RU2394016C2 - Способ получения 4,4'-дифторбензофенона - Google Patents

Способ получения 4,4'-дифторбензофенона Download PDF

Info

Publication number
RU2394016C2
RU2394016C2 RU2008108096/04A RU2008108096A RU2394016C2 RU 2394016 C2 RU2394016 C2 RU 2394016C2 RU 2008108096/04 A RU2008108096/04 A RU 2008108096/04A RU 2008108096 A RU2008108096 A RU 2008108096A RU 2394016 C2 RU2394016 C2 RU 2394016C2
Authority
RU
Russia
Prior art keywords
acid
fluorobenzene
difluorobenzophenone
nitric acid
reaction
Prior art date
Application number
RU2008108096/04A
Other languages
English (en)
Other versions
RU2008108096A (ru
Inventor
Харальд РЕГЛЬ (AT)
Харальд РЕГЛЬ
Маркус УНГЕРАНК (AT)
Маркус Унгеранк
Original Assignee
Евоник Файбрес Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евоник Файбрес Гмбх filed Critical Евоник Файбрес Гмбх
Publication of RU2008108096A publication Critical patent/RU2008108096A/ru
Application granted granted Critical
Publication of RU2394016C2 publication Critical patent/RU2394016C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • C07C49/786Benzophenone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/2637Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions between a compound containing only oxygen and possibly halogen as hetero-atoms and a halogenated hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/813Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Настоящее изобретение относится к способу получения 4,4'-дифторбензофенона - главного исходного продукта для получения ароматических полиэфиркетонов. Способ заключается в том, что на первой стадии фторбензол приводят в реакцию с формальдегидом в условиях катализа органическими сульфоновыми кислотами с образованием дифтордифенилметана, образованный при этом продукт выделяют и на второй стадии окисляют азотной кислотой до 4,4'-дифторбензофенона. Изобретение позволяет получить целевой продукт простым и эффективным способом. 4 з.п. ф-лы.

