3,2m+1
Линейная пространственная обработка может быть выполнена посредством блока 304 CDD и блока 306 сопоставления антенн по каждому выходному символу из блока 302 STBC. Если STBC не выполняется, то s k,i,n=d k,i,n и N STS =N SS. Линейная пространственная обработка определяется как последовательность вращений вектора символов, который не должен быть передан по данной поднесущей. Обработка, выполняемая блоком 304 CDD и блоком 306 сопоставления антенн, выражается следующим образом:
Figure 00000006
где
Figure 00000007
представляет собой N STS-вектор символов модуляции, которые должны быть переданы на поднесущей k OFDM-символа n. CCDD(k) представляет собой диагональную матрицу циклической задержки с размерностью N SS ×N SS, которая представляет циклическую задержку в частотной области. Диагональные значения определяются по формуле [CCDD(k)]i,i=exp(-j2πkΔF T iCS). [Pmap(k)]
Figure 00000008
представляет собой матрицу с размерностью N Tx ×N STS, которая содержит первые N STS столбцов унитарной матрицы Pmap(k) сопоставления антенн с размерностью N TX ×N TX. Данная матрица может быть единичной матрицей для работы с прямым сопоставлением, матрицей сопоставления для работы при пространственном разнесении, либо управляющей матрицей, которая специфична для канала, например набор собственных векторов матрицы, x k,n представляет собой N TX-вектор передаваемых символов в поднесущей k OFDM-символа n.
Матрица H eƒƒ канала представляет собой эффективный канал, видимый для вектора sk,n. Соответственно
Figure 00000009
В приемнике y k,2m и y *k,2m+1 комбинируются друг с другом в единый вектор согласно следующему выражению:
Figure 00000010
Используя Уравнения (3) и (4),
Figure 00000011
Любое значение данных в векторах s k,2m и s *k,2m+1, которое присутствует в любом из них, будет либо сопряжено в обоих векторах, либо несопряжено в обоих векторах. Это позволяет выразить Уравнение (5) в простой матричной форме, как проиллюстрировано в следующем конкретном примере.
Рассмотрим случай, когда N tx=3 и N ss=2, (то есть два пространственных потока генерируются из входных данных посредством пространственного анализатора 106 и три потока данных генерируются из блока 120 пространственной обработки в передатчике 100). Как показано ниже, один из трех потоков данных создается из модифицированной копии одного потока данных пространственного анализатора 106 для разнесения передачи.
Для случая, когда N tx=3 и N ss=2 из Таблицы можно определить следующее:
s k,1,2m=d k,1,2m;
s k,2,2m=-d *k,1,2m+1; и
s k,3,2m=d k,2,2m.
Соответственно
Figure 00000012
Кроме того,
s k,1,2m+1=d k,1,2m;
s k,2,2m+1=d *k,1,2m; и
s k,3,2m+1=d k,2,2m+1;
соответственно
Figure 00000013
и
Figure 00000014
Используя Уравнения (6) и (8), Уравнение (5) может быть выражено как стандартное матричное уравнение, в котором присутствуют четыре значения данных d k,1,2m, d *k,1,2m+1, d k,2,2m, d *k,2,2m+1 (звездочка обозначает сопряжение, отличное от Эрмитова сопряжения)
Figure 00000015
Это уже стандартная форма MIMO, однако с матрицей канала, которая представляет собой сочетание различных столбцов H eƒƒ. Приемник 200 демодулирует вектор d данных
Figure 00000016
Для вектора данных в Уравнении (10) может использоваться демодулятор MMSE. Примем следующее обозначение матрицы канала для Уравнения (9):
Figure 00000017
Решение MMSE выражается следующим образом (отбрасывая индекс k и используя символ "+" для Эрмитова сопряжения)
Figure 00000018
либо эквивалентно
Figure 00000019
Уравнение (9) можно выразить следующим образом:
Figure 00000020
Подставляя Уравнение (14) в Уравнение (12) получаем
Figure 00000021
Используя Уравнение (11), матрицу
Figure 00000022
корреляции можно выразить следующим образом:
Figure 00000023
Эффективное SNR для k-го потока данных в Уравнении (9) после обработки приемником MMSE выражается как
Figure 00000024
где
Figure 00000025
Для высоких значений SNR Уравнение (17) можно выразить следующим образом:
Figure 00000026
Матрица
Figure 00000022
имеет форму
Figure 00000027
Определения параметров в Уравнении (19) с легкостью можно найти из выражения для
Figure 00000022
. Используя общую формулу для обращенной матрицы
Figure 00000028
можно показать, что диагональные элементы
Figure 00000029
выражаются следующим образом:
Figure 00000030
Используя Уравнение (18), отношения SNR для каждого потока данных получаются следующим образом:
Figure 00000031
Для любой из вышеупомянутых реализаций канала первые два компонента d (компоненты, к которым применяется код STBC) имеют одинаковое SNR и другие два компонента также имеют одинаковое SNR. Второе отношение, как правило, меньше первого. Соотношение отношений SNR для кодированных и некодированных компонентов d выражается следующим образом:
Предполагая, что три столбца H eƒƒ имеют одинаковые свойства, для STBC-кодированных символов отношение SNR будет в среднем выше на 3 дБ.
При реализации STBC пара последующих символов может быть передана на одной частоте или на разных частотах. Для оценки рассматривается простейший случай, когда N tx=2 и N sa=1, и предполагается, что в приемнике присутствует только одна приемная антенна. Эффективная матрица канала представляется как матрица с размерностью 1x2 в следующей форме:
Figure 00000033
и вектор данных выражается как
Figure 00000034
Когда для последовательных символов используется одинаковая частота, H eƒƒ одинакова для обоих символов, и Уравнение (5) выражается следующим образом:
Figure 00000035
Если используется приемник с обращением в ноль незначащих элементов, то сначала умножают y k на Эрмитово сопряжение матрицы канала
Figure 00000036
чтобы получить
Figure 00000037
В сигнальной части диагональные элементы |h 1|2+|h 2|2 матрицы представляют разнесение 2-го порядка, которое достигается посредством кода STBC.
Когда для последующих символов используются разные частоты, эффективные каналы для этих двух символов выражаются следующим образом:
H eƒƒ=[h 1 h 2] для первого символа; и
H eƒƒ=[g 1 g 2] для второго символа.
В этом случае модифицированное Уравнение (5) приобретает следующий вид:
Figure 00000038
и можно получить
Figure 00000039
и
Figure 00000040
