RU2391636C2 - Компонент для обнаружения, в частности, инфракрасного электромагнитного излучения - Google Patents

Компонент для обнаружения, в частности, инфракрасного электромагнитного излучения Download PDF

Info

Publication number
RU2391636C2
RU2391636C2 RU2007123218/28A RU2007123218A RU2391636C2 RU 2391636 C2 RU2391636 C2 RU 2391636C2 RU 2007123218/28 A RU2007123218/28 A RU 2007123218/28A RU 2007123218 A RU2007123218 A RU 2007123218A RU 2391636 C2 RU2391636 C2 RU 2391636C2
Authority
RU
Russia
Prior art keywords
housing
detector
component
electromagnetic radiation
detecting infrared
Prior art date
Application number
RU2007123218/28A
Other languages
English (en)
Other versions
RU2007123218A (ru
Inventor
Себастьен ТИНН (FR)
Себастьен ТИНН
Original Assignee
Юлис
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юлис filed Critical Юлис
Publication of RU2007123218A publication Critical patent/RU2007123218A/ru
Application granted granted Critical
Publication of RU2391636C2 publication Critical patent/RU2391636C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Изобретение относится к устройствам обнаружения электромагнитного, в частности, инфракрасного излучения. Сущность изобретения: компонент для обнаружения инфракрасного электромагнитного излучения содержит: ! - корпус, ограничивающий камеру (5), находящуюся под воздействием вакуума или пониженного давления, причем одна из поверхностей упомянутого корпуса включает в себя окно (4), которое прозрачно для обнаруживаемого излучения, при этом упомянутая камера содержит, по меньшей мере, один детектор (6), который используется для обнаружения излучения и располагается внутри упомянутой камеры у прозрачного окна, средство для выкачивания остаточных газов или газопоглотитель для поддержания вакуума или пониженного давления в камере (5) на приемлемом уровне, устройство термостабилизации для гарантии регулирования параметров температуры детектора/детекторов, которое состоит из нагревательного резистивного элемента (18), встроенного в массу основания корпуса - в подложку (1), на которой установлен детектор/детекторы, связанный/связанные со схемой (7) сопряжения. Изобретение позволяет сократить затраты на изготовление устройства с температурным регулированием. 8 з.п. ф-лы, 5 ил.

