RU2393108C2 - Приготовление синтез-газа для синтеза уксусной кислоты путем частичного окисления метанольного сырья - Google Patents

Приготовление синтез-газа для синтеза уксусной кислоты путем частичного окисления метанольного сырья Download PDF

Info

Publication number
RU2393108C2
RU2393108C2 RU2006139769/15A RU2006139769A RU2393108C2 RU 2393108 C2 RU2393108 C2 RU 2393108C2 RU 2006139769/15 A RU2006139769/15 A RU 2006139769/15A RU 2006139769 A RU2006139769 A RU 2006139769A RU 2393108 C2 RU2393108 C2 RU 2393108C2
Authority
RU
Russia
Prior art keywords
stream
methanol
synthesis
partial oxidation
hydrogen
Prior art date
Application number
RU2006139769/15A
Other languages
English (en)
Other versions
RU2006139769A (ru
Inventor
Даниэл Марсел ТИБОТ (FR)
Даниэл Марсел ТИБОТ
Original Assignee
Асетэкс (Кипр) Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Асетэкс (Кипр) Лимитед filed Critical Асетэкс (Кипр) Лимитед
Publication of RU2006139769A publication Critical patent/RU2006139769A/ru
Application granted granted Critical
Publication of RU2393108C2 publication Critical patent/RU2393108C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04587Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for the NH3 synthesis, e.g. for adjusting the H2/N2 ratio
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

Изобретение относится к области химии. В реакторе частичного окисления проводят реакцию метанольного сырьевого потока и кислорода и, необязательно, регулятора температуры для получения потока синтез-газа. Реактор частичного окисления включает горелку в открытом некаталитическом газогенераторе со свободным потоком и работает в интервале температур 1100-2000°С. Поток синтез-газа разделяют на поток с повышенным содержанием диоксида углерода и смешанный поток, содержащий водород/оксид углерода, который затем разделяют на поток с повышенным содержанием водорода и поток с повышенным содержанием оксида углерода. Переоснащение исходной установки производства метанола в установку синтеза уксусной кислоты включает стадии: обеспечения исходной установки производства метанола, имеющей по меньшей мере один реактор частичного окисления для превращения углеводорода в поток синтез-газа и контур синтеза метанола для превращения водорода и оксида углерода из потока синтез-газа в метанол, обеспечения подачи по меньшей мере части метанольного сырьевого потока, кислорода из установки разделения воздуха и, необязательно, регулятора температуры в по меньшей мере один реактор частичного окисления, монтажа первой разделительной установки для выделения потока с повышенным содержанием диоксида углерода и смешанного потока водорода/оксида углерода из выходящего потока синтез-газа, монтажа второй разделительной установки для выделения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода из смешанного потока, монтажа установки синтеза уксусной кислоты, обеспечения подачи потока с повышенным содержанием оксида углерода из второй разделительной установки и части метанольного сырьевого потока в установку синтеза уксусной кислоты и монтажа отсекающих клапанов для изоляции контура синтеза метанола от остальной части реконструированной установки. Изобретения позволяют повысить экономичность процесса. 3 н. и 15 з.п. ф-лы, 10 ил.