Description

Настоящее изобретение относится к способу получения 4,4'-дифторбензофенона и его изомеров. 4,4'-дифторбензофенон (4,4'-DFBP) является главным исходным продуктом для получения ароматических полиэфиркетонов. Они являются высококачественными пластмассами с постоянно растущим годовым объемом производства, так что ежегодно производимое во всем мире количество 4,4'-DFBP находится в состоянии роста. Важнейшими полиэфиркетонами являются полиэфирэфиркетоны (PEEK) и полиэфиркетоны (PEK). Они отличаются температурой плавления выше 330°C, а также высокой химической стойкостью. Небольшие количества применяются для получения лекарств и химикатов для сельского хозяйства.
В настоящее время 4,4'-DFBP получают почти исключительно в следующем двухстадийном синтезе, согласно патентам US-A-2,606,183 (1952) и US-A-2,705,730 (1955), оба принадлежат Head и др.: сначала 4,4'-диаминодифенилметан (MDA означает метилендианилин) диазотируют посредством NaNО2 в кислом растворе HF и, согласно Бальц-Шиману, с помощью HBF4 фторидный ион вводят в ароматические соединения с выделением N2 (см. Beyer, Walter, Lehrbuch der organischen Chemie, Hirzel, 24. Auflage, 2004, Seite 626, и Balz, Schiemann, Berichte, Vol 60, p. 1186 (1927)). Образующийся в результате этого 4,4'-дифтордифенилметан (DFDPM) после очистки окисляют посредством HNO3.
Согласно документам EP-A-0004710 (Staniland и др. (1979)) и US-A-2,563,796 (Shenk и др.) можно также напрямую разлагать фторид диазония, растворенный во фтористоводородной кислоте, путем нагревания.
Вторым способом синтеза бензофенонов является ацилирование по Фриделю-Крафтсу, которое проводится либо напрямую из фторбензола и фосгена согласно US-A-4,618,762 (Desbois (1986)), во фтористоводородной кислоте и с трифторидом бора как катализатором, либо, согласно US-A-4,814,508 (Gors и др. (1989)), из фторбензола и хлорида 4-фторбензойной кислоты с алюминийхлоридом и литийхлоридом как катализаторами.
Третьей возможностью синтеза является нуклеофильное замещение ароматических соединений (SNAr). При этом на атом фтора заменяют или нитро-группу (US-A-6,274,770, Clarc и др., 2001) в присутствии тетраметиламмонийфторида как катализатора фазового перехода (PTC), или галогенид (JP-A-57169441) в присутствии фторида калия при повышенной температуре (150-200°C). Другая возможность получить 4,4'-дифторбензофенон описана в JP-A-61221146 (Fukuoka и др., 1986). Фторбензол с помощью катализатора на основе благородных металлов приводят в реакцию в автоклаве с моноксидом углерода и кислородом.
В документе DE-A-698 15 082 описывается синтез из 4,4'-динитродифенилметана. Проводится окисление воздухом в диметилацетамиде; после этого проводится нуклеофильное замещение ароматики с помощью тетраметиламмонийфторида как катализатора фазового перехода. Выход составляет около 70%. Реакция проводится с 60 мг исходного вещества в 10 мл растворителя, так что это не является процессом, пригодным для промышленности.
В документе US-A-4,978,798 описывается многостадийный дорогостоящий способ, в котором сначала в присутствии кислоты Льюиса тригалогенметилбензол приводят в реакцию с галогенбензолом, содержащим по меньшей мере 2 хлоридных заместителя. Образованный бисфенилдигалогенметан обрабатывают затем водой, причем образуется галогенбензофенон. После этого хлоридные заместители в 2 этапа замещают фторидом.
Продолжающийся несколько десятилетий поиск различных способов синтеза для получения дифторбензофенона показывает, что ни один из этих способов не свободен от серьезных недостатков.
В варианте с ацилированием по реакции Фриделя-Крафтса недостатком является прежде всего большая потребность в катализаторах и их утилизация. В случае реакции Бальца-Шимана проблемой является прежде всего растворитель (фтористоводородная кислота) и затратная очистка тетрафторборной кислоты. Кроме того, образуются также большие количества неорганических солей.
Нуклеофильное замещение для получения дифторбензофенона до настоящего времени не получило какого-либо технического значения. 4,4'-дихлорбензофенон как исходное вещество недешев и, собственно, только переносит проблему на получение дважды пара-замещенного бензофенона. Высвобождающиеся из 4,4'-динитробензофенона нитрогруппы образуют нитриты, которые при использующихся температурах и экономически целесообразных концентрациях вполне могут инициировать побочные реакции.
В свете обсужденного выше состояния техники перед изобретением стоит задача разработать следующий простой способ синтеза 4,4'-дифторбензофенона.
Эта задача решается за счет того, что фторбензол взаимодействует с формальдегидом в условиях кислотного катализа с образованием изомерной смеси 2,4'- и 4,4'-DFDPM, которую затем окисляют до соответствующего бензофенона. Изомеры бензофенона разделяют перекристаллизацией.
Этот способ дает следующие преимущества:
1. Как при взаимодействии, так и при окислении за исключением побочных продуктов образуется только вода и никакие другие побочные продукты, которые получались бы в стехиометрических количествах.
2. Обе реакции могут протекать при нормальном давлении и температурах от 0°C до 100°C, что заметно снижает аппаратурные затраты.
3. Кислотный катализатор можно регенерировать нагреванием в вакууме.
Объектом изобретения является способ получения 4,4'-дифторбензофенона, отличающийся тем, что на первой стадии в условиях катализа органическими сульфоновыми кислотами фторбензол приводят в реакцию с формальдегидом с образованием дифтордифенилметана, полученный при этом продукт выделяют и на второй стадии окисляют азотной кислотой до 4,4'-дифторбензофенона.