Description

Изобретение относится к компоненту для обнаружения электромагнитного излучения, в частности инфракрасного излучения.
Более конкретно, такой компонент предназначен для установки в качестве оптического компонента для формирования изображений, например, в аппарате для съемки в инфракрасных лучах, работающем при окружающей температуре, чтобы создать то, что в данной области техники называют «электрической сетчаткой для создания изображений в инфракрасных лучах».
При создании изображений в инфракрасных лучах может понадобиться размещение реального детектора внутри камеры, в которой имеется более или менее глубокий вакуум, чтобы обеспечить правильную работу используемого детектора (используемых детекторов) и чтобы получить максимальную чувствительность к изменениям в температуре наблюдаемых сцен.
Для того чтобы такой детектор мог работать удовлетворительно, зачастую требуется давление менее 10-2 миллибар. Поэтому детекторы заключают в герметичную оболочку, внутри которой создан требуемый вакуум или требуемая атмосфера низкого давления.
Следовательно, когда используют биометрический детектор, как часто и бывает в области создания изображений в инфракрасных лучах при окружающей температуре, требуется также стабилизировать температуру упомянутого детектора (упомянутых детекторов), чтобы получить лучшую рабочую характеристику, а также требуемую чувствительность, выражаемую параметрами точности применительно к температуре наблюдаемых сцен.
Такая стабилизация температуры обычно достигается за счет использования термоэлектрического модуля, например термоэлектрического модуля типа Пельтье, связанного с пропорционально-интегрально-дифференциальным регулятором (ПИД-регулятором), а также датчика инфракрасного излучения, который расположен близко к детектору или внутри детектора, подлежащего стабилизации, а значит, расположен внутри оболочки, ограниченной вышеупомянутым корпусом.
Герметичный кожух болометрического детектора в соответствии с известным уровнем техники описывается ниже в связи с фиг.1, которая представляет собой схематическое изображение.
В сущности, он содержит подложку (1), выполненную из керамического материала или металла или даже комбинации материалов обоих этих типов. В этом случае подложка (1) представляет собой основание кожуха. Он имеет боковые стороны (2) и герметично укупорен посредством крышки (3), находящейся на его верхней поверхности. Крышка (3) имеет окно (4), которое прозрачно для обнаруживаемого излучения, в этом случае - инфракрасного, и прозрачно, например, для излучения, имеющего длины волн 8-12 мкм или в диапазоне 3-5 мкм, причем эти значения являются длинами волн обычного диапазона обнаружения.
Таким образом, ограничивается камера или оболочка (5), внутри которой поддерживается вакуум или низкое давление, как правило, давление менее 10-2 миллибар. Элементы, которые образуют эту камеру (5), герметизированы до такой степени, что скорость утечки в гелии составляет менее 10-12 мбар·(1/с).
Внутри этой камеры на подложке (1) имеется реальный детектор, в частности один или более болометрических детекторов, расположенных под окном (4). Этот болометр связан или эти болометры (6) связаны со схемой (7) сопряжения, причем эта сборка или микросхема связана с термоэлектрическим модулем (8), прикрепленным к подложке (1), например, посредством пайки или приклеивания эпоксидным клеем. Как уже говорилось, этот модуль предназначен для гарантии регулирования температуры микросхемы, в частности, для того, чтобы она «работала» как эталонное значение по отношению к переменной, анализируемой детектором (6), и чтобы на этой основе гарантировать некоторую степень воспроизводимости осуществляемых измерений.
Эта сборка (6, 7) микроболометров и схемы сопряжения также электрически соединена с внешней средой посредством проводного соединения (9), связанного со стандартным входным/выходным выводом (10), который проходит сквозь упомянутую подложку (1) и подключен к электронным блокам устройства, в котором упомянутая сборка установлена, например съемочной камеры, посредством операционной схемы (11) межсоединений.
Тепло, вырабатываемое термоэлектрическим модулем (8), рассеивается посредством радиатора (12), размещенного у нижней поверхности подложки (1) и расположенного, по существу, вертикально под упомянутым модулем.
Для поддержания вакуума внутри камеры (5) внутри этой камеры установлено средство, выполненное с возможностью поглощения и, вообще говоря, перекачивания молекул газа во время эксплуатации предлагаемого модуля для обнаружения, причем это средство называется «газопоглотителем».
Этот газопоглотитель (13) соединен с входным выводом (14) электропитания, который проходит сквозь подложку (1), причем упомянутый входной вывод также соединен со схемой (11) межсоединений.
Чтобы достичь эффективности, оптимальной с точки зрения терморегулирования, термоэлектрический модуль по традиции размещен внутри корпуса, где поддерживается вакуум или низкое давление.
Между тем, рассмотрена и возможность размещения этого модуля снаружи корпуса, что упрощает изготовление корпуса и получение вакуума внутри него, но за это приходится расплачиваться, во-первых, эффективностью терморегулирования в болометрическом детекторе, а во-вторых, энергопотреблением упомянутого термоэлектрического модуля (см., например, документ US-A-5914488, где описан эквивалентный принцип использования нагревательного модуля вместо термоэлектрического модуля).
Недостатком наличия термоэлектрического модуля и, вообще говоря, устройства термостабилизации внутри камеры (5), ограниченной корпусом, по существу, заключается в том, что это усложняет корпус.
Фактически, прежде всего, необходимо увеличить высоту корпуса, в типичном случае на 1,5-4,5 мм, а значит и габариты такого устройства.
Во-вторых, температуры сборки и дегазации должны быть ограничены максимальными температурами, которые может выдержать устройство термостабилизации.