Description

Известный уровень техники
Настоящее изобретение относится в общем к способу получения водорода и оксида углерода путем реформинга с частичным окислением низшего спирта, например метанола, более конкретно к способу получения уксусной кислоты из метанольного сырья и оксида углерода, полученного путем частичного окисления метанола.
В последние годы производство метанола возросло в странах с высокой добычей газа благодаря созданию высокопроизводительных установок, использующих высокоэффективные процессы, например технологию Megа-methanol. Рыночные условия в различных регионах могут часто приводить к относительно низким ценам на метанол (в случае избыточного предложения) и относительно высоким ценам на природный газ (в случае дефицита), обычно вследствие чрезмерного использования на обогрев зданий и домов, а также высокого потребления на электростанциях. Например, на химических заводах, где синтез-газ производится с целью извлечения СО для синтеза уксусной кислоты, высокая стоимость может сделать природный газ неприемлемым по цене для использования в качестве сырья.
Первичными сырьевыми материалами в производстве уксусной кислоты являются оксид углерода (СО) и метанол. Путем переоснащения существующих установок производства метанола с включением установок синтеза уксусной кислоты можно устранить стадию подачи извне метанола для синтеза уксусной кислоты, вместо этого производя метанол для синтеза уксусной кислоты in situ. Переоборудование существующих установок производства метанола для производства уксусной кислоты известно в уровне техники. Типичные источники, раскрывающие этот и аналогичные процессы, включают патенты США №6232352, выданный на имя Vidalin, 6274096, выданный на имя Thiebaut et al., и 6353133, выданный на имя Thiebaut et al., которые все целиком включены сюда в качестве ссылок.
В патенте США №3920717, Marion раскрывают непрерывный процесс производства метанола из твердого и/или жидкого углеводородного материала в не содержащей катализатора реакционной зоне с использованием реактора частичного окисления. В патенте США №4006099, Marion et al. раскрывают повышенную эффективность сжигания при некаталитическом частичном окислении жидких углеводородных материалов в горелке с двойным кольцевым каналом. В патентах США №4081253 и 4110359, Marion раскрывают способ производства синтез-газа, по существу содержащего H2 и СО и имеющего молярное отношение (H2/CO), равное примерно от 0,5 до 1,9, путем частичного окисления углеводородного топлива по существу чистым кислородом.
Использование реакторов частичного окисления для реформинга сырьевого природного газа в синтез-газ хорошо известно специалистам. Типичные источники, раскрывающие реакторы частичного окисления для производства синтез-газа, включают патент США №2896927, выданный на имя Nagle et al.; патент США №3920717, выданный на имя Marion; патент США №3929429, выданный на имя Crouch; и патент США №4081253, выданный на имя Marion, которые все целиком включены сюда в качестве ссылок.
Производство водорода из метанола с использованием катализатора реформинга метанола, самого или в сочетании с водород-генерирующим реактором со сдвигом химического равновесия (shift reactor), известно специалистам. Типичные источники, раскрывающие этот и подобные процессы, включают патент США №4175115, выданный на имя Ball et al.; патент США №4316880, выданный на имя Jockel et al.; патент США №4780300, выданный на имя Yokoyama; и патент США №6171574, выданный на имя Juda, которые все целиком включены сюда в качестве ссылок.
Производство уксусной кислоты из оксида углерода и метанола с использованием катализатора карбонилирования хорошо известно специалистам, как показывают типичные источники, раскрывающие этот и другие подобные процессы, включая патент США №1961736, выданный на имя Carlin et al.; патент США №3769329, выданный на имя Paulik et al.; патент США №5155261, выданный на имя Marston et al.; патент США №5672743, выданный на имя Garland et al.; патент США №5728871, выданный на имя Joensen et al.; патент США №5817869, выданный на имя Hinnenkamp et al.; патенты США №5877347 и 5877348, выданные на имя Ditzel et al.; патент США №5883289, выданный на имя Denis et al.; и патент США №5883295, выданный на имя Sunley et al., которые все целиком включены сюда в качестве ссылок.
Первичными сырьевыми материалами для производства мономера винилацетата (VAM) являются этилен, уксусная кислота и кислород. Диоксид углерода образуется в качестве нежелательного побочного продукта реакции и должен быть удален из рециркулируемого этилена. Значительной статьей расходов на новые мощности по производству синтез-газа, метанола, уксусной кислоты и производных уксусной кислоты, таких как VAM, являются капитальные затраты на необходимое оборудование. Другие значительные статьи расходов включают эксплуатационные затраты, включая стоимость сырьевых материалов. Было бы желательным снизить эти капитальные и эксплуатационные расходы.
Насколько известно заявителю, в известном уровне техники не раскрыта подача исходного метанольного сырья в реактор частичного окисления для производства водорода и оксида углерода для синтеза уксусной кислоты. Далее, насколько известно заявителю, в известном уровне техники не раскрыта модификация существующей установки по производству метанола, имеющей реакторы частичного окисления для реформинга низшего спирта, например метанола, в присутствии диоксида углерода, кислорода, водяного пара или их комбинации.
Сущность изобретения
Настоящее изобретение относится к способу приготовления синтез-газа в результате частичного окисления метанола, пригодному для использования в тех случаях, когда стоимость метанольного сырьевого потока является низкой по сравнению со стоимостью природного газа, и, более конкретно, к способу получения уксусной кислоты из метанола и СО, в котором СО выделяют из синтез-газа, полученного частичным окислением исходного метанольного сырья.
Настоящее изобретение предусматривает, в одном варианте исполнения, способ получения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода. Способ включает стадии (а) проведения реакции метанольного сырьевого потока и потока с повышенным содержанием кислорода и, необязательно, регулятора температуры в реакторе частичного окисления для получения потока синтез-газа, (b) разделения потока синтез-газа на поток с повышенным содержанием диоксида углерода и смешанный поток, содержащий водород/оксид углерода, и (с) разделения смешанного потока на поток с повышенным содержанием водорода и поток с повышенным содержанием оксида углерода. Способ может далее включать стадию испарения метанольного сырьевого потока перед подачей в реактор частичного окисления. Регулятор температуры может быть выбран из водяного пара, диоксида углерода, азота, охлажденного и рециркулируемого выходящего потока или их смесей. Регулятор температуры может быть потоком с повышенным содержанием диоксида углерода, рециркулируемым из выходящего потока реактора. Реактор частичного окисления может быть некаталитическим и работать при температуре от 1100 до 2000°С. Предпочтительно, реактор частичного окисления может работать при температуре в интервале от 1300 до 1500°С. Способ может далее включать проведение реакции части метанольного сырьевого потока с потоком с повышенным содержанием оксида углерода для производства уксусной кислоты. Способ может далее включать стадии обеспечения потока азота из установки разделения воздуха и подачи потока азота и потока с повышенным содержанием водорода в установку синтеза аммиака для производства аммиака. Способ может далее включать стадии обеспечения потока этилена и подачи потока этилена, кислорода и уксусной кислоты в установку синтеза мономера винилацетата для производства мономера винилацетата. Кислород, подаваемый в реактор частичного окисления и в установку синтеза мономера винилацетата, может обеспечиваться одной установкой разделения воздуха.