После первой стадии получают смесь, состоящую из примерно 95% изомеров дифтордифенилметана (DFDPM) и 5% более высококонденсируемых продуктов.
Образованный при этом дифтордифенилметан состоит из примерно 77% 4,4'-DFDPM и 23% 2,4'-DFDPM. Эту изомерную смесь можно путем вакуумной перегонки отделить от побочных продуктов, однако нельзя разделить на ее изомеры.
После первой стадии органические сульфоновые кислоты отделяют и регенерируют.
Избыточный фторбензол перед вакуумной перегонкой также отделяют от DFDPM.
Фторбензол является хорошим исходным веществом для фторсодержащих органических соединений, так как его получают промышленно и он относительно недорог.
Фторбензол для первой стадии реакции используют в избытке, причем он одновременно является растворителем.
Чем более разбавлен раствор, тем меньше образуется высококонденсируемых побочных продуктов в расчете на DFDPM.
Мольное отношение фторбензола к формальдегиду составляет от 5:1 до 30:1, предпочтительно от 8:1 до 12:1.
Формальдегид используется предпочтительно как триоксан или как параформальдегид. Однако можно также вводить сухой газообразный формальдегид.
Органическими сульфоновыми кислотами, подходящими в качестве катализаторов, являются, например, метансульфоновая кислота, этансульфоновая кислота, трифторметансульфоновая кислота, бензолсульфоновая кислота, м-бензолдисульфоновая кислота, бензол-1,3,5-трисульфоновая кислота, 2,4-динитробензолсульфоновая кислота, п-толуолсульфоновая кислота и фторбензолсульфоновая кислота (FBSA) или нафталиндисульфоновая кислота.
FBSA имеет по сравнению с метансульфоновой кислотой то преимущество, что она растворима во фторбензоле и также при температурах ниже 45°C приводит к заметно более быстрой реакции без неблагоприятного сдвига соотношения между изомерами от 4,4'-DFDPM к 2,4'-DFDPM, что обыкновенно бывает при высоких температурах.
Преимущество FBSA по сравнению с п-толуолсульфоновой кислотой состоит в том, что после первой стадии реакции из системы не нужно удалять никаких продуктов расщепления катализатора.
Применение FBSA как катализатора предпочтительно. FBSA обычно находится в виде изомерной смеси 4-фторбензолсульфоновой кислоты и 2-фторбензолсульфоновой кислоты.
Температура реакции на первой стадии составляет обычно от -15 до 70°C, предпочтительно от -15 до 45°C, особенно предпочтительно от 0 до 25°C.
На второй стадии изомерную смесь DFDPM окисляют азотной кислотой при температуре от 50 до 130°C, предпочтительно от 65 до 100°C, и полученный 4,4'-DFBP выделяют изомерно чистым путем перекристаллизации. Разделение изомеров можно провести перекристаллизацией из смеси уксусной кислоты и воды, что выгодно как с экономической, так и с экологической точки зрения, так как помимо уксусной кислоты не нужно никаких дополнительных растворителей.
Согласно следующей факультативной форме реализации способа по изобретению на второй стадии нитрозные газы, образующиеся при окислении азотной кислотой, окисляют молекулярным кислородом и по аналогии со способом Оствальда водой переводят в азотную кислоту. При этом может применяться как чистый кислород, так и воздух.
Далее способ согласно изобретению поясняется более подробно на примерах.
1.1 Реакция фторбензола с формальдегидом
Во фторбензоле растворяют безводную FBSA, добавляют параформальдегид в порошковой форме и несколько часов перемешивают с отведением теплоты реакции. Идет следующая реакция:
Figure 00000001
Фторбензол используется в избытке и одновременно является растворителем.
Мольное отношение фторбензола к формальдегиду составляет от 5:1 до 30:1, предпочтительно от 8:1 до 12:1.
FBSA является смесью изомеров 4-фторбензолсульфоновой кислоты и 2-фторбензолсульфоновой кислоты.
Отщепляемая при реакции вода образует с FBSA нерастворимый моногидрат.
Он начинает выкристаллизовываться уже через несколько минут реакции.
При этом FBSA должна применяться в эквимолярном соотношении с параформальдегидом, лучше в небольшом избытке.
Чем холоднее раствор, тем благоприятнее отношение 4,4'-DFDPM к 2,4'-DFDPM. 2,2'-DFDPM не образуется.
Температура составляет от -15 до +70°C, предпочтительно от 0 до 30°C. В начале реакция проводится предпочтительно при более низкой температуре, к концу температура может повышаться для скорейшего завершения реакции.
1.2 Отделение и регенерация FBSA
В конце реакции добавляется небольшое количество воды (примерно 1 г на 4 г использующейся FBSA).
Кристаллы переходят в жидкое состояние. Кислая фаза осаждается. Ее отделяют и еще раз промывают чистым фторбензолом.
Обработка FBSA может осуществляться двумя путями:
- нагревание в вакууме до 140°C, причем воду удаляют почти полностью
или
- нагревание в вакууме до 120°C в течение короткого времени, экстрагирование еще содержащего воду раствора фторбензолом и новый нагрев не растворившейся во фторбензоле фракции.
FBSA в промышленности получают сульфонированием фторбензола концентрированной серной кислотой.
Сульфонирование является обратимой реакцией. Поэтому при нагревании водосодержащей FBSA образуется некоторое количество фторбензола, который сразу же испаряется, и серная кислота. Ее нужно отделить, так как она в безводном состоянии обугливает параформальдегид, вытягивая из него воду. Эта обратная реакция тем сильнее, чем выше температура. Отщепляющийся при этом фторбензол не должен удаляться из установки.