С другой стороны, в случае конфигурации, при которой устройство стабилизации или устройство терморегулирования находится снаружи корпуса, энергопотребление упомянутого устройства оказывается избыточным, а габариты всей системы, состоящей из корпуса и устройства термостабилизации, становятся больше. Это также усложняет процесс сборки корпуса на печатной плате (способ соединения с печатной платой, передачу информации о температуре и т.д.).
В дополнение к вышеизложенному и независимо от того, где расположено устройство температурного регулирования, следует отметить, что выполнение его как единого целого с корпусом оказывается дорогостоящим, в частности, из-за затрат на изготовление реального устройства регулирования, а также из-за затрат, обуславливаемых монтажом этого устройства в корпусе, и затрат, связанных с конкретными особенностями компоновки корпуса, позволяющими разместить в нем такое устройство регулирования.
Задача настоящего изобретения, по существу, заключается в том, чтобы преодолеть эти различные недостатки. Поэтому целью является встраивание устройства регулирования температуры, а более конкретно нагревательного устройства, в массу одной из сторон герметичного корпуса, в частности в основание упомянутого корпуса. Чтобы достичь этой цели, изобретение предусматривает предпочтительное применение технологии совместно обожженной керамики для получения сторон корпуса.
В соответствии с изобретением компонент для обнаружения электромагнитного излучения, в частности инфракрасного излучения, содержит:
- корпус, ограничивающий камеру, находящуюся под воздействием вакуума или пониженного давления, причем одна из поверхностей упомянутого корпуса включает в себя окно, которое прозрачно для обнаруживаемого излучения, и содержит, по меньшей мере, один детектор, который используется для обнаружения излучения, о котором идет речь, и располагается внутри упомянутой камеры, по существу, у прозрачного окна,
- средство для выкачивания остаточных газов или газопоглотитель для поддержания вакуума или пониженного давления в камере на приемлемом уровне,
- устройство термостабилизации для гарантии регулирования параметров температуры детектора (детекторов).
В соответствии с изобретением устройство термостабилизации состоит из нагревательного резистивного элемента, который встроен в массу одной из сторон, ограничивающих корпус, в частности в его основание.
Сторона, в этом случае - основание, выполнена из совместно обожженной керамики и содержит, по меньшей мере, два последовательных керамических слоя, прикрепленных друг к другу посредством обжига:
- верхний слой, к которому прикреплен детектор (прикреплены детекторы) посредством пайки или приклеивания эпоксидным клеем,
- нижний слой, который включает в себя находящееся на его поверхности, контактирующей с верхним слоем, упомянутое электрическое резистивное устройство, полученное методом трафаретной печати, причем этот нижний слой прикреплен к верхнему слою посредством обжига.
Таким образом, только один резистивный элемент встроен как устройство стабилизации температуры в массу стороны, а более конкретно в основание герметичного кожуха компонента для обнаружения в соответствии с изобретением. Этот резистивный элемент контролируется пропорционально-интегрально-дифференциальным регулятором (ПИД-регулятором) снаружи корпуса. Чтобы достичь этого, он электрически соединен с одним или более электрических выходных выводов корпуса таким же образом, как любая другая токопроводящая дорожка предложенного компонента. Соединение корпуса с печатной платой, также называемое схемой (11) межсоединений, используется для гарантии связи ПИД-регулятора с резистивным элементом.
Этот нагревательный резистивный элемент может иметь различные структуры, в частности прямолинейную, витую, спиральную и т.д., целью которых является получение температуры, как можно более равномерной на детекторе, температура которого подлежит регулированию или стабилизации.
В соответствии с другим аспектом изобретения устройство для увеличения термосопротивления между вышеупомянутым встроенным нагревательным устройством и внешней средой также встроено в массу стороны, в частности в основание корпуса.
Чтобы достичь этого, основание, выполненное так, как описано ранее, связано с третьим, нижним слоем, снабженным некоторым количеством полостей любой формы, заполненных воздухом и открывающихся во внешнее пространство, тем самым минимизируя поверхностный контакт между корпусом и печатной схемой (11) межсоединений.
В еще одном варианте осуществления изобретения в основании корпуса ограничена вторая полость для гарантии термоизоляции, причем эта вторая полость сообщается с верхней полостью, которая вмещает, в частности, сборку, состоящую из детектора (детекторов) и его (их) схемы (схем) (6, 7) сопряжения, через сквозные отверстия, выполненные в слоях совместно обожженной керамики, которые содержат резистивный элемент устройства термостабилизации.
Способ, которым можно воплотить изобретение, и вытекающие из него преимущества станут яснее по прочтении нижеследующего описания, приводимого просто в качестве примера со ссылками на прилагаемые чертежи.
Как сказано ранее, на фиг.1 представлено схематическое сечение устройства в соответствии с известным уровнем техники.
На фиг.2 представлено схематическое сечение компонента для обнаружения в первом варианте его осуществления в соответствии с изобретением.
На фиг.3 представлено схематическое сечение компонента для обнаружения во втором варианте его осуществления в соответствии с изобретением.
На фиг.4 представлено схематическое сечение компонента для обнаружения во втором варианте его осуществления в соответствии с изобретением, а на фиг.5 представлен вид сверху после удаления окна, прозрачного для обнаруживаемого излучения.
Элементы, которые являются общими для чертежа, иллюстрирующего известный уровень техники, и чертежей, иллюстрирующих изобретение, обозначены в нижеследующем описании одинаковыми позициями.