Настоящее изобретение предусматривает, в другом варианте исполнения, способ переоборудования исходной установки производства метанола в реконструированную установку синтеза уксусной кислоты. Способ включает стадии (а) обеспечения исходной установки производства метанола, имеющей по меньшей мере один реактор частичного окисления для превращения углеводорода в поток синтез-газа, содержащего водород, оксид углерода и диоксид углерода; и контур синтеза метанола для превращения водорода и оксида углерода из потока синтез-газа в метанол, (b) обеспечения подачи по меньшей мере части метанольного сырьевого потока, кислорода из установки разделения воздуха и, необязательно, регулятора температуры в по меньшей мере один реактор частичного окисления, (с) монтажа первой разделительной установки для выделения потока с повышенным содержанием диоксида углерода и смешанного потока водорода/оксида углерода из выходящего потока синтез-газа, (d) монтажа второй разделительной установки для выделения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода из смешанного потока, (е) монтажа установки синтеза уксусной кислоты, (f) обеспечения подачи потока с повышенным содержанием оксида углерода из второй разделительной установка и части метанольного сырьевого потока в установку синтеза уксусной кислоты; и (g) монтажа отсекающих клапанов для изоляции контура синтеза метанола от остальной части реконструированной установки. Исходное метанольное сырье может испаряться перед подачей в реактор частичного окисления. Способ может далее включать стадии (h) монтажа установки синтеза аммиака для проведения реакции потока с повышенным содержанием водорода и азота с образованием аммиака, (i) обеспечения подачи по меньшей мере части потока с повышенным содержанием водорода из разделительной установки в установку синтеза аммиака; и (j) обеспечения потока азота из установки разделения воздуха в установку синтеза аммиака. Способ может далее включать стадии монтажа установки синтеза мономера винилацетата для проведения реакции этилена, кислорода и уксусной кислоты с образованием мономера винилацетата, обеспечения подачи по меньшей мере части кислорода из установки разделения воздуха в установку синтеза мономера винилацетата; и получения потока с повышенным содержанием диоксида углерода в установке синтеза мономера винилацетата. Способ может далее включать рециркуляцию потока с повышенным содержанием диоксида углерода в реактор частичного окисления.
В другом варианте исполнения настоящее изобретение предусматривает способ получения водорода, оксида углерода и уксусной кислоты из метанола. Способ включает стадии (а) подачи испаренного метанольного сырьевого потока, потока с повышенным содержанием кислорода и, необязательно, регулятора температуры в некаталитический реактор частичного окисления для получения потока синтез-газа, содержащего водород, оксид углерода и диоксид углерода, (b) выделения потока с повышенным содержанием диоксида углерода и смешанного потока водорода/оксида углерода из потока синтез-газа, (с) выделения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода из смешанного потока, и (d) проведения реакции потока с повышенным содержанием оксида углерода с метанолом в установке синтеза уксусной кислоты для производства уксусной кислоты. Способ может далее включать стадию рециркуляции по меньшей мере части потока с повышенным содержанием диоксида углерода в некаталитический реактор частичного окисления в качестве регулятора температуры.
Краткое описание чертежей
Фиг.1 представляет собой упрощенную общую блок-схему производства водорода и оксида углерода из метанола по одному варианту исполнения настоящего изобретения.
Фиг.2 представляет собой упрощенную общую блок-схему установки по Фиг.1, в которую был добавлен реактор уксусной кислоты для синтеза уксусной кислоты.
Фиг.3 представляет собой упрощенную общую блок-схему установки по Фиг.2, в которую был добавлен реактор синтеза аммиака для синтеза аммиака.
Фиг.4 представляет собой упрощенную общую блок-схему установки по Фиг.2, в которую был добавлен реактор мономера винилацетата для синтеза мономера винилацетата.
Фиг.5 представляет собой упрощенную общую блок-схему установки по Фиг.3, в которую был добавлен реактор мономера винилацетата для синтеза мономера винилацетата.
Фиг.6 представляет собой упрощенную общую блок-схему производства водорода и оксида углерода из метанола, в которой диоксид углерода выделяют и рециркулируют в реактор, по альтернативному варианту исполнения настоящего изобретения.
Фиг.7 представляет собой упрощенную общую блок-схему установки по Фиг.6, в которую был добавлен реактор уксусной кислоты для синтеза уксусной кислоты.
Фиг.8 представляет собой упрощенную общую блок-схему установки по Фиг.7, в которую был добавлен реактор аммиака для синтеза аммиака.
Фиг.9 представляет собой упрощенную общую блок-схему установки по Фиг.7, в которую был добавлен реактор мономера винилацетата для синтеза мономера винилацетата.
Фиг.10 представляет собой упрощенную общую блок-схему установки по Фиг.8, в которую был добавлен реактор мономера винилацетата для синтеза мономера винилацетата.
Описание изобретения
Далее раскрыты детальные варианты исполнения настоящего изобретения. Однако следует понимать, что раскрытые варианты исполнения являются просто примерами исполнения изобретения, которое может быть осуществлено в разных формах. Конкретные структурные и функциональные детали, раскрытые тут, должны рассматриваться не как ограничения, а просто как иллюстрации, которые могут быть модифицированы в рамках прилагаемой формулы изобретения.
Установка для осуществления процесса реформинга метанола в реакторе частичного окисления для производства синтез-газа может быть новой установкой или, предпочтительно, получается в результате реконструкции существующей установки по производству метанола, которая включает по меньшей мере один реактор частичного окисления.
Настоящее изобретение предусматривает решение проблем, ассоциированных с производством синтез-газа из природного газа в тех случаях, когда стоимость природного газа является высокой. При наличии таких экономических условий установки, предназначенные для синтеза метанола и уксусной кислоты, могут быть перепрофилированы на производство уксусной кислоты с использованием имеющегося метанольного сырья в качестве исходного материала для подачи в реактор вместо природного газа.
Превращение метанола в оксид углерода и водород описывается в общем следующими реакциями:
СН3ОН↔СО+2Н2,
СН3ОН+Н2O↔3Н2+СO2.
При необходимости, производство оксида углерода может быть увеличено с помощью реакции с обратным сдвигом химического равновесия (приведена ниже), в которой диоксид углерода и водород соединяются с образованием оксида углерода и воды.
СO22↔СО+H2O.
На Фиг.1 изображен процесс частичного окисления метанольного сырьевого потока для производства потока синтез-газа, который может быть разделен на потоки водорода (Н2) и оксида углерода (СО) для дальнейшего использования. Поток метанола 110 подается в некаталитический реактор частичного окисления (РОХ) 112 существующей установки синтеза метанола, где он соединяется с кислородом 114 и, необязательно, паром 116. Поток метанола 110 предпочтительно представляет собой поступающий с предшествующей стадии очищенный сырьевой поток или коммерческий метанольный продукт, который очищают перегонкой или другим обычным способом. Кислород 114 получают из установки разделения воздуха (ASU) 111, в которую подается сжатый воздух. Пар 116 может предпочтительно поступать с существующих вспомогательных производств. Азот и избыток кислорода (не показан), вырабатываемые ASU 111, могут подаваться на средства управления.
Если кислородное сырье 114 не ограничено, метанольное сырье 110 может подаваться в реактор при комнатной температуре. Однако если подача кислорода 114 ограничена, метанольное сырье 110 может предварительно нагреваться и/или испаряться (не показано) перед подачей в реактор РОХ 112. При подаче в реактор частичного окисления 112 метанола 110 при комнатной температуре с избытком кислорода 114 содержание водорода в выходящем потоке синтез-газа 118 уменьшается.
Реактор РОХ 112 может вырабатывать выходящий поток синтез-газа 118, состоящего из H2, CO и СO2. Выходящий поток 118 обычно чище, чем синтез-газ, вырабатываемый из сырья на основе природного газа, поскольку большая часть примесей удаляется в процессе синтеза метанольного сырьевого потока 110. Выходящий поток 118, после охлаждения, может подаваться в установку выделения СО2 120, которая вырабатывает поток с повышенным содержанием СО2 122 и смешанный поток CO/H2 124, по существу не содержащий СО2. Поток с повышенным содержанием CO2 122 может сбрасываться в атмосферу, а смешанный поток СО/Н2 124 может подаваться в разделительную установку 126.
Разделительная установка 126 предпочтительно включает молекулярные сита и обычную холодильную камеру. Разделительная установка 126 разделяет смешанный поток 124 по меньшей мере на поток с повышенным содержанием СО 128 и поток с повышенным содержанием H2 130, но может также включать незначительные количества одного или нескольких остаточных или хвостовых газовых потоков смешанных H2 и СО, которые могут быть использованы в качестве топлива или выводиться за пределы установки (не показано). Поток с повышенным содержанием СО 128 и поток с повышенным содержанием Н2 130 могут подаваться в разные процессы, такие как, например, в установки синтеза уксусной кислоты или установки синтеза аммиака соответственно, как подробнее описано ниже.