В сигнальной части диагональные элементы |h 1|2+|g 2|2 матрицы представляют разнесение 2-го порядка, которое достигается посредством кода STBC. В этом случае диагональные элементы также представляют разнесение 2-го порядка. Однако недиагональные элементы приводят к помехам (то есть неортогональности).
Для случая 2×1 из Таблицы, Уравнение (5) выражается следующим образом:
Figure 00000041
где:
Figure 00000042
и
Figure 00000043
MMSE-оценщик вектора d в этом случае выражается следующим образом:
Figure 00000044
Уравнение (40) приобретает следующий вид:
Figure 00000045
или
Figure 00000046
Альтернативно MMSE-оценки d 2m и d 2m+1 могут быть найдены, используя только y 2m и далее y 2m+1, после чего выполняется их суммирование. Применяя эту схему для первого символа
Figure 00000047
и MMSE-оценка вектора данных из первого символа выражается как
Figure 00000048
Применяя эту схему для второго символа
Figure 00000049
и MMSE-оценка вектора данных из второго символа выражается как
Figure 00000050
Используя Уравнения (47) и (49), две оценки d 2m суммируются следующим образом:
Figure 00000051
Результат соответствует результату, полученному в Уравнении (43). Суммирование для оценки d 2m+1 приведет к тому же результату, что и Уравнение (43). Так, в простой форме Аламути 2×1 два способа декодирования идентичны. Тем не менее результаты могут различаться для случая 3×2 из Таблицы.
Фиг.4 и 5 иллюстрируют результаты имитации для каналов E и B согласно стандарту IEEE 802.11n в случае использования конфигурации антенн 3×2 и приемника с функцией LMMSE. Результаты имитации показывают, что случай, в котором используется неравная схема модуляции 64 QAM и QPSK, обеспечивает преимущество примерно в 1,5 дБ (0,8 дБ) в терминах Частоты Ошибок Пакетной Передачи (Packet Error Rate, PER) по сравнению со случаем, где используется равная схема модуляции 16 QAM и 16 QAM для канала E (канала B).
Передатчик и приемник могут представлять собой Беспроводной Блок Приема/Передачи (Wireless Transmit/Receive Unit, WTRU) или базовую станцию. В использованном здесь значении термин "беспроводной блок приема/передачи" (ББПП) включает в себя, но не ограничивается перечисленным, пользовательское оборудование (User Equipment), мобильную станцию, фиксированную или мобильную абонентскую станцию, пейджер, сотовый телефон, персональный цифровой секретарь (Personal Digital Assistant, PDA), компьютер или любой другой тип пользовательских устройств, способных работать в беспроводной среде. В использованном здесь значении термин "базовая станция" включает в себя, но не ограничивается перечисленным, Узел-B (Node-B), локальный контроллер, точку доступа (Access Point, AP) или любой другой тип интерфейсного устройства, способного работать в беспроводной среде.
Варианты осуществления изобретения
1. Способ для реализации пространственной обработки данных с неравными Схемами Модуляции и Кодирования (MCS) в системе беспроводной связи, включающей в себя передатчик и приемник.
2. Способ по п.1, содержащий этап, на котором генерируют множество потоков данных из, по меньшей мере, одной группы входных данных.
3. Способ по п.2, содержащий этап, на котором выполняют пространственную обработку, по меньшей мере, одного потока данных, чтобы сформировать множество пространственных потоков, причем схема MCS для каждого потока данных выбирается независимым образом.
4. Способ по п.3, содержащий этап, на котором передают пространственные потоки посредством множества передающих антенн.
5. Способ по любому из п.п.3-4, в котором выполняют пространственную обработку только части потоков данных.
6. Способ по любому из п.п.3-5, в котором схема MCS для потока данных, для которого выполняется пространственная обработка, отличается от схемы MCS для потока данных, для которого пространственная обработка не выполняется.
7. Способ по любому из п.п.3-6, в котором пространственная обработка представляет собой Пространственно-Временное Блочное Кодирование (Space Time Block Coding, STBC), выполняемое для, по меньшей мере, одного из потоков данных.
8. Способ по п.7, в котором пара символов для STBC потока данных сопоставляется одной и той же частоте.
9. Способ по п.7, в котором пара символов для STBC потока данных сопоставляется разным частотам.
10. Способ по любому из п.п.3-9, в котором пространственная обработка, выполняемая, по меньшей мере, для одного из потоков данных, представляет собой, по меньшей мере, один из STBC, SFBC, квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с Обращением времени.
11. Способ по любому из п.п.3-10, в котором выполняют линейную пространственную обработку потоков данных.
12. Способ по п.11, в котором выполняют Разнесение Циклической Задержки (Cyclic Delay Diversity, CDD) пространственных потоков.
13. Способ по любому из п.п.11-12, в котором перемножают матрицу сопоставления антенн с пространственными потоками.
14. Способ по п.13, в котором матрица сопоставления антенн представляет собой единичную матрицу.
15. Способ по п.13, в котором матрица сопоставления антенн предназначена для пространственного разброса.
16. Способ по п.13, в котором матрица сопоставления антенн представляет собой управляющую матрицу, которая специфична для канала.
17. Способ по п.16, в котором матрица сопоставления антенн включает в себя набор собственных векторов канала.
18. Способ по любому из п.п.3-17, в котором схема MCS для каждого потока данных определяется на основании отношения сигнал-шум каждого пространственного потока, связанного с этим потоком данных.
19. Способ по любому из п.п.4-18, сверх того, содержащий этап, на котором принимают пространственные потоки посредством, по меньшей мере, одной приемной антенны.
20. Способ по п.19, содержащий этап, на котором выполняют оценку канала, чтобы сформировать матрицу канала.
21. Способ по п.20, содержащий этап, на котором декодируют принятые пространственные потоки, используя матрицу канала, чтобы восстановить входные данные.
22. Способ по п.21, в котором для декодирования принятых потоков данных используют декодирование с Минимальной Среднеквадратичной Ошибкой (Minimum Mean Square Error, MMSE).
23. Способ по п.21, в котором для декодирования принятых потоков данных используют декодирование с обращением в ноль незначащих элементов.