Компонент для обнаружения в соответствии с настоящим изобретением содержит, как и в случае известного уровня техники, корпус, который герметизирован с тем, чтобы, по меньшей мере, ограничить утечку величиной, приближающейся к 10-12 мбар·(1/с) в гелии.
Этот корпус содержит подложку (1), выполненную из совместно обожженной керамики, подробнее описываемую ниже, на которой установлен посредством пайки или приклеивания эпоксидным клеем один или более микроболометров (6), связанных со схемой (7) сопряжения. Сама схема (7) сопряжения преимущественно оснащена термодатчиком (23), назначение которого состоит в непрерывном терморегулировании микросхемы, состоящей из сборки (6, 7), известным образом.
Верхняя поверхность этого корпуса закрыта крышкой (3), которая имеет окно (4), прозрачное для обнаруживаемого излучения, в этом случае прозрачное для инфракрасного излучения.
В соответствии с другим фундаментальным аспектом изобретения в массу подложки (1) встроен нагревательный резистивный элемент, который принадлежит устройству термостабилизации, находится в полости, ограниченной внутри корпуса, и участвует в терморегулировании болометрического детектора (болометрических детекторов) (6).
В описываемом примере подложка (1) является трехслойной подложкой. Промежуточный слой (16), выполненный из керамики, имеет на своей верхней поверхности, т.е. на своей поверхности, обращенной к микросхеме (6, 7), нагревательный резистивный элемент (18).
Чтобы электрически изолировать этот резистивный элемент от упомянутой микросхемы (6, 7), поверх промежуточного слоя (16) располагают верхний слой (17), тоже выполненный из керамики.
Сборка (16, 17, 18) предназначена для гарантии равномерного нагревания микросхемы (6, 7) за счет теплового действия тока с целью сохранения - в пространстве и во времени - температуры микрокристалла, на несколько градусов превышающей температуру окружающей среды.
Как говорилось ранее, нагревательный резистивный элемент (18) нанесен методом трафаретной печати проводников в форме печатной краски на листах необработанной керамики. Перед совместным обжигом, а значит, и спеканием эти керамические листы, как известно, находятся в нетвердом состоянии и поэтому являются мягкими или гибкими, а в технологии, о которой идет речь, называются «сырыми».
Таким образом, несколько керамических листов с разными структурами проводников и соединительными токопроводящими дорожками можно расположить один поверх другого, получая желаемый профиль нагревательного резистивного элемента, а значит, и гарантируя, что нагревание вышерасположенной микросхемы будет настолько равномерным, насколько это возможно.
Электрическая связь между токопроводящими дорожками на двух разных уровнях гарантируется межслойными отверстиями (не показаны).
Сразу же после сборки, выравнивания и сжатия сырых керамических листов, на которых осуществлена трафаретная печать, с помощью оснастки, известной специалистам в данной области техники, эти листы обжигают при высокой температуре и под давлением, чтобы соединить их друг с другом. Полученная таким образом сборка является жесткой, так что ее можно впоследствии разрезать на отдельные модули, которые образуют два слоя (16, 17), например, подложки (1). Эта сборка (16, 17) связана с одним или двумя керамическими слоями (15), чтобы изолировать нагревательный резистивный элемент (18) от печатной схемы (11) межсоединений.
Кроме того, реальная полость (5) ограничена путем добавления периферийных керамических слоев (21, 22) на подложке (1) во время изготовления упомянутой подложки. Таким образом, все керамические слои (15, 16, 17, 21, 22) собирают друг с другом и обжигают одновременно.
Существуют два основных типа технологии обжига такой керамики:
- так называемая технология низкотемпературной совместно обожженной керамики (НСОК (LTCC)), в соответствии с которой обжиг происходит при температуре около 800°С, а электрические проводники получают с помощью печатных красок на основе серебра;
- так называемая технология высокотемпературной совместно обожженной керамики (ВСОК (LHCC)), в соответствии с которой температура обжига составляет порядка 1500°С, а электрические проводники получают с помощью печатных красок на основе тугоплавких металлов типа вольфрама.
В варианте осуществления, описываемом в связи с фиг.2, используется, в частности, технология ВСОК. Фактически, внутренние электрические проводники типа вольфрамовых являются, как известно, имеющими большее сопротивление, чем проводники на основе серебра, и это облегчает использование токопроводящих дорожек в качестве сопротивлений для осуществления требуемого для микросхемы нагревания, обусловленного тепловым действием тока.
Кроме того, технология ВСОК дает возможность работать с подложкой из материала типа оксида алюминия, имеющей среднюю удельную теплопроводность 15-20 Вт/м/К, или даже с подложкой из материала типа AlN (нитрида алюминия), обеспечивающей еще большую удельную тепловодность (180 Вт/м/К), тем самым способствуя рассеянию тепла около микросхемы.
На фиг.2 изображено сечение. Специалист может увидеть нагревательный резистивный элемент (18), который можно считать последовательностью витков или спиралей, при этом следует напомнить читателю, что имеющаяся в виду задача состоит в том, чтобы гарантировать рассеяние тепла, как можно более равномерное на уровне микросхемы, температурное регулирование которой надлежит осуществить.
Использование трафаретной печати обеспечивает очень большую степень свободы в контексте формы или конструкции резистивного элемента.
Как правило, целью является достижение рассеяния на уровне от 10 мВт до 5 Вт.
В преимущественном варианте и для того, чтобы снизить потери тепла, а значит, и энергопотребление устройством, в изобретении предлагается уменьшение площади теплопроводящей или контактной поверхности между подложкой (1), выполненной так, как сказано ранее, и печатной схемой (11) межсоединений. Это приводит к варианту осуществления изобретения, который описывается ниже со ссылками на фиг.3.