Как показано на Фиг.2, поток с повышенным содержанием СО 128 может подаваться в установку синтеза уксусной кислоты 132, где он объединяется с потоком метанола 134, который может быть получен из того же сырья, которое подается в реактор РОХ 112. Установка синтеза уксусной кислоты 132 может использовать технологическое оборудование и методологию, хорошо известные и/или коммерчески доступные специалистам в данной области техники, для получения уксусной кислоты 136 из СО в потоке 128 и метанола в потоке 134, например, в соответствии с одним или несколькими из указанных выше патентов, описывающих производство уксусной кислоты. Например, может быть использован обычный процесс BP/Monsanto или усовершенствованный процесс BP/Monsanto с использованием технологии BP-Cativa (иридиевый катализатор), технологии Celanese с низким содержанием воды (катализатор на основе родия-ацетата лития), технологии Millennium с низким содержанием воды (катализатор на основе родия-оксида фосфора) и/или двойной процесс карбонилирования метанола-изомеризации метилформиата. Реакция обычно включает проведение реакции метанола, метилформиата или их комбинации в присутствии реакционной смеси, содержащей оксид углерода, воду и растворитель, и системы катализатора, состоящей из по меньшей мере одного галогенированного промотора и по меньшей мере одного соединения родия, иридия или их комбинаций.
Реакционная смесь для синтеза уксусной кислоты предпочтительно имеет содержание воды менее 20 мас.%, более предпочтительно приблизительно от 14 до 15 мас.%. Когда реакция включает карбонилирование при низком водосодержании, содержание воды в реакционной смеси составляет предпочтительно от примерно 2 до примерно 8 мас.%. Если реакция включает изомеризацию метилформиата или комбинацию изомеризации и карбонилирования метанола, реакционная смесь предпочтительно содержит ненулевое количество воды, составляющее до 2 мас.%.
Как показано на Фиг.3, процесс может необязательно включать установку синтеза аммиака 144, предназначенную для использования Н2 из потока синтез-газа 118 и азота из ASU 111. Весь или часть потока водорода 130 из разделительной установки СО/Н2 126 вводится в реакцию с потоком N2 142 из установки разделения воздуха с образованием аммиака, собранного в поток 146. Выход аммиака из установки синтеза 144 может быть увеличен путем увеличения подачи водорода или путем добавления второй установки синтеза аммиака (не показано).
Как показано на Фиг.4, процесс может необязательно включать установку синтеза мономера винилацетата (VAM) 156. Часть уксусной кислоты из линии 136 может подаваться по линии 150 в установку синтеза VAM 156, где она может вводиться в реакцию с этиленом 152 из линии 154 и по меньшей мере частью кислорода 113 из установки разделения воздуха 111. Поток жидкого продукта 158 обрабатывается в обычной установке перегонки VAM 160 для производства по существу чистого (торговая спецификация) VAM из линии 162. Диоксид углерода, вырабатываемый в качестве побочного продукта синтеза VAM, может быть выделен из выходящего потока реакторных газов в обычной системе удаления СО2 (не показано) и рециркулироваться в реактор РОХ 112 по линии 164.
Производство VAM может осуществляться преимущественно путем ацетоксилирования этилена по реакции:
С2Н4+АсОН+1/2O2→VAM+Н2O.
Основной побочный продукт CO2 образуется по реакции:
С2Н4+3O2→2СO2+2Н2O.
Селективность выхода процесса составляет примерно 7-8% СO2 по массе. Типично, установка VAM, производящая приблизительно 100000 метрических тонн в год (МТY) VAM, требует приблизительно 35000 MTY этилена и вырабатывает от 5000 до 10000 MTY CO2.
Как показано на Фиг.5, установка синтеза винилацетата 156 может быть добавлена к существующей установке синтеза уксусной кислоты 132 и установке синтеза аммиака 144 для оптимального использования потока синтез-газа. В установку синтеза VAM 156 может подаваться часть потока продукта уксусной кислоты 136 из линии 150 для синтеза мономера. Сырой VAM выходит из установки синтеза VAM 156 по линии 158 и поступает в установку перегонки 160 для получения потока продукта 162. Диоксид углерода, вырабатываемый в качестве побочного продукта синтеза VAM, может выделяться из выходящего потока реакторных газов с помощью обычной системы удаления CO2 (не показано) и рециркулироваться в реактор РОХ 112 по линии 164.
Как показано на Фиг.6, весь или часть диоксида углерода 222, вырабатываемого и выделяемого из выходящего потока синтез-газа 218, рециркулируется в реактор РОХ 212. Поток метанола 210 поступает в реактор частичного окисления (POX) 212 существующей установки синтеза метанола, где он объединяется с кислородом 214 и диоксидом углерода 222. Поток метанола 210 представляет собой предпочтительно поступающее с предшествующих стадий метанольное сырье, которое было ранее очищено перегонкой или другим обычным способом (не показано). Кислород 214 поступает из ранее существовавшей установки разделения воздуха (ASU) 211, в которую подается сжатый воздух. Диоксид углерода 222 может быть получен в результате реформинга метанола 210 и может рециркулироваться в реактор 212 в качестве сырья.
Реактор РОХ 212 может вырабатывать выходящий поток синтез-газа 218, состоящий из Н2, СО и СO2. Выходящий поток 218 обычно чище, чем синтез-газ, вырабатываемый из сырьевого природного газа, поскольку большая часть примесей удаляется из сырья в процессе синтеза. Выходящий поток 218 после охлаждения может подаваться в установку выделения CO2 220, которая вырабатывает поток СО2 с повышенным содержанием 222 и смешанный поток СО/Н2 224, по существу не содержащий СO2. Поток с повышенным содержанием СO2 222 может рециркулироваться в реактор РОХ 212, а смешанный поток СО/Н2 224 поступает в разделительную установку 226. Рециркуляция потока с повышенным содержанием СO2 в реактор РОХ может увеличить производство СО примерно на 5-10% и снизить производство водорода примерно на 3-8%. Если СO2 рециркулируется в реактор РОХ, то при данной производительности снижается потребность в метанольном сырье.
Разделительная установка 226 предпочтительно включает молекулярные сита и обычную холодильную камеру. Разделительная установка 226 разделяет поток 224 по меньшей мере на поток с повышенным содержанием СО 228 и поток с повышенным содержанием Н2 230, но может также включать незначительные количества одного или нескольких остаточных или хвостовых газовых потоков смешанных Н2 и СО, которые могут быть использованы в качестве топлива, рециркулироваться в реактор или выводиться за пределы системы (не показано).
Как показано на Фиг.7, поток с повышенным содержанием СО 228 может быть объединен со стехиометрическим количеством метанольного сырья 234 для получения уксусной кислоты 236, для проведения описанного выше процесса синтеза. Как показано на Фиг.8, поток с повышенным содержанием Н2 230 может вводиться в реакцию с азотом 242 из ASU 240 в установке синтеза аммиака 244 для получения продукта аммиака 246. Альтернативно, весь или часть потока с повышенным содержанием Н2 может подаваться в качестве топлива или выводиться за пределы установки в альтернативный процесс (не показано).
Как показано на Фиг.9, процесс может, необязательно, включать установку синтеза мономера винилацетата (VAM) 256. Часть уксусной кислоты из линии 236 может подаваться по линии 250 в установку синтеза VAM 256, где она вводится в реакцию с этиленом 252 из линии 254 и по меньшей мере частью кислорода 213 из установки разделения воздуха 211. Поток жидкого продукта 258 может обрабатываться в обычной установке перегонки VAM 260 для производства по существу чистого (торговая спецификация) VAM в линии 262. Диоксид углерода, вырабатываемый в качестве побочного продукта синтеза VAM, может выделяться из выходящего потока реакторных газов в обычной системе удаления CO2 (не показано) и рециркулироваться в реактор РОХ 212 по линии 264.
Как показано на Фиг.10, установка синтеза винилацетата 256 может быть добавлена к существующей установке синтеза уксусной кислоты 232 и установке синтеза аммиака 244 для оптимального использования потока синтез-газа. В установку синтеза VAM 256 может подаваться часть потока продукта уксусной кислоты 236 из линии 250, этилена 252 из линии 254 и кислорода из ASU 211 по линии 213. Сырой VAM выходит из установки синтеза VAM 256 по линии 258 и поступает в установку перегонки 260 для производства потока продукта 262. Диоксид углерода, вырабатываемый в качестве побочного продукта синтеза VAM, может выделяться из выходящего потока реакторных газов в обычной системе удаления СО2 (не показано) и рециркулироваться в реактор РОХ 212 по линии 264.
Вспомогательные материалы (не показано), которые типично включают систему производства пара, воду охлаждения, сжатый воздух и т.п., могут подаваться от ранее существовавшей установки производства метанола и могут быть использованы также для снабжения ассоциированных процессов, таких как, например, установки синтеза уксусной кислоты и аммиака. Пар, генерируемый в результате регенерации отходящего тепла из установки синтеза уксусной кислоты 132 и/или любой другой ассоциированной интегрированной установки, может быть использован в качестве источника энергии или пара питания водяных насосов (не показаны), компрессора ASU 111, реактора РОХ 112, установки удаления СO2 120 и т.п.