24. Способ по любому из п.п.1-23, в котором система беспроводной связи является системой OFDM.
25. Способ по любому из п.п.1-23, в котором система беспроводной связи является одной из систем MS-CDMA и CDMA.
26. Передатчик для реализации пространственной обработки данных с неравными схемами MCS.
27. Передатчик по п.26, содержащий пространственный процессор для выполнения пространственной обработки, по меньшей мере, одного из множества потоков данных, причем схема MCS для каждого потока данных выбирается независимым образом.
28. Передатчик по п.27, содержащий множество передающих антенн для передачи потоков данных.
29. Передатчик по любому из п.п.27-28, в котором пространственный процессор сконфигурирован так, чтобы выполнять пространственную обработку только части потоков данных.
30. Передатчик по любому из п.п.27-29, в котором схема MCS для потока данных, для которого выполняется пространственная обработка, отличается от схемы MCS для потока данных, для которого пространственная обработка не выполняется.
31. Передатчик по любому из п.п.27-30, в котором пространственный процессор сконфигурирован так, чтобы выполнять STBC, по меньшей мере, одного из потоков данных.
32. Передатчик по п.31, в котором пространственный процессор сконфигурирован так, чтобы сопоставлять пару символов для STBC потока данных одинаковой частоте.
33. Передатчик по п.31, в котором пространственный процессор сконфигурирован так, чтобы сопоставлять пару символов для STBC потока данных разным частотам.
34. Передатчик по любому из п.п.27-33, в котором пространственный процессор сконфигурирован так, чтобы выполнять обработку, по меньшей мере, одного из потоков данных согласно, по меньшей мере, одному из STBC, SFBC, квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с Обращением времени.
35. Передатчик по любому из п.п.27-34, в котором пространственный процессор сконфигурирован так, чтобы выполнять линейную пространственную обработку потоков данных.
36. Передатчик по п.35, в котором пространственный процессор сконфигурирован так, чтобы выполнять CDD пространственных потоков.
37. Передатчик по любому из п.п.35-36, в котором пространственный процессор сконфигурирован так, чтобы применять матрицу сопоставления антенн к пространственным потокам.
38. Передатчик по п.37, в котором матрица сопоставления антенн представляет собой единичную матрицу.
39. Передатчик по п.37, в котором матрица сопоставления антенн предназначена для пространственного разброса.
40. Передатчик по п.37, в котором матрица сопоставления антенн представляет собой управляющую матрицу, которая специфична для канала.
41. Передатчик по п.40, в котором матрица сопоставления антенн включает в себя набор собственных векторов канала.
42. Передатчик по любому из п.п.27-41, в котором схема MCS для каждого потока данных определяется на основании отношения сигнал-шум каждого пространственного потока, связанного с этим потоком данных.
43. Приемник для реализации пространственной обработки данных с неравными схемами MCS.
44. Приемник по п.43, содержащий, по меньшей мере, одну приемную антенну для приема множества пространственных потоков, причем схема MCS для каждого потока данных, сопоставленного этим пространственным потокам, выбирается независимо от передатчика.
45. Приемник по п.44, содержащий оценщик канала для выполнения оценки канала, чтобы сформировать матрицу канала.
46. Приемник по п.45, содержащий пространственный декодер для декодирования принятых пространственных потоков, используя матрицу канала.
47. Приемник по п.46, в котором пространственный декодер сконфигурирован так, чтобы выполнять декодирование MMSE для декодирования принятых пространственных потоков.
48. Приемник по п.46, в котором пространственный декодер сконфигурирован так, чтобы выполнять декодирование с обращением в ноль незначащих элементов для декодирования принятых пространственных потоков.
Несмотря на то, что функциональные особенности и элементы настоящего изобретения описаны в предпочтительных вариантах в их конкретной комбинации, каждая функциональная особенность или элемент может использоваться в отдельности без других функциональных особенностей и элементов предпочтительных вариантов осуществления или в различных комбинациях вместе с или без других функциональных особенностей и элементов настоящего изобретения. Способы или схемы последовательности операций, представленные в настоящем изобретении, могут быть реализованы в компьютерной программе, программном обеспечении или встроенном программном обеспечении, материально реализованном в машиночитаемом средстве хранения для выполнения компьютером общего назначения или процессором. Примеры машиночитаемых средств хранения включают в себя ПЗУ, ОЗУ, регистр, кэш-память, полупроводниковые запоминающие устройства, магнитные носители, такие как внутренние жесткие диски и съемные диски, магнитооптические диски и оптические носители, такие как диски CD-ROM и DVD.
Подходящие процессоры включают в себя, например, процессор общего назначения, процессор специального назначения, обычный процессор, процессор цифровых сигналов, множество микропроцессоров, один или более микропроцессоров в связи с ядром процессора цифровых сигналов, контроллер, микроконтроллер, специализированные интегральные схемы, программируемые вентильные матрицы, другие типы интегральных схем и/или конечный автомат.
Процессор вместе с программным обеспечением может использоваться для реализации радиочастотного приемопередатчика для использования в беспроводном блоке приема/передачи, пользовательском оборудовании, терминале, базовой станции, контроллере радиосети или любом главном компьютере. ББПП может использоваться в связи с модулями, реализованными аппаратным и/или программным образом, такими как камера, видеокамера, видеотелефон, телефон с громкой связью, вибрационное устройство, громкоговоритель, микрофон, телевизионный приемопередатчик, гарнитура "hands free", клавиатура, модуль Bluetooth®, радио блок с частотной модуляцией, жидкокристаллический дисплей, OLED-дисплей, цифровой музыкальный проигрыватель, медиа-проигрыватель, модуль видеоигр, Интернет-браузер и/или любой модуль беспроводной локальной сети.