К двум совместно обожженным керамическим слоям (16, 17), упомянутым ранее, добавился слой (15), выполненный из того же материала, центральная зона которого имеет полости (26) любого профиля, в частности параллелепипедные, цилиндрические, и т.д., которые связаны с одной и той же внешней средой. Это ограничивает площади контакта между подложкой и схемой (11) межсоединений, а значит, и потери тепла из-за собственной теплопроводности материала, из которого сделана упомянутая подложка.
Полости (26) выполнены таким образом, что позволяют избежать любого риска отвода тепла с верхних слоев (16) и (17) подложки, например, за счет выдерживания соотношения, по меньшей мере, четыре к одному для размеров полостей и размеров столбиков, которые ограничивают упомянутые полости. Например, выбирают полости шириной 2 мм и шагом промежутка, составляющим 2,5 мм. Вследствие этого периферийные края слоя (15) не имеют таких полостей, чтобы обеспечить, в частности, размещение электрических контактов (19) около боковых стенок, причем эти контакты переносят электрические сигналы между микросхемой (6, 7) или нагревательным резистивным элементом (18) и печатной схемой (11) межсоединений.
Верхние слои (16) и (17) могут также иметь полости (24, 25), чтобы ограничить потери за счет проводимости на уровне боковых поверхностей керамики, которая образует подложку.
Можно также предусмотреть еще один вариант осуществления изобретения, который описывается ниже со ссылками на фиг.4 и 5 и тоже имеет целью ограничение потерь тепла.
В этом варианте осуществления сборка (16, 17, 18) остается такой же, как та, которая описана в связи с фиг.2. В данном случае верхняя полость (5) тоже ограничена в верхней части корпуса, причем в упомянутой полости находится, в частности, микросхема (6, 7), а сама полость, напомним читателю, находится в условиях вакуума, приближающегося к 10-12 миллибар.
Соответственно, вторая, так называемая «нижняя» или «термоизоляционная», полость (27) ограничена за счет использования двух дополнительных уровней керамических слоев (28, 29), причем упомянутая полость закрыта, как правило, посредством пайки на уровне нижнего основания корпуса металлической пластиной (30). Последняя выполнена с возможностью размещения в ней газопоглотителя (31), полученного методом осаждения из паровой фазы (ОиПФ (PVD)) или установленного отдельно с помощью припаивания его к металлической пластине (30) либо с помощью любых других средств.
Верхняя полость (5) и нижняя полость (27) сообщаются друг с другом посредством отверстий (32), выполненных в сборке (16, 17). За счет их наличия давление вакуума в каждой из этих двух полостей всегда одно и то же.
Слои (16, 17) механически непрерывны с остальной частью корпуса благодаря, по меньшей мере, одному элементу и, например, благодаря четырем консолям или ответвлениям (33), которые, во-первых, механически поддерживают микросхему (6, 7) над нижней термоизоляционной полостью (27), а во-вторых, дают возможным направить электрический контакт нагревательного резистивного элемента (18) к соответствующим выходным выводам корпуса посредством электрического проводника, нанесенного методом трафаретной печати одновременно с упомянутым резистивным элементом (18). Например, эти четыре консоли или ответвления (33) расположены, по существу, в четырех углах слоев (16, 17).
Отверстия (32) дают возможность увеличить термоизоляцию в плоскости микросхемы (6, 7), тем самым снижая потери тепла, возникающие при наличии проводимости через ответвления (33).
Следовательно, вакуумная полость (27) обеспечивает термоизоляцию между нагревательным резистивным элементом (18) и основанием корпуса, которое состоит главным образом из нижнего керамического слоя (28), который сам находится в непосредственном контакте с окружающей средой.
Эта термоизоляция в сочетании с термоизоляцией, присущей отверстиям (32), дает возможность значительно снизить энергопотребление нагревательного резистивного элемента благодаря сниженным потерям тепла.
Кроме того, этот вариант осуществления гарантирует некоторую степень тепловой однородности внутри корпуса, делая последний заметно менее чувствительным к изменениям в условиях окружающей среды и к конфигурации, в которой происходит сборка корпуса на печатной плате, например, съемочной камеры.
Настоящее изобретение обладает некоторым рядом преимуществ, главные из которых описываются ниже.
Во-первых, что касается габаритов, то если основание герметичного кожуха состоит, по меньшей мере, из двух керамических слоев, как часто и бывает, то внесение структуры, полученной методом трафаретной печати, не оказывает влияние на габариты упомянутого кожуха.
Это делает герметичное устройство имеющим исключительно малые габариты, потому что камера упомянутого корпуса становится меньше на толщину термоэлектрического модуля. С другой стороны, становится необходимым повышение уровня керамики в подложке, причем последняя имеет типичную толщину 0,2-0,5 мм, которая все же остается малой по сравнению с предыдущими технологиями, которые обуславливают необходимость толщины, большей на 1,5-4,5 мм.
Дополнительные затраты, которые приходится нести, ограничиваются затратами на дополнительную керамику на уровне подложки в случае трафаретной печати. Это минимальные затраты по сравнению с затратами на внешнее терморегулирующее устройство, устанавливаемое на основание корпуса, как того требует известный уровень техники.
Кроме того, высокая температура, применяемая для проведения стадии обжига, не является ограничивающим фактором в контексте температур сборки или дегазации в отличие от ситуации с устройствами, в которых применяется терморегулирующее устройство типа Пельтье.
В заключение отметим, что резистивная структура или резистивный нагревательный элемент непосредственно соединена или соединен с выходными выводами корпуса во время изготовления изделия и поэтому специальная стадия для соединения регулирующего устройства с корпусом не требуется.