Реактор частичного окисления может включать горелку в некаталитическом газогенераторе, работающем в режиме свободного потока, в который подаются предварительно подогретые углеводород и кислород. Необязательно, в реактор может подаваться также регулятор температуры. Выходящий поток реактора частичного окисления затем гасится или охлаждается, и, необязательно, очищается для удаления сажи и других дисперсных загрязнений, и может далее обрабатываться или разделяться для дополнительных дальнейших применений. В тех случаях когда газообразный водород является желательным конечным продуктом, например, для реакторов синтеза аммиака, высоко- и низкотемпературные конвертеры со сдвигом химического равновесия могут быть использованы для превращения СО и пара в водород и СО2. Если желательным конечным продуктом является оксид углерода, например, для реакторов синтеза уксусной кислоты, возможно присутствующий CO2 может быть удален и рециркулирован в реактор для увеличения производства СО, или реакторы с обратным сдвигом химического равновесия могут быть использованы для превращения CO2 и H2 в СО и Н2O.
Если реактор частичного окисления является частью существующей установки производства метанола, горелка может быть переналажена для работы с использованием метанольного сырья. Температура реактора частичного окисления может поддерживаться в интервале 1100-2000°С (2000-3600°F), предпочтительно в интервале 1300-1500°С (2400-2700°F). Давление реактора может поддерживаться в интервале от 2 до 6 МПа, предпочтительно приблизительно 4 МПа.
Производство синтез-газа из жидких и твердых углеродсодержащих материалов может часто приводить к присутствию многих нежелательных примесей, таких как, например, СO2, SO2, COS, CH4, Ar, N2, H2O и NH3. Типично, если природный газ используется в качестве сырья для производства синтез-газа, установка десульфуризации/насыщения со слоем катализатора, такого как, например, никель/молибденовый катализатор, может быть использована для удаления серы из сырьевого потока до подачи в реактор. Поскольку природный газ, используемый для синтеза метанола, был уже подвергнут обессериванию и метанольный продукт был уже очищен перегонкой или другим обычным способом очистки, многие нежелательные примеси, обычно присутствующие после синтеза с использованием природного газа, эффективно удаляются из продукта синтез-газа.
Выходящий поток со стадии частичного окисления имеет молярное отношение Н2-СO2 к СО+СO2 (обозначаемое в настоящем описании как "отношение R" (Н2-СO2)/(СО+СO2)), которое может быть оптимизировано для производства СО. В общем, для производства метанола желательным является отношение R, равное приблизительно 2,0. Для синтеза синтез-газа с высоким содержанием СО, отношение Н2 к СО может меняться в интервале от 1,5 до 3, предпочтительно от 1,5 до 2.
Пригодные регуляторы температуры для контроля реакционных условий могут быть введены в реакционную зону и могут включать Н2O, СO2 и N2 из установки разделения воздуха, топочный газ, охлажденный и рециркулируемый поток выходящего газа и их смеси. Необходимость использования регулятора температуры обычно вызвана отношением углерод:водород углеводородного сырья и присутствием свободного кислорода. Предпочтительно регулятор температуры может включать часть СO2, охлажденного и выделенного из выходящего потока реактора частичного окисления и рециркулируемого назад в сырьевой поток реактора. При использовании в качестве регулятора температуры пара контроль объемного расхода позволяет ограничить или предотвратить образование сажи в реакторе.
Установка удаления СО2 разделяет выходящий поток на потоки с повышенным и пониженным содержанием СO2 с помощью обычного оборудования и методик выделения СO2, таких как, например, выделение легких фракций абсорбцией в растворителе, таком как вода, метанол, обычно, водные алканоламины, такие как этаноламин, диэтаноламин, метилдиэтаноламин и т.п., водные карбонаты щелочных металлов, такие как карбонаты натрия и калия, и т.п. Такие процессы абсорбционного удаления СO2 являются коммерчески доступными под торговыми наименованиями Girbotol, Sulfinol, Rectisol, Purisol, Fluor, BASF (aMDEA) и т.п.
Поток с пониженным содержанием СO2 содержит преимущественно СО и водород и может быть разделен в установке разделения СО на потоки с повышенным содержанием СО и с повышенным содержанием водорода. Разделительная установка может использовать любые известные специалистам оборудование и/или методики для разделения смеси СО и водорода на относительно чистые потоки СО и водорода, такие как, например, полупроницаемые мембраны, криогенное фракционирование и т.п. Предпочтительной является криогенная фракционная перегонка, которая может включать простую частичную конденсацию без колонн, необязательно, с использованием абсорбционной установки с колебаниями давления (PSA) и компрессора рециркуляции водорода, или промывку метаном. Частичная конденсация с колоннами обычно достаточна для получения СО и водорода достаточной степени чистоты для производства уксусной кислоты и аммиака соответственно, что позволяет свести к минимуму расходы на оборудование и эксплуатацию. Установка PSA и компрессор рециркуляции водорода могут быть добавлены для повышения чистоты водорода и производительности по СО, если это необходимо. Для производства уксусной кислоты поток СО предпочтительно содержит менее 1000 млн-1 водорода и менее 2 мол.% азота плюс метана. Для производства аммиака поток водорода, который подается в установку азотной промывки (не показано), предпочтительно содержит по меньшей мере 80 мол.% водорода, более предпочтительно содержит по меньшей мере 95 мол.% водорода.
Пример 1. Метанольный сырьевой поток подается в реактор частичного окисления для выделения водорода и оксида углерода. Поток метанола подается с расходом 1438 кмоль/ч и объединяется с 719 кмоль/ч кислорода и 884 кмоль/ч пара. Реактор частичного окисления работает при приблизительно 1300°С (2372°F) и 4 МПа, вырабатывая выходящий поток синтез-газа. Диоксид углерода может быть удален из потока синтез-газа с образованием потоков оксида углерода и водорода с повышенным и пониженным содержанием диоксида углерода. Поток с повышенным содержанием диоксида углерода может сбрасываться в атмосферу или собираться. Поток с пониженным содержанием диоксида углерода может подаваться в холодильную камеру, где компоненты водорода и оксида углерода разделяются с получением 1045 кмоль/ч оксида углерода и 1812 кмоль/ч водорода.
Пример 2. Метанольный сырьевой поток подается в реактор частичного окисления для выделения водорода и оксида углерода. Поток метанола подается с расходом 1438 кмоль/ч и объединяется с 719 кмоль/ч кислорода, 350 кмоль/ч пара и 296 кмоль/ч диоксида углерода, рециркулируемого из выходящего потока реактора. Реактор частичного окисления работает при приблизительно 1400°С (2552°F) и 4 МПа с образованием выходящего потока синтез-газа. Диоксид углерода удаляется из потока синтез-газа известными методами с получением потоков оксида углерода и водорода с повышенным и пониженным содержанием диоксида углерода. Поток с повышенным содержанием диоксида углерода рециркулируется в реактор частичного окисления с расходом 296 кмоль/ч. Поток с пониженным содержанием диоксида углерода подается в холодильную камеру, где компоненты разделяются с получением 1045 кмоль/ч оксида углерода и 1812 кмоль/ч водорода.
Пример 3. Производство уксусной кислоты в установке с условиями эксплуатации по Примеру 1. Стехиометрическое количество метанола (1045 кмоль/ч) прибавляется к потоку с повышенным содержанием оксида углерода (1045 кмоль/ч) в установке синтеза уксусной кислоты для получения приблизительно 1045 кмоль/ч уксусной кислоты.
Пример 4. Производство уксусной кислоты в установке с условиями эксплуатации по Примеру 2. Стехиометрическое количество метанола (1134 кмоль/ч) прибавляется к потоку с повышенным содержанием оксида углерода (1134 кмоль/ч) в установке синтеза уксусной кислоты для получения приблизительно 1134 кмоль/ч уксусной кислоты.
Изобретение описано выше со ссылками на конкретные примеры и варианты исполнения. Границы и пределы изобретения не должны ограничиваться приведенным выше описанием, которое является только иллюстративным, а определяются в соответствии с полным объемом и сущностью прилагаемой формулы изобретения. Различные модификации будут очевидны специалистам в данной области техники с учетом описания и примеров. Предполагается, что все такие варианты в пределах объема и сущности приложенной формулы изобретения входят в ее объем.