Это является существенным преимуществом FBSA по сравнению с п-толуолсульфоновой кислотой. Отщепляющийся при этом толуол должен с большими сложностями удаляться из системы, так как иначе он будет реагировать с параформальдегидом и фторбензолом с образованием 4-метил-4'-фтордифенилметана.
При осторожном удалении воды образование толуола настолько мало, что возникающие из-за этого потери в выходе незначительны. В таком случае применение п-толуолсульфоновой кислоты благодаря ее легкой доступности предпочтительнее, чем FBSA.
1.3 Отделение фторбензола и вакуумная перегонка DFDPM
Органическую фазу последней стадии сначала промывают при комнатной температуре небольшим количеством воды, а затем раствором соды, и основное количество фторбензола отгоняют при нормальном давлении, а остаток отгоняют в вакууме при примерно 25 мбар и температуре около 90°C. Кристаллы, возможно образованные, отфильтровывают обработкой остатком раствора соды. Фильтрат состоит из изомеров DFDPM и высококонденсируемых продуктов.
Первые отгоняют при абсолютном давлении 25 мбар в интервале температур 130-140°C без разделения изомеров. При этих температурах никакие высококонденсируемые примеси еще не отгоняются.
Однако если температура в кубе перегонного аппарата поднимется до 200°C, эти примеси все больше будут встречаться в дистилляте.
Эту маленькую фракцию нужно перегонять дважды.
Кубовый продукт состоит из примесей плюс примерно 25-35% DFDPM.
1.4 Окисление азотной кислотой
Изомерную смесь DFDPM предпочтительно окисляют посредством HNO3 при температурах от 65 до 100°C.
Смесь 102 г (0,50 моль) DFDPM и 500 мл 65%-ной HNO3 (2,5 моль) греют с перемешиванием при 75°C в течение 15 часов, при этом протекает количественное окисление с образованием нитрозных газов. При охлаждении ниже 50°C органическая фаза отверждается до воскообразной массы, которая удерживается вместе в виде маленьких кристаллов 4,4'-DFBP. Эту массу отделяют от водной фазы и перекристаллизовывают.
Согласно следующей предпочтительной форме реализации способа по изобретению можно, с одной стороны, избежать высокой потребности в азотной кислоте и, с другой стороны, дорогостоящей очистки отходящих газов благодаря подсоединению абсорберной установки. При этом нитрозные газы, образующиеся при окислении азотной кислоты кислородом как окислителем, снова переводятся в азотную кислоту.
Далее этот вариант способа по изобретению описан на примерах.
В качестве реактора окисления используется трехгорлая колба с термометром, перемешиванием и нагревом.
Вторая трехгорлая колба такого же размера с мешалкой, охлаждением и подсоединением к наполненному кислородом газовому баллону служила абсорбером. Газовое пространство обеих колб было соединено друг с другом и образовывало с газовым баллоном замкнутую систему. Кроме того, были установлены два насоса. Первый перекачивал азотную кислоту из реакционной колбы в абсорбер, второй перекачивал азотную кислоту из абсорбера в колбу-реактор.
На DFDPM в реакционной колбе выливали примерно треть объема 25%-ной азотной кислоты и слегка помешивали. При этой низкой концентрации азотная кислота всплывает вверх. В абсорбер поступает такое же количество азотной кислоты с равной концентрацией. К началу общее газовое пространство обеих колб наполняют чистым кислородом. Колбу-реактор нагревают до примерно 65°C, затем греют 3 часа при примерно 75°C. Абсорбер, охлажденный до примерно 25°C, интенсивно перемешивают, чтобы увеличить поверхность между газовым пространством и жидкостью путем разбрызгивания капель. Образующиеся в реакционной колбе нитрозные газы попадают в абсорбер. На холоде они окисляются кислородом и растворяются в жидкости с образованием азотной кислоты. Это полностью аналогично получению азотной кислоты по способу Оствальда. Обогащенная азотная кислота перекачивается в реакционную колбу, а обедненная кислота с равной скоростью потока перекачивается из нее в абсорбер.
В этой реакционной системе расходуется кислород и, в целом, не образуется никакого другого газа. Кислород откачивается из присоединенного баллона до тех пор, пока реакция не остановится. По окончании окисления вся азотная кислота снова поступает в распоряжение до следующей загрузки, не считая минимальных потерь из-за нитрования DFDPM.
Азотная кислота разбавляется только образующейся при окислении водой.
Таким образом, она действует только как катализатор окисления, которое де факто осуществляется молекулярным кислородом.
При охлаждении органическая фаза отверждается с получением воскообразной массы.
1.5 Перекристаллизация
Из воскообразной массы, полученной после окисления, можно смесью ледяной уксусной кислоты и воды (9:1) как растворителем путем многократной перекристаллизации получить 4,4'-DFDPM почти любой чистоты. Для этого продукт окисления смешивают с полуторным количеством растворителя и нагревают. При примерно 80-90°C раствор становится гомогенным. При охлаждении образуется смесь кристаллов и маточного раствора, из которой путем фильтрования на нутче можно получить сырой продукт чистотой примерно 95%. Путем в совокупности трехкратной перекристаллизации с использованием каждый раз равного количества растворителя можно достичь чистоты по меньшей мере 99,5%.
Отфильтрованные на нутче кристаллы сушат в вакууме при 90°C.
Маточный раствор после первого этапа перекристаллизации упаривают в вакууме для регенерации растворителя.