Claims (9)

1. Компонент для обнаружения инфракрасного электромагнитного излучения, содержащий
корпус, ограничивающий камеру (5), находящуюся под воздействием вакуума или пониженного давления, причем одна из поверхностей упомянутого корпуса включает в себя окно (4), которое прозрачно для обнаруживаемого излучения, при этом упомянутая камера содержит, по меньшей мере, один детектор (6), который используется для обнаружения излучения, о котором идет речь, и располагается внутри упомянутой камеры у прозрачного окна,
средство (13) для выкачивания остаточных газов или газопоглотитель для поддержания вакуума или пониженного давления в камере (5) на приемлемом уровне,
устройство термостабилизации для гарантии регулирования параметров температуры детектора/детекторов,
отличающийся тем, что устройство термостабилизации состоит из нагревательного резистивного элемента (18), который встроен в массу основания корпуса - в подложку (1), на которой установлен детектор/детекторы, связанный/связанные со схемой (7) сопряжения, при этом подложка (1) выполнена из керамики и содержит, по меньшей мере, два слоя, прикрепленные друг к другу посредством обжига:
верхний слой (17), к которому прикреплен детектор/детекторы (6),
нижний слой (15, 16), который включает в себя находящийся на его поверхности, контактирующей с верхним слоем (17), нагревательный резистивный элемент (18), полученный методом трафаретной печати, причем упомянутый нижний слой (16) прикреплен к верхнему слою (17) посредством обжига.
2. Компонент для обнаружения инфракрасного электромагнитного излучения по п.1, отличающийся тем, что нагревательный резистивный элемент (18) устройства термостабилизации контролируется регулятором снаружи корпуса, в частности пропорционально-интегрально-дифференциальным регулятором (ПИД-регулятором).
3. Компонент для обнаружения инфракрасного электромагнитного излучения по п.1, отличающийся тем, что нагревательный резистивный элемент (18) устройства термостабилизации имеет структуры различных типов, таких как прямолинейную, витую, спиральную, и т.д., чтобы гарантировать получение температуры, как можно более равномерной на уровне детектора/детекторов (6).
4. Компонент для обнаружения инфракрасного электромагнитного излучения по п.1, отличающийся тем, что содержит также схему (11) межсоединений или считывания, предназначенную для считывания сигналов из детектора, при этом в массу подложки (1) также встроено средство для увеличения термосопротивления между нагревательным резистивным элементом (18) устройства термостабилизации и схемой (11) межсоединений или считывания.
5. Компонент для обнаружения инфракрасного электромагнитного излучения по п.4, отличающийся тем, что средство для увеличения термосопротивления состоит из полостей (26), имеющих любой профиль и выполненных в нижнем слое (15) подложки (1), предназначенных для уменьшения площади контактной поверхности между подложкой и схемой (11) межсоединений или считывания.
6. Компонент для обнаружения инфракрасного электромагнитного излучения по п.4, отличающийся тем, что средство для увеличения термосопротивления состоит из второй термоизоляционной полости (27), выполненной в основании корпуса и сообщающейся с верхней полостью, которая вмещает сборку, состоящую из детектора/детекторов (6) и его схемы/схем (7) сопряжения, через отверстия (32), выполненные в слоях (16, 17), которые включают в себя нагревательный резистивный элемент (18) устройства термостабилизации, выполненный с ними за одно целое.
7. Компонент для обнаружения инфракрасного электромагнитного излучения по п.6, отличающийся тем, что термоизоляционная полость (27) ограничена совместно обожженными керамическими слоями (28, 29), причем упомянутая полость (27) закрыта на уровне своего основания металлической пластиной (30), выполненной с возможностью заключения в ней газопоглотителя.
8. Компонент для обнаружения инфракрасного электромагнитного излучения по любому из п.6 или 7, отличающийся тем, что слои (16, 17), в которых заключен нагревательный резистивный элемент (18) устройства термостабилизации, непрерывны с остальной частью корпуса благодаря, по меньшей мере, одному элементу (33), предназначенному, во-первых, для создания механической опоры детектора/детекторов (6) и схемы (7) сопряжения над термоизоляционной полостью (27), а во-вторых, для обеспечения возможности направления электрического контакта нагревательного резистивного элемента (18) к соответствующим выходным выводам корпуса посредством электрического проводника, нанесенного методом трафаретной печати одновременно с резистивным элементом (18).
9. Компонент для обнаружения инфракрасного электромагнитного излучения по п.6, отличающийся тем, что включает в себя элемент, обеспечивающий непрерывность слоев (16, 17) с остальной частью корпуса, состоящий из четырех элементов (33) - консолей или ответвлений, расположенных в четырех углах слоев (16, 17).
RU2007123218/28A 2004-12-21 2005-12-12 Компонент для обнаружения, в частности, инфракрасного электромагнитного излучения RU2391636C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413634 2004-12-21
FR0413634A FR2879819B1 (fr) 2004-12-21 2004-12-21 Composant de detection de rayonnements electromagnetiques notamment infrarouges