Claims (18)

1. Способ получения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода, включающий:
проведение реакции метанольного сырьевого потока и кислорода, и, необязательно, регулятора температуры в реакторе частичного окисления для получения потока синтез-газа, причем реактор частичного окисления включает горелку в открытом некаталитическом газогенераторе со свободным потоком и работает в интервале температур 1100-2000°С;
разделение потока синтез-газа на поток с повышенным содержанием диоксида углерода и смешанный поток, содержащий водород/оксид углерода; и
разделение смешанного потока на поток с повышенным содержанием водорода и поток с повышенным содержанием оксида углерода.
2. Способ по п.1, далее включающий испарение метанольного сырьевого потока, подаваемого в реактор частичного окисления.
3. Способ по п.1, согласно которому регулятор температуры выбирают из пара, диоксида углерода, азота, охлажденного и рециркулируемого выходящего потока или их смеси.
4. Способ по п.1, согласно которому регулятор температуры представляет собой поток с повышенным содержанием диоксида углерода, рециркулируемый из выходящего потока реактора.
5. Способ по п.1, согласно которому давление в реакторе частичного окисления поддерживают в интервале от 2 до 6 МПа.
6. Способ по п.1, согласно которому реактор частичного окисления работает при температуре от 1300 до 1500°С.
7. Способ по п.1, далее включающий проведение реакции части метанольного сырьевого потока с потоком с повышенным содержанием оксида углерода для производства уксусной кислоты.
8. Способ по п.1, далее включающий:
обеспечение потока азота из установки разделения воздуха и подачу потока азота и потока с повышенным содержанием водорода в установку синтеза аммиака для производства аммиака.
9. Способ по п.7, далее включающий:
обеспечение потока этилена;
подачу потока этилена, кислорода и уксусной кислоты в установку синтеза мономера винилацетата для производства мономера винилацетата.
10. Способ по п.9, в котором кислород, подаваемый в реактор частичного окисления и в установку синтеза мономера винилацетата, обеспечивается одной установкой разделения воздуха.
11. Способ переоснащения исходной установки производства метанола в реконструированную установку синтеза уксусной кислоты, включающий стадии:
обеспечения исходной установки производства метанола, имеющей по меньшей мере один реактор частичного окисления для превращения углеводорода в поток синтез-газа, содержащего водород, оксид углерода и диоксид углерода; и
контур синтеза метанола для превращения водорода и оксида углерода из потока синтез-газа в метанол;
обеспечения подачи по меньшей мере части метанольного сырьевого потока, кислорода из установки разделения воздуха и, необязательно, регулятора температуры в по меньшей мере один реактор частичного окисления, причем реактор частичного окисления включает горелку в открытом некаталитическом газогенераторе со свободным потоком и работает в интервале температур 1100-2000°С;
монтажа первой разделительной установки для выделения потока с повышенным содержанием диоксида углерода и смешанного потока водорода/оксида углерода из выходящего потока синтез-газа;
монтажа второй разделительной установки для выделения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода из смешанного потока;
монтажа установки синтеза уксусной кислоты;
обеспечения подачи потока с повышенным содержанием оксида углерода из второй разделительной установки и части метанольного сырьевого потока в установку синтеза уксусной кислоты; и
монтажа отсекающих клапанов для изоляции контура синтеза метанола от остальной части реконструированной установки.
12. Способ по п.11, согласно которому метанольное сырье испаряют для подачи в реактор частичного окисления.
13. Способ по п.11, далее включающий:
монтирование установки синтеза аммиака для проведения реакции потока с повышенным содержанием водорода и азота с образованием аммиака;
обеспечение подачи по меньшей мере части потока с повышенным содержанием водорода из разделительной установки в установку синтеза аммиака; и
обеспечение потока азота из установки разделения воздуха в установку синтеза аммиака.
14. Способ по п.11, далее включающий:
монтирование установки синтеза мономера винилацетата для проведения реакции этилена, кислорода и уксусной кислоты с образованием мономера винилацетата;
обеспечение подачи по меньшей мере части кислорода из установки разделения воздуха в установку синтеза мономера винилацетата; и
получение потока с повышенным содержанием диоксида углерода в установке синтеза мономера винилацетата.
15. Способ по п.14, далее включающий рециркуляцию потока с повышенным содержанием диоксида углерода в реактор частичного окисления.
16. Способ получения водорода, оксида углерода и уксусной кислоты из метанола, включающий стадии:
подачи испаренного метанольного сырьевого потока, кислорода и, необязательно, регулятора температуры в реактор частичного окисления для получения потока синтез-газа, включающего водород, оксид углерода и диоксид углерода, причем реактор частичного окисления включает горелку в открытом некаталитическом газогенераторе со свободным потоком и работает в интервале температур 1100-2000°С;
выделения потока с повышенным содержанием диоксида углерода и смешанного потока водорода/оксида углерода из потока синтез-газа;
выделения потока с повышенным содержанием водорода и потока с повышенным содержанием оксида углерода из смешанного потока; и
проведения реакции потока с повышенным содержанием оксида углерода с метанолом в установке синтеза уксусной кислоты для производства уксусной кислоты.
17. Способ по п.16, далее включающий рециркуляцию по меньшей мере части потока с повышенным содержанием диоксида углерода в реактор частичного окисления в качестве регулятора температуры.
18. Способ по п.16, согласно которому регулятором температуры является пар.
RU2006139769/15A 2004-07-09 2005-06-23 Приготовление синтез-газа для синтеза уксусной кислоты путем частичного окисления метанольного сырья RU2393108C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58654704P 2004-07-09 2004-07-09
US60/586,547 2004-07-09