Claims (18)

1. Способ осуществления пространственной обработки данных в передатчике, содержащий этапы, на которых:
формируют множество пространственных потоков из входных данных;
выполняют пространственную обработку, по меньшей мере, одного из пространственных потоков, чтобы передать, по меньшей мере, один пространственный поток посредством, по меньшей мере, двух антенн, используя одно из: пространственно-частотного блочного кодирования (SFBC), пространственно-временного блочного кодирования (STBC), разнесения циклической задержки (SDD), квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с обращением времени, и передавать, по меньшей мере, один другой пространственный поток посредством, по меньшей мере, одной другой антенны для пространственного мультиплексирования, причем схема модуляции и кодирования (MCS) для каждого пространственного потока выбирается независимо от MCS для другого пространственного потока; и
передают пространственные потоки посредством множества передающих антенн.
2. Способ по п.1, в котором выполняют пространственную обработку только части каждого из пространственных потоков.
3. Способ по п.1, в котором матрица сопоставления антенн перемножается с пространственными потоками.
4. Способ по п.3, в котором матрица сопоставления антенн представляет собой единичную матрицу.
5. Способ по п.3, в котором матрица сопоставления антенн предназначена для пространственного расширения.
6. Способ по п.3, в котором матрица сопоставления антенн представляет собой управляющую матрицу, которая специфична для канала.
7. Способ по п.6, в котором матрица сопоставления антенн включает в себя набор собственных векторов канала.
8. Способ по п.1, в котором MCS для каждого пространственного потока определяется на основании отношения сигнал-шум каждого пространственного потока.
9. Способ осуществления пространственной обработки данных в приемнике, содержащий этапы, на которых:
принимают потоки данных посредством, по меньшей мере, одной приемной антенны; и
выполняют пространственное декодирование потоков данных, чтобы восстановить множество пространственных потоков, причем, по меньшей мере, один из пространственных потоков передается, используя одно из:
пространственно-частотного блочного кодирования (SFBC), пространственно-временного блочного кодирования (STBC), разнесения циклической задержки (SDD), квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с обращением времени, посредством, по меньшей мере, двух антенн, и, по меньшей мере, один другой пространственный поток передается посредством, по меньшей мере, одной другой антенны для пространственного мультиплексирования, причем схема модуляции и кодирования (MCS) для каждого пространственного потока выбирается независимо от MCS для другого пространственного потока.
10. Передатчик для осуществления пространственной обработки данных, содержащий:
пространственный процессор для выполнения пространственной обработки, по меньшей мере, одного из множества пространственных потоков, чтобы передать, по меньшей мере, один пространственный поток посредством, по меньшей мере, двух антенн, используя одно из:
пространственно-частотного блочного кодирования (SFBC), пространственно-временного блочного кодирования (STBC), разнесения циклической задержки (SDD), квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с обращением времени, и передавать, по меньшей мере, один другой пространственный поток посредством, по меньшей мере, одной другой антенны для пространственного мультиплексирования, причем схема модуляции и кодирования (MCS) для каждого пространственного потока выбирается независимо от MCS для другого пространственного потока; и
множество передающих антенн для передачи пространственных потоков.
11. Передатчик по п.10, в котором пространственный процессор сконфигурирован так, чтобы выполнять пространственную обработку только части каждого из потоков данных.
12. Передатчик по п.10, в котором пространственный процессор сконфигурирован так, чтобы применять матрицу сопоставления антенн к пространственным потокам.
13. Передатчик по п.12, в котором матрица сопоставления антенн представляет собой единичную матрицу.
14. Передатчик по п.12, в котором матрица сопоставления антенн предназначена для пространственного расширения.
15. Передатчик по п.12, в котором матрица сопоставления антенн представляет собой управляющую матрицу, которая специфична для канала.
16. Передатчик по п.15, в котором матрица сопоставления антенн включает в себя набор собственных векторов канала.
17. Передатчик по п.10, в котором MCS для каждого потока данных определяется на основании отношения сигнал-шум каждого пространственного потока, связанного с этим потоком данных.
18. Приемник для осуществления пространственной обработки данных, содержащий:
по меньшей мере, одну приемную антенну для приема множества потоков данных; и
пространственный декодер для выполнения пространственной обработки потоков данных, чтобы восстановить множество пространственных потоков, причем, по меньшей мере, один из пространственных потоков передается, используя одно из: пространственно-частотного блочного кодирования (SFBC), пространственно-временного блочного кодирования (STBC), разнесения циклической задержки (SDD), квазиортогонального кодирования Аламути и пространственно-временного блочного кодирования с обращением времени, посредством, по меньшей мере, двух антенн, и, по меньшей мере, один другой пространственный поток передается посредством, по меньшей мере, одной другой антенны для пространственного мультиплексирования, причем схема модуляции и кодирования (MCS) для каждого пространственного потока выбирается независимо от MCS для другого пространственного потока.
RU2008132817/09A 2006-01-11 2007-01-10 Способ и устройство для реализации пространственно-временной обработки с неравными схемами модуляции и кодирования RU2406234C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75803406P 2006-01-11 2006-01-11
US60/758,034 2006-01-11

Publications (2)

Publication Number Publication Date
RU2008132817A RU2008132817A (ru) 2010-02-20
RU2406234C2 true RU2406234C2 (ru) 2010-12-10

Family

ID=38157825

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008132817/09A RU2406234C2 (ru) 2006-01-11 2007-01-10 Способ и устройство для реализации пространственно-временной обработки с неравными схемами модуляции и кодирования

Country Status (15)

Country Link
US (6) US8295401B2 (ru)
EP (4) EP3506539A1 (ru)
JP (7) JP5436863B2 (ru)
KR (8) KR101623556B1 (ru)
CN (2) CN106411380B (ru)
AU (1) AU2007204966B2 (ru)
BR (1) BRPI0706859A2 (ru)
CA (1) CA2636157C (ru)
DE (1) DE202007000422U1 (ru)
ES (1) ES2720173T3 (ru)
IL (1) IL192570A (ru)
MY (1) MY144368A (ru)
RU (1) RU2406234C2 (ru)
TW (4) TWI446763B (ru)
WO (1) WO2007081977A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584150C2 (ru) * 2011-01-12 2016-05-20 Телефонактиеболагет Л М Эрикссон (Пабл) Отображение ресурсов данных для частотного закодирования символов

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446763B (zh) 2006-01-11 2014-07-21 Interdigital Tech Corp 以不等調變及編碼方法實施空時處理方法及裝置
US8331342B2 (en) * 2006-04-28 2012-12-11 Samsung Electronics Co., Ltd. Apparatus and method for switching between single user and multi-user MIMO operation in a wireless network
CN101467376B (zh) * 2006-06-08 2016-06-08 皇家飞利浦电子股份有限公司 一种空间-时间-频率编码的方法和装置
US8107543B2 (en) * 2006-06-27 2012-01-31 Amimon Ltd. High diversity time-space coding and decoding for MIMO systems
US8594219B2 (en) * 2007-04-25 2013-11-26 Qualcomm Incorporated Transposed structure for cyclic delay diversity (CDD) based precoding
US7990920B2 (en) * 2007-04-26 2011-08-02 Samsung Electronics Co., Ltd. Transmit diversity for acknowledgement and category 0 bits in a wireless communication system
US9191148B2 (en) 2007-06-05 2015-11-17 Constellation Designs, Inc. Methods and apparatuses for signaling with geometric constellations in a Raleigh fading channel
ES2886158T3 (es) 2007-06-05 2021-12-16 Constellation Designs Llc Método y aparato para la señalización con constelaciones de capacidad optimizada
US8265175B2 (en) 2007-06-05 2012-09-11 Constellation Designs, Inc. Methods and apparatuses for signaling with geometric constellations
KR101405498B1 (ko) * 2007-08-24 2014-06-11 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 중계 방식의 무선통신 시스템에서 시공간 부호화 장치 및방법
US20100246553A1 (en) * 2007-09-21 2010-09-30 Ryota Yamada Wireless transmission device, wireless communication system and wireless transmission method
KR100911208B1 (ko) 2007-12-17 2009-08-06 한국전자통신연구원 Ofdma 시스템에서 사용자간 시공간 블록 부호화와순환 지연 다이버시티를 동시 사용하는 기지국 및 단말기
CN101471755B (zh) * 2007-12-24 2011-08-24 联想(北京)有限公司 一种信号发射方法及发射机
ATE549811T1 (de) * 2008-03-21 2012-03-15 Mitsubishi Electric Corp Mit hoher rate und vollständiger diversität kodiertes sendestrahlenformungsverfahren mit teilalgebraischer vorkodierung und entsprechender fast optimaler empfänger mit niedriger komplexität
EP2107707B1 (en) * 2008-03-31 2017-08-23 Google Technology Holdings LLC Spatial mapping of an OFDM signal to reduce attenuation from an individual transmit antenna in a mimo transmitter
US20090316840A1 (en) * 2008-06-24 2009-12-24 Qualcomm Incorporated Methods and systems for stc signal decoding using mimo decoder
KR101567078B1 (ko) * 2008-06-26 2015-11-09 엘지전자 주식회사 다중안테나를 이용한 데이터 전송장치 및 방법
KR101467586B1 (ko) * 2008-06-26 2014-12-02 엘지전자 주식회사 무선통신 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101534349B1 (ko) * 2008-06-26 2015-07-10 엘지전자 주식회사 Stbc 기법을 이용한 데이터 전송방법
KR101507170B1 (ko) * 2008-06-26 2015-03-31 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101497154B1 (ko) * 2008-06-26 2015-03-02 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
JP5149130B2 (ja) * 2008-11-20 2013-02-20 日本放送協会 Mimo送信装置、受信装置およびシステム
WO2010058944A2 (ko) * 2008-11-23 2010-05-27 엘지전자주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
KR101498297B1 (ko) 2008-11-23 2015-03-05 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법
CN101771454B (zh) * 2009-01-07 2014-01-01 中兴通讯股份有限公司 一种空间分集方法及装置
US10411846B1 (en) * 2009-03-24 2019-09-10 Marvell International Ltd. Multi-radio device for WLAN
US20100329236A1 (en) * 2009-06-26 2010-12-30 Qualcomm Incorporated Method and apparatus for multiple user uplink requiring minimal station timing and frequency synchronization
US8665767B2 (en) 2009-08-25 2014-03-04 Qualcomm Incorporated Method and apparatus for multiple-user communication in a client initiated communication transmission scheme
CN101656982B (zh) * 2009-09-16 2012-08-15 普天信息技术研究院有限公司 一种协作多点传输的发送分集方法
WO2011032297A1 (en) 2009-09-21 2011-03-24 Nortel Networks Limited Signaling and channel estimation for uplink transmit diversity
WO2011054372A1 (en) * 2009-11-03 2011-05-12 Nokia Siemens Networks Oy Method and apparatuses for data transfer within a relay enhanced telekommunikation network
CN102075301A (zh) * 2009-11-20 2011-05-25 松下电器产业株式会社 无线通信系统及其基站和符号发送方法
JP5744895B2 (ja) 2009-12-10 2015-07-08 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおけるトレーニング信号送信方法及び装置
TWI501596B (zh) * 2010-03-08 2015-09-21 Sony Corp 使用適應正交分頻多工之通訊系統
US9020056B2 (en) * 2010-07-20 2015-04-28 Sigma Designs Israel S.D.I. Ltd. Transmission scheme for multiple-input communication
US8644282B2 (en) * 2010-09-16 2014-02-04 Qualcomm Incorporated System and method for transmitting a low density parity check signal
US8514976B2 (en) * 2010-09-27 2013-08-20 Qualcomm Incorporated Method and apparatus for coding and interleaving for very high throughput wireless communications
CN105634570B (zh) 2010-12-10 2019-02-15 太阳专利托管公司 信号生成方法及信号生成装置
CN102594488B (zh) * 2011-01-14 2017-12-19 中兴通讯股份有限公司 空间流向空时流映射的方法、装置及数据传输方法、装置
WO2012122705A1 (en) * 2011-03-16 2012-09-20 Nec (China) Co., Ltd. Method, transmitter and receiver for beamforming
US9531573B2 (en) * 2012-04-09 2016-12-27 Samsung Electronics Co., Ltd. Methods and apparatus for cyclic prefix reduction in MMwave mobile communication systems
GB2501750B (en) 2012-05-03 2015-04-29 Toshiba Res Europ Ltd Method and apparatus for coding a signal in a relay network
US8989241B2 (en) * 2012-05-04 2015-03-24 Broadcom Corporation Wireless communication device with configurable spatial time-frequency coding and methods for use therewith
KR101446267B1 (ko) * 2012-08-29 2014-10-01 한밭대학교 산학협력단 스위치를 사용하여 공간 시간 블록 코드 기술을 적용한 오에프디엠 송수신 시스템
CN103117780B (zh) * 2013-01-24 2015-03-25 河南理工大学 一种消除mimo系统中多用户干扰的方法
US9300444B2 (en) 2013-07-25 2016-03-29 Analog Devices, Inc. Wideband quadrature error correction
US11012201B2 (en) * 2013-05-20 2021-05-18 Analog Devices, Inc. Wideband quadrature error detection and correction
KR20150116171A (ko) * 2014-04-07 2015-10-15 한국전자통신연구원 협력통신을 위한 데이터 전송 방법 및 장치
US9780917B2 (en) 2015-05-19 2017-10-03 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
US9787422B2 (en) 2015-05-19 2017-10-10 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
US9780916B2 (en) 2015-05-19 2017-10-03 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
US9800365B2 (en) 2015-05-19 2017-10-24 Samsung Electronics Co., Ltd. Transmitting apparatus and mapping method thereof
US10091117B2 (en) * 2015-07-24 2018-10-02 Qualcomm Incorporated Code block segmentation and rate matching for multiple transport block transmissions
JP6842844B2 (ja) * 2016-06-17 2021-03-17 日本放送協会 送信装置、受信装置、フレーム構成方法、チップ、およびプログラム
EP3499762B1 (en) * 2016-09-12 2020-11-04 LG Electronics Inc. -1- Method for transmitting or receiving signal in wireless lan system and device therefor
CN107070603B (zh) * 2017-04-28 2019-11-01 电子科技大学 空时分组编码系统信号发送和接收方法
CN107911152B (zh) * 2017-10-27 2020-11-24 西安电子科技大学 适用于任意发送天线数量的空间编码调制系统和方法
CN110011692A (zh) * 2017-12-29 2019-07-12 株式会社Ntt都科摩 一种扩频通信方法、用户设备和基站
US11265048B2 (en) * 2018-02-01 2022-03-01 Mediatek Singapore Pte. Ltd. Group-based unequal MCS schemes for a single user station in WLAN transmissions
CN109327287B (zh) * 2018-09-10 2020-04-28 西安交通大学 一种采用堆叠式Alamouti编码映射的空间调制方法
CN114402544A (zh) 2019-08-05 2022-04-26 舒尔获得控股公司 发射天线分集无线音频系统
CN111181674B (zh) * 2020-03-13 2022-05-24 普联技术有限公司 信道处理方法、装置及设备
US11374803B2 (en) 2020-10-16 2022-06-28 Analog Devices, Inc. Quadrature error correction for radio transceivers

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007A (en) * 1841-03-16 Improvement in the mode of harvesting grain
US2005A (en) * 1841-03-16 Improvement in the manner of constructing molds for casting butt-hinges
US2006A (en) * 1841-03-16 Clamp for crimping leather
EP0255369A3 (en) * 1986-08-01 1988-10-19 Advanced Cardiovascular Systems, Inc. Catheter tip marker
SE465195B (sv) * 1990-02-16 1991-08-05 Pressmaster Tool Ab Avisoleringsverktyg
ES2104885T3 (es) * 1991-04-26 1997-10-16 Monsanto Plc Automatizacion de instrumentos de ensayo.
US6898248B1 (en) * 1999-07-12 2005-05-24 Hughes Electronics Corporation System employing threaded space-time architecture for transporting symbols and receivers for multi-user detection and decoding of symbols
US6760882B1 (en) 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
SE0004403L (sv) * 2000-11-29 2002-05-30 Ericsson Telefon Ab L M Metoder och anordningar i ett telekommunikationssystem
EP1255369A1 (en) * 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
ES2354682T3 (es) * 2001-08-09 2011-03-17 Qualcomm Incorporated Transmisor de diversidad y procedimiento de transmisión de diversidad.
US6636568B2 (en) * 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
JP3746029B2 (ja) 2002-09-19 2006-02-15 松下電器産業株式会社 無線通信装置及び無線通信方法
US7020446B2 (en) * 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
US7092737B2 (en) * 2002-07-31 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. MIMO systems with rate feedback and space time transmit diversity
US7542446B2 (en) * 2002-07-31 2009-06-02 Mitsubishi Electric Research Laboratories, Inc. Space time transmit diversity with subgroup rate control and subgroup antenna selection in multi-input multi-output communications systems
US6940917B2 (en) * 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US7397864B2 (en) 2002-09-20 2008-07-08 Nortel Networks Limited Incremental redundancy with space-time codes
DE60215813T2 (de) * 2002-09-27 2007-09-06 Samsung Electronics Co., Ltd. Funkkommunikationssystem mit Sendediversität und Multi-Nutzer-Diversität
US20040121730A1 (en) 2002-10-16 2004-06-24 Tamer Kadous Transmission scheme for multi-carrier MIMO systems
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
WO2004049596A1 (ja) 2002-11-26 2004-06-10 Matsushita Electric Industrial Co., Ltd. 通信方法及び送信装置、受信装置
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
WO2004095730A1 (ja) * 2003-04-21 2004-11-04 Mitsubishi Denki Kabushiki Kaisha 無線通信装置、送信装置、受信装置および無線通信システム
CA2427403C (en) 2003-04-21 2008-10-28 Regents Of The University Of Minnesota Space-time-frequency coded ofdm over frequency-selective fading channels
CN1549471B (zh) * 2003-05-16 2010-05-12 中国科学技术大学 一种提高空时分组码性能的发射机和接收机
JP4536435B2 (ja) 2003-06-30 2010-09-01 パナソニック株式会社 送信方法及び送信装置
KR20050015731A (ko) * 2003-08-07 2005-02-21 삼성전자주식회사 이중 시공간 송신 다이버시티 시스템에서 최소 신호대잡음비를 이용한 셔플링 패턴 결정 방법 및 장치
JP2005110228A (ja) 2003-09-10 2005-04-21 Matsushita Electric Ind Co Ltd セキュア通信方法および送信装置、受信装置
US7724838B2 (en) * 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
JP4039413B2 (ja) 2003-11-05 2008-01-30 ソニー株式会社 無線通信システム及び無線通信方法、並びに無線通信装置
GB2408898B (en) 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
RU2321949C1 (ru) 2003-12-05 2008-04-10 Самсунг Электроникс Ко., Лтд. Устройство и способ передачи данных с помощью выбранного собственного вектора в mimo-системе мобильной связи замкнутого контура
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
KR100757963B1 (ko) 2003-12-24 2007-09-11 삼성전자주식회사 통신시스템에서 부호화 방법 및 장치
US7194042B2 (en) * 2004-01-13 2007-03-20 Qualcomm Incorporated Data transmission with spatial spreading in a mimo communication system
EP1709752B1 (en) * 2004-01-20 2016-09-14 LG Electronics, Inc. Method for transmitting/receiving signals in a mimo system
JPWO2005078957A1 (ja) 2004-02-13 2007-08-30 松下電器産業株式会社 通信装置及び通信方法
CN103297204B (zh) 2004-04-02 2017-03-01 苹果公司 用于正交频分复用应用的空间时间发射分集系统及方法
JP2005341317A (ja) * 2004-05-27 2005-12-08 Toshiba Corp 無線通信装置
US8089855B2 (en) 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
KR20050118031A (ko) 2004-06-12 2005-12-15 삼성전자주식회사 순환지연 다이버시티를 이용하여 방송 채널을 효율적으로전송하는 장치 및 방법
JP4616338B2 (ja) * 2004-06-14 2011-01-19 サムスン エレクトロニクス カンパニー リミテッド 多重送受信アンテナを使用する移動通信システムにおける送信モードを制御するための装置,システム及び方法
KR100754795B1 (ko) * 2004-06-18 2007-09-03 삼성전자주식회사 직교주파수분할다중 시스템에서 주파수 공간 블록 부호의부호화/복호화 장치 및 방법
US20050281349A1 (en) * 2004-06-21 2005-12-22 Brodcom Corporation Multiple streams using STBC with higher data rates and diversity gain within a wireless local area network
EP1615366A1 (en) * 2004-07-08 2006-01-11 Motorola, Inc. Method and apparatus for transmitting and receiving a datasymbol stream
CN100364236C (zh) * 2004-07-28 2008-01-23 北京大学 一种空时编码方法及相应的发射方法、发射机、通信系统
KR100780363B1 (ko) 2004-08-27 2007-11-29 삼성전자주식회사 2개의 송신안테나를 위한 최대 다이버시티 최대 전송율을갖는 시공간 블록 부호화 장치 및 방법
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US20060093062A1 (en) * 2004-11-04 2006-05-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
US7339884B2 (en) * 2004-12-08 2008-03-04 New Jersey Institute Of Technology STBC MIMO-OFDM peak-to-average power ratio reduction by cross-antenna rotation and inversion
US7826556B2 (en) * 2004-12-13 2010-11-02 Koninklijke Philips Electronics N. V. Individual interleaving of data streams for MIMO transmission
CN1674483A (zh) * 2005-04-01 2005-09-28 东南大学 空时分组码分块传输的迭代检测方法
US7486720B2 (en) * 2005-05-11 2009-02-03 Mitsubishi Electric Research Laboratories, Inc. Training frames for MIMO stations
JP4498315B2 (ja) * 2005-07-28 2010-07-07 Hoya株式会社 光学ガラスおよび光学素子とその製造方法
US8432849B2 (en) * 2005-09-30 2013-04-30 Intel Corporation Wireless system performance modeling
US7751506B2 (en) * 2005-12-01 2010-07-06 Samsung Electronics Co., Ltd. Method for the soft bit metric calculation with linear MIMO detection for LDPC codes
US7664194B2 (en) * 2005-12-20 2010-02-16 Samsung Electronics Co., Ltd. Combining space time block code (STBC) with spatial multiplexing for MIMO transmission
US7715803B2 (en) * 2005-12-20 2010-05-11 Samsung Electronics Co., Ltd. Methods and apparatus for constant-power loading asymmetric antenna configuration
US7620067B2 (en) * 2005-12-22 2009-11-17 Samsung Electronics Co., Ltd. Method of switching transmission modes in IEEE 802.11n MIMO communication systems
US20070147543A1 (en) * 2005-12-22 2007-06-28 Samsung Electronics Co., Ltd. Extension of space-time block code for transmission with more than two transmit antennas
TWI446763B (zh) 2006-01-11 2014-07-21 Interdigital Tech Corp 以不等調變及編碼方法實施空時處理方法及裝置
US8798202B2 (en) * 2007-06-15 2014-08-05 Motorola Mobility Llc Method and apparatus using sounding PPDUs to provide range extension to IEEE 802.11n signals
US9236985B2 (en) 2009-04-23 2016-01-12 Qualcomm Incorporated Method and apparatus for control and data multiplexing in a MIMO communication system
KR101603115B1 (ko) 2011-12-08 2016-03-14 엘지전자 주식회사 무선 통신 시스템에서 데이터 채널을 추정하는 방법 및 이를 위한 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584150C2 (ru) * 2011-01-12 2016-05-20 Телефонактиеболагет Л М Эрикссон (Пабл) Отображение ресурсов данных для частотного закодирования символов

Also Published As

Publication number Publication date
EP1989806A2 (en) 2008-11-12
KR101298292B1 (ko) 2013-08-20
TW201429200A (zh) 2014-07-16
CN106411380A (zh) 2017-02-15
KR101680802B1 (ko) 2016-11-29
US20170163383A1 (en) 2017-06-08
WO2007081977A3 (en) 2008-02-14
TW200731717A (en) 2007-08-16
EP3059890B1 (en) 2018-09-26
ES2720173T3 (es) 2019-07-18
JP2016034156A (ja) 2016-03-10
JP5436863B2 (ja) 2014-03-05
CN101371481A (zh) 2009-02-18
US8971442B2 (en) 2015-03-03
KR20130143120A (ko) 2013-12-30
KR101623556B1 (ko) 2016-05-24
US20130039441A1 (en) 2013-02-14
KR20080089465A (ko) 2008-10-06
US8295401B2 (en) 2012-10-23
JP2009523361A (ja) 2009-06-18
KR101015173B1 (ko) 2011-02-17
CA2636157A1 (en) 2007-07-19
KR20120011899A (ko) 2012-02-08
CN201045756Y (zh) 2008-04-09
US9991992B2 (en) 2018-06-05
JP2014233077A (ja) 2014-12-11
CN106411380B (zh) 2020-01-07
KR20080087153A (ko) 2008-09-30
JP2012065335A (ja) 2012-03-29
MY144368A (en) 2011-09-15
CA2636157C (en) 2016-06-07
AU2007204966B2 (en) 2010-05-13
KR101298307B1 (ko) 2013-08-20
JP5810178B2 (ja) 2015-11-11
KR20150079721A (ko) 2015-07-08
US20070211822A1 (en) 2007-09-13
EP3506539A1 (en) 2019-07-03
JP2017158197A (ja) 2017-09-07
IL192570A (en) 2014-05-28
US9621251B2 (en) 2017-04-11
US20180254856A1 (en) 2018-09-06
US11258542B2 (en) 2022-02-22
TW201038030A (en) 2010-10-16
EP3059890A1 (en) 2016-08-24
BRPI0706859A2 (pt) 2011-04-12
DE202007000422U1 (de) 2007-06-06
JP6085662B2 (ja) 2017-02-22
KR101600673B1 (ko) 2016-03-09
JP2016192804A (ja) 2016-11-10
US10560223B2 (en) 2020-02-11
TWI446763B (zh) 2014-07-21
EP2378690A1 (en) 2011-10-19
RU2008132817A (ru) 2010-02-20
IL192570A0 (en) 2009-02-11
US20200177312A1 (en) 2020-06-04
KR20160060786A (ko) 2016-05-30
US20150139143A1 (en) 2015-05-21
AU2007204966A1 (en) 2007-07-19
TWM318290U (en) 2007-09-01
KR20120101493A (ko) 2012-09-13
JP2014103691A (ja) 2014-06-05
WO2007081977A2 (en) 2007-07-19
KR20160138320A (ko) 2016-12-02
TWI431990B (zh) 2014-03-21
TWI562572B (en) 2016-12-11

Similar Documents

Publication Publication Date Title
RU2406234C2 (ru) Способ и устройство для реализации пространственно-временной обработки с неравными схемами модуляции и кодирования