Publications (2)

Publication Number Publication Date
RU2007123218A RU2007123218A (ru) 2008-12-27
RU2391636C2 true RU2391636C2 (ru) 2010-06-10

Family

ID=34954276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007123218/28A RU2391636C2 (ru) 2004-12-21 2005-12-12 Компонент для обнаружения, в частности, инфракрасного электромагнитного излучения

Country Status (10)

Country Link
US (1) US7642515B2 (ru)
EP (1) EP1829097B1 (ru)
JP (1) JP4854676B2 (ru)
CN (1) CN101084575B (ru)
AT (1) ATE393964T1 (ru)
CA (1) CA2587774C (ru)
DE (1) DE602005006435T2 (ru)
FR (1) FR2879819B1 (ru)
RU (1) RU2391636C2 (ru)
WO (1) WO2006067344A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872372A (zh) * 2017-03-17 2017-06-20 广西电网有限责任公司电力科学研究院 一种用于气体分析的恒温积分球装置
RU2752294C2 (ru) * 2016-09-22 2021-07-26 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Детектирующая структура типа болометра для обнаружения электромагнитного излучения и способ изготовления такой структуры

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517496B (zh) * 2006-08-22 2013-06-05 丛林网络公司 封装外壳内印刷电路板上安装的电子元件的热稳定的设备和方法
US7890055B1 (en) * 2007-07-09 2011-02-15 Everlokt Corporation Touch field compound field detector personal ID
US9723229B2 (en) 2010-08-27 2017-08-01 Milwaukee Electric Tool Corporation Thermal detection systems, methods, and devices
JP5500056B2 (ja) * 2010-12-06 2014-05-21 日本電気株式会社 赤外線センサパッケージおよび該赤外線センサパッケージを搭載した電子機器
US9883084B2 (en) 2011-03-15 2018-01-30 Milwaukee Electric Tool Corporation Thermal imager
DE112012003908T5 (de) * 2011-09-20 2014-07-03 Drs Rsta, Inc. Thermische Isolationsvorrichtung für eine Infrarot-Überwachungskamera
CN102564595B (zh) * 2011-12-14 2013-11-13 北京卫星环境工程研究所 用于真空低温环境的红外热波检测系统
DE102012005546A1 (de) * 2012-03-21 2013-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrospiegelanordnung und Verfahren zur Herstellung einer Mikrospiegelanordnung
US10794769B2 (en) 2012-08-02 2020-10-06 Milwaukee Electric Tool Corporation Thermal detection systems, methods, and devices
EP2950525B1 (en) * 2014-05-28 2020-08-12 ams AG Semiconductor image sensor with integrated pixel heating and method of operating a semiconductor image sensor
FR3023974B1 (fr) * 2014-07-18 2016-07-22 Ulis Procede de fabrication d'un dispositif comprenant un boitier hermetique sous vide et un getter
CN105890699A (zh) * 2015-01-26 2016-08-24 高准有限公司 能够自适应调节工作温度的流量计及其方法
FR3047842B1 (fr) * 2016-02-12 2018-05-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant electronique a resistance metallique suspendue dans une cavite fermee
WO2018130436A1 (en) * 2017-01-11 2018-07-19 Koninklijke Philips N.V. Integrated temperature sensor on lead selenide plate detector assembly
CN107589463B (zh) * 2017-08-28 2024-02-02 河南理工大学 一种测试煤自燃过程电磁辐射的系统
WO2019068481A1 (en) * 2017-10-02 2019-04-11 Koninklijke Philips N.V. INFRARED SENSOR ASSEMBLY WITH INTEGRATED TEMPERATURE SENSING, APPARATUS AND METHOD FOR MEASURING GAS
CN115843331A (zh) * 2020-08-18 2023-03-24 三菱电机株式会社 红外线传感器装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743762A (en) * 1984-12-20 1988-05-10 Hughes Aircraft Company Noise immune infrared readout circuitry and technique
GB2207501A (en) * 1987-07-31 1989-02-01 Philips Electronic Associated Radiation detector arrangements and methods using resistors with high positive temperature coefficients