Publications (2)

Publication Number Publication Date
RU2006139769A RU2006139769A (ru) 2008-08-20
RU2393108C2 true RU2393108C2 (ru) 2010-06-27

Family

ID=35395837

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006139769/15A RU2393108C2 (ru) 2004-07-09 2005-06-23 Приготовление синтез-газа для синтеза уксусной кислоты путем частичного окисления метанольного сырья

Country Status (17)

Country Link
US (2) US7498016B2 (ru)
EP (1) EP1776315A2 (ru)
JP (1) JP4914351B2 (ru)
CN (1) CN1942394B (ru)
AU (1) AU2005262160B2 (ru)
BR (1) BRPI0512157A (ru)
CA (1) CA2563220A1 (ru)
MX (1) MXPA06011400A (ru)
MY (1) MY146697A (ru)
NO (1) NO20070185L (ru)
NZ (1) NZ549991A (ru)
PL (1) PL211115B1 (ru)
RS (1) RS20060554A (ru)
RU (1) RU2393108C2 (ru)
UA (1) UA86079C2 (ru)
WO (1) WO2006005269A2 (ru)
ZA (1) ZA200610629B (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2021043T3 (pl) 2006-05-26 2011-06-30 Baxter Int Wstrzykiwalny wypełniacz pustych przestrzeni w kościach
EP2029184B1 (en) 2006-05-26 2011-02-23 Baxter International Inc. Injectable fibrin composition for bone augmentation
MY150844A (en) * 2008-12-19 2014-02-28 Daicel Chem Process for producing acetic acid and ammonia
CN102482183B (zh) * 2009-08-20 2015-07-01 沙特基础工业公司 甲醇和氨联产方法
GB201014304D0 (en) 2010-08-27 2010-10-13 Akay Galip Intensified integrated biomass-to-energy carrier conversion process
EP2592047A1 (en) * 2011-11-14 2013-05-15 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Thermally integrated process and apparatus for purification and separation of components of a synthesis gas
MX363829B (es) 2013-03-15 2019-04-03 Celanese Int Corp Proceso para separar gas de producto usando proceso de carbonilación.
EP3031956B1 (en) * 2014-12-10 2017-07-26 Haldor Topsoe As Process for the preparation of extremely high purity carbon monoxide
US10281203B2 (en) * 2016-08-05 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for liquefaction of industrial gas by integration of methanol plant and air separation unit
US10288346B2 (en) * 2016-08-05 2019-05-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for liquefaction of industrial gas by integration of methanol plant and air separation unit
DE102022001997A1 (de) 2022-06-09 2023-12-14 Olaf Kühl Herstellung von Syngas aus Methanol hergestellt aus Syngas und/oder CO2