Claims (5)

1. Способ получения 4,4'-дифторбензофенона, отличающийся тем, что на первой стадии фторбензол приводят в реакцию с формальдегидом в условиях катализа органическими сульфоновыми кислотами с образованием дифтордифенилметана, образованный при этом продукт выделяют и на второй стадии окисляют азотной кислотой до 4,4'-дифторбензофенона.
2. Способ по п.1, отличающийся тем, что для первой стадии реакции фторбензол применяют одновременно и как растворитель, а фторбензолсульфоновую кислоту как катализатор.
3. Способ по п.1, отличающийся тем, что температура реакции на первой стадии составляет от -15 до 70°С.
4. Способ по п.1, отличающийся тем, что на второй стадии проводят окисление азотной кислотой и образующиеся нитрозные газы окислителем снова преобразуют в азотную кислоту.
5. Способ по п.4, отличающийся тем, что в качестве окислителя применяют кислород.
RU2008108096/04A 2005-08-04 2006-07-27 Способ получения 4,4'-дифторбензофенона RU2394016C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037337A DE102005037337A1 (de) 2005-08-04 2005-08-04 Neues Verfahren zur Herstellung von 4,4'-Difluorbenzophenon
DE102005037337.2 2005-08-04

Publications (2)

Publication Number Publication Date
RU2008108096A RU2008108096A (ru) 2009-09-10
RU2394016C2 true RU2394016C2 (ru) 2010-07-10

Family

ID=37149885

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008108096/04A RU2394016C2 (ru) 2005-08-04 2006-07-27 Способ получения 4,4'-дифторбензофенона

Country Status (10)