JPH05206423A (ja) * 1992-01-27 1993-08-13 Sony Corp 固体撮像装置
JP2737518B2 (ja) * 1992-03-16 1998-04-08 富士通株式会社 赤外線検知器の冷却構造
JPH05332841A (ja) * 1992-05-27 1993-12-17 Fujitsu Ltd 赤外線検知素子の冷却温度補正回路
JP3261617B2 (ja) * 1992-06-19 2002-03-04 ハネウエル・インコーポレーテッド 赤外線カメラ
DE4338539A1 (de) * 1993-11-11 1995-05-18 Hoechst Ceram Tec Ag Verfahren zum Herstellen von keramischen Heizelementen
US5423119A (en) * 1994-07-08 1995-06-13 Hualon Microelectronics Corporation Method for manufacturing a hybrid circuit charge-coupled device image sensor
US5763885A (en) * 1995-12-19 1998-06-09 Loral Infrared & Imaging Systems, Inc. Method and apparatus for thermal gradient stabilization of microbolometer focal plane arrays
GB2310952B (en) 1996-03-05 1998-08-19 Mitsubishi Electric Corp Infrared detector
JP4300305B2 (ja) * 1999-04-02 2009-07-22 日産自動車株式会社 熱型赤外線撮像素子
SE515856C2 (sv) * 1999-05-19 2001-10-22 Ericsson Telefon Ab L M Bärare för elektronikkomponenter
EP1336994A4 (en) * 2000-11-08 2004-10-06 Mitsubishi Electric Corp BOLOMETER MATERIAL, BOLOMETER THIN FILM, METHOD FOR PRODUCING THE BOLOMETER THIN FILM AND INFRARED DETECTION ELEMENT THEREFOR
FR2842022B1 (fr) * 2002-07-03 2005-05-06 Commissariat Energie Atomique Dispositif de maintien d'un objet sous vide et procedes de fabrication de ce dispositif, application aux detecteurs intrarouges non refroidis
US6960741B2 (en) * 2002-08-26 2005-11-01 Lexmark International, Inc. Large area alumina ceramic heater
WO2004061983A1 (ja) * 2002-12-27 2004-07-22 Matsushita Electric Industrial Co., Ltd. 電子デバイスおよびその製造方法
US20040147056A1 (en) * 2003-01-29 2004-07-29 Mckinnell James C. Micro-fabricated device and method of making
JP2004279103A (ja) * 2003-03-13 2004-10-07 Fujitsu Ltd 焦電型赤外線センサおよびそれを用いた赤外撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752294C2 (ru) * 2016-09-22 2021-07-26 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Детектирующая структура типа болометра для обнаружения электромагнитного излучения и способ изготовления такой структуры
CN106872372A (zh) * 2017-03-17 2017-06-20 广西电网有限责任公司电力科学研究院 一种用于气体分析的恒温积分球装置

Also Published As

Publication number Publication date
CN101084575A (zh) 2007-12-05
DE602005006435T2 (de) 2009-06-04
US7642515B2 (en) 2010-01-05
WO2006067344A1 (fr) 2006-06-29
FR2879819B1 (fr) 2007-02-23
DE602005006435D1 (de) 2008-06-12
EP1829097B1 (fr) 2008-04-30
JP2008524621A (ja) 2008-07-10
ATE393964T1 (de) 2008-05-15
CN101084575B (zh) 2011-06-22
EP1829097A1 (fr) 2007-09-05
RU2007123218A (ru) 2008-12-27
JP4854676B2 (ja) 2012-01-18
US20090140149A1 (en) 2009-06-04
FR2879819A1 (fr) 2006-06-23
CA2587774A1 (fr) 2006-06-29
CA2587774C (fr) 2014-07-15

Similar Documents

Publication Publication Date Title
RU2391636C2 (ru) Компонент для обнаружения, в частности, инфракрасного электромагнитного излучения
US20150319378A1 (en) Infrared imaging device having a shutter
US9473681B2 (en) Infrared camera system housing with metalized surface
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
US20060060785A1 (en) Component for detecting electromagnetic radiation, particularly infrared radiation, infrared optical imaging unit including such a component and process for implementing it
JP2008219704A (ja) 半導体装置
TW201203854A (en) Surface mount oven controlled type crystal oscillator
WO2014106276A2 (en) Infrared imaging device having