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1961736A (en) 1929-07-18 1934-06-05 Tennessee Products Corp Process of forming acetic acid from methanol and carbon monoxide
US2896927A (en) 1956-09-26 1959-07-28 Texaco Inc Gas and liquid contacting apparatus
US3552924A (en) * 1966-08-15 1971-01-05 Phillips Petroleum Co Hydrogen manufacture
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US3920717A (en) 1973-03-26 1975-11-18 Texaco Development Corp Production of methanol
US3929429A (en) 1974-09-26 1975-12-30 Texaco Inc Fuel gas from solid carbonaceous fuels
US4006099A (en) 1975-06-16 1977-02-01 Texaco Inc. Manufacture of gaseous mixtures comprising hydrogen and carbon monoxide
US4110359A (en) * 1976-12-10 1978-08-29 Texaco Development Corporation Production of cleaned and purified synthesis gas and carbon monoxide
US4081253A (en) 1976-12-10 1978-03-28 Texaco Development Corporation Production of purified synthesis gas and carbon monoxide
GB1577069A (en) 1977-07-27 1980-10-15 British Petroleum Co Process for the production of synthesis gas by the catalysed decomposition of methanol
DE2918405A1 (de) 1979-05-08 1980-11-20 Metallgesellschaft Ag Verfahren zur erzeugung von kohlenmonoxid und wasserstoff aus methanol
NL8102840A (nl) * 1981-06-12 1983-01-03 Stamicarbon Werkwijze voor de bereiding van methanol.
US4522894A (en) * 1982-09-30 1985-06-11 Engelhard Corporation Fuel cell electric power production
AU4695985A (en) 1984-09-04 1986-03-13 Mitsubishi Jukogyo Kabushiki Kaisha Process for reforming methanol
JPH0761843B2 (ja) * 1985-08-13 1995-07-05 三菱重工業株式会社 メタノ−ル分解装置の圧力スイング式ガス分離器
CA1263671A (en) 1986-02-10 1989-12-05 David Leon Banquy Process for the production of synthesis gas
US5155261A (en) 1987-02-05 1992-10-13 Reilly Industries, Inc. Process for acetic acid preparation and heterogenous catalyst for same
DE4130718A1 (de) 1991-09-14 1993-03-18 Metallgesellschaft Ag Verfahren zur erzeugung eins synthesegases fuer die methanolsynthese
JP3337718B2 (ja) * 1992-08-21 2002-10-21 三井化学株式会社 メタノールの部分酸化物の製造方法
US5672743A (en) 1993-09-10 1997-09-30 Bp Chemicals Limited Process for the production of acetic acid
JPH07126201A (ja) 1993-10-27 1995-05-16 Mitsubishi Gas Chem Co Inc メタノール製造方法
FR2725443B1 (fr) 1994-10-05 1996-12-20 Rhone Poulenc Chimie Preparation d'acides carboxyliques ou des esters correspondants par carbonylation en presence d'iridium
US5472986A (en) * 1994-11-08 1995-12-05 Starchem, Inc. Methanol production process using a high nitrogen content synthesis gas with a hydrogen recycle
US5817869A (en) 1995-10-03 1998-10-06 Quantum Chemical Corporation Use of pentavalent Group VA oxides in acetic acid processing
DK40796A (da) 1996-04-10 1997-10-11 Haldor Topsoe As Fremgangsmåde til fremstilling af eddikesyre
US6171574B1 (en) 1996-09-24 2001-01-09 Walter Juda Associates, Inc. Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
GB9626428D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626429D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
GB9626317D0 (en) 1996-12-19 1997-02-05 Bp Chem Int Ltd Process
JP4226684B2 (ja) * 1997-04-11 2009-02-18 千代田化工建設株式会社 部分酸化法による合成ガスの製造方法
DE19746251C2 (de) * 1997-10-20 1999-09-09 Dbb Fuel Cell Engines Gmbh Anlage zur Wasserdampfreformierung eines Kohlenwasserstoffs und Betriebsverfahren hierfür
US6168765B1 (en) * 1998-09-08 2001-01-02 Uop Llc Process and apparatus for interbed injection in plate reactor arrangement
DK173897B1 (da) 1998-09-25 2002-02-04 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af et carbonhydridfødemateriale indeholdende højere carbonhydrider
DE59900542D1 (de) * 1999-05-22 2002-01-24 Omg Ag & Co Kg Verwendung eines Katalysators für die Dampfreformierung von Methanol
US6211254B1 (en) * 1999-06-07 2001-04-03 John P. Whitney Process for recycling heterogeneous waste
US6232352B1 (en) * 1999-11-01 2001-05-15 Acetex Limited Methanol plant retrofit for acetic acid manufacture
US6274096B1 (en) * 1999-11-01 2001-08-14 Acetex (Cyprus) Limited Methanol plant retrofit
JP4830197B2 (ja) 2000-09-13 2011-12-07 トヨタ自動車株式会社 燃料改質装置
US6531630B2 (en) * 2000-12-29 2003-03-11 Kenneth Ebenes Vidalin Bimodal acetic acid manufacture
US6599491B2 (en) * 2001-01-22 2003-07-29 Kenneth Ebenes Vidalin Bimodal hydrogen manufacture
US6682838B2 (en) * 2001-04-18 2004-01-27 Texaco Inc. Integrated fuel processor, fuel cell stack, and tail gas oxidizer with carbon dioxide removal
DE10136769A1 (de) 2001-07-27 2003-02-13 Bosch Gmbh Robert Reformereinheit zur Erzeugung eines Reformats
DE10214003B4 (de) 2002-03-27 2005-12-22 Lurgi Ag Verfahren zur Erzeugung von Kohlenmonoxid und Methanol
US6723756B2 (en) * 2002-04-29 2004-04-20 Chevron U.S.A. Inc. Aqueous separation of syngas components
WO2003097523A2 (en) * 2002-05-20 2003-11-27 Acetex (Cyprus) Limited Integrated process for making acetic acid and methanol
JP4329116B2 (ja) * 2002-12-02 2009-09-09 トヨタ自動車株式会社 燃料改質装置及び燃料電池システム
JP2004196611A (ja) * 2002-12-19 2004-07-15 Toyota Motor Corp 燃料改質装置及び燃料電池システム
JP2004339007A (ja) * 2003-05-16 2004-12-02 Toyota Motor Corp 燃料改質システム
JP2005200266A (ja) * 2004-01-15 2005-07-28 Casio Comput Co Ltd 改質方法、改質器、発電装置及び燃料容器
AU2004314237B2 (en) * 2004-01-22 2011-03-10 Acetex (Cyprus) Limited Integrated process for acetic acid and methanol

Also Published As

Publication number Publication date
BRPI0512157A (pt) 2008-02-12
AU2005262160A1 (en) 2006-01-19
JP2008505047A (ja) 2008-02-21
PL211115B1 (pl) 2012-04-30
CA2563220A1 (en) 2006-01-19
US20070225384A1 (en) 2007-09-27
UA86079C2 (ru) 2009-03-25
US7732499B2 (en) 2010-06-08
MY146697A (en) 2012-09-14
RU2006139769A (ru) 2008-08-20
NZ549991A (en) 2010-10-29
RS20060554A (en) 2008-09-29
MXPA06011400A (es) 2007-03-15
JP4914351B2 (ja) 2012-04-11
US7498016B2 (en) 2009-03-03
NO20070185L (no) 2007-01-25
AU2005262160B2 (en) 2011-03-03
WO2006005269A2 (en) 2006-01-19
CN1942394A (zh) 2007-04-04
PL381266A1 (pl) 2007-05-14
WO2006005269A3 (en) 2006-07-06
ZA200610629B (en) 2008-10-29
EP1776315A2 (en) 2007-04-25
CN1942394B (zh) 2010-09-29
US20090143492A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
RU2393108C2 (ru) Приготовление синтез-газа для синтеза уксусной кислоты путем частичного окисления метанольного сырья
US11292717B2 (en) Method for producing methanol from synthesis gas without the emission of carbon dioxide
RU2386611C2 (ru) Способ синтеза метанола
US7067558B2 (en) Process for the production of carbon monoxide and methanol
AU2003232578B2 (en) Integrated process for making acetic acid and methanol
US20230101490A1 (en) Process for preparing methanol from carbon dioxide and hydrogen with quantitative carbon dioxide utilization
AU2010265170B2 (en) Process for the preparation of hydrocarbons from synthesis gas
US4443560A (en) Adiabatically reforming a reformed gas for producing methanol
GB2162172A (en) Process for the production of ethanol
JP2003212524A (ja) 空気からのクリプトン及びキセノン回収方法
KR20070030889A (ko) 메탄올 공급원료의 부분 산화에 의한 아세트산 합성을 위한신가스의 제조방법
US20230219815A1 (en) System network and method for operating a system network of this type for producing higher alcohols
RU2795925C2 (ru) Способ получения метанола из синтез-газа с нулевым выбросом диоксида углерода
JP2017124975A (ja) 天然ガスから酢酸を製造する方法および装置
EA011478B1 (ru) Автотермический реформинг-процесс для комплексного производства уксусной кислоты и метанола

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130624