Country Link
US (1) US7687668B2 (ru)
EP (1) EP1910259A1 (ru)
JP (1) JP2009503000A (ru)
KR (1) KR20080038147A (ru)
CN (1) CN101238089A (ru)
BR (1) BRPI0614510A2 (ru)
DE (1) DE102005037337A1 (ru)
RU (1) RU2394016C2 (ru)
TW (1) TW200720241A (ru)
WO (1) WO2007014692A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110213115A1 (en) 2008-10-24 2011-09-01 Solvay Advanced Polymers, L.L.C. Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone
CN101891603B (zh) * 2010-06-29 2012-12-19 陕西师范大学 2,6-二氟苯偶酰及其制备方法和应用
EP2588513B1 (en) 2010-07-02 2017-10-04 Solvay Specialty Polymers USA, LLC. Method of making poly(aryl ether ketones) from 4,4' difluorobenzophenone comprising oxidizing species and/or nitro compounds
US10745522B2 (en) * 2014-10-24 2020-08-18 Solvay Specialty Polymers Usa, Llc Method for the manufacture of poly(aryl ethers) using at least one organic base
EP3492449B1 (en) 2017-12-01 2020-09-23 Rhodia Operations Process for the preparation of dihalobenzophenones, new chemicals useful for its implementation and methods for preparing said chemicals
EP3492475A1 (en) 2017-12-01 2019-06-05 Rhodia Operations New cycloadduct precursors of dihalobenzophenones and preparations thereof
EP3736260A1 (en) 2019-05-10 2020-11-11 Rhodia Operations Process for the preparation of dihalobenzophenones, new chemicals useful for its implementation and methods for preparing said chemicals
EP3736259B1 (en) 2019-05-10 2022-08-03 Rhodia Operations New cycloadduct precursors of dihalobenzophenones and preparations thereof
EP3838883B1 (en) 2019-12-16 2023-07-12 Evonik Fibres GmbH Method for oxidizing a 1,1-bis-(3,4-dimethylphenyl)-alkane to 3,3',4,4'-benzophenone tetracarboxylic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2961199D1 (en) * 1978-03-31 1982-01-14 Ici Plc Preparation of 4,4'-difluorobenzophenone
DE3411326A1 (de) * 1984-03-28 1985-10-10 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von mit fluor enthaltenden gruppen substituierten, symmetrischen benzophenonen, deren verwendung und neue, mit fluor enthaltenden gruppen substituierte, symmetrische benzophenone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Lichtenberger et al. Preparation de quelques derives fluores en serie aromatique. Bulletin de la Societe Chimique de France, 1951, №5-6, pp.318-325. *

Also Published As

Publication number Publication date
WO2007014692A1 (de) 2007-02-08
US7687668B2 (en) 2010-03-30
DE102005037337A1 (de) 2007-02-15
CN101238089A (zh) 2008-08-06
RU2008108096A (ru) 2009-09-10
JP2009503000A (ja) 2009-01-29
US20090177014A1 (en) 2009-07-09
EP1910259A1 (de) 2008-04-16
KR20080038147A (ko) 2008-05-02
BRPI0614510A2 (pt) 2011-03-29
TW200720241A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
RU2394016C2 (ru) Способ получения 4,4'-дифторбензофенона
CA1325018C (en) Process for the preparation of benzoic acid derivatives
JPH10279506A (ja) ビスヒドロキシメチル化合物の製造方法
JP3441735B2 (ja) フルオロメチル−1,1,1,3,3,3−ヘキサフルオロイソプロピルエーテルの製造方法
JPS621935B2 (ru)
Fuglseth et al. Electrophilic and nucleophilic side chain fluorination of para-substituted acetophenones
FR2739098A1 (fr) Procede d'acylation d'un compose aromatique
JPH08319244A (ja) オキシスルフィド含有弗素含有有機誘導体の合成のための試薬及び方法
KR910004483B1 (ko) 2,3,5-트리메틸벤조퀴논의 제조방법
RU2671581C1 (ru) Способ получения динитропроизводных дифениловых и трифениловых эфиров
JP2813163B2 (ja) 4,6−ジアミノレゾルシノールの製造方法
JPH024580B2 (ru)
JPH0161091B2 (ru)
US6930214B2 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
EP0756588A1 (fr) Procede de carboxylation d'un ether de phenol
JP7476448B2 (ja) 4-ヒドロキシ-2-メチル安息香酸の製造方法
RU2478606C1 (ru) Способ получения 1-(2-метил-4-феноксифенил)-бутан-1,3-диона
JP2000510853A (ja) 二塩酸4,6―ジアミノ―レゾルシノールの製造方法
US5037994A (en) Regioselective nitration of diphenyl compounds
JP2001508763A (ja) 電子求引性基で置換されたフェノール性化合物のニトロソ化方法及びその使用
KR890003596B1 (ko) 3,3'-디니트로디페닐 화합물의 정제방법
KR860001546B1 (ko) 플루오로벤조페논유도체 제조방법
JP2553075B2 (ja) シクロゲラニルフエニルスルホンの製造方法
JPH0710815B2 (ja) 3,3’−ジニトロベンゾフエノンの精製方法
JPH02334B2 (ru)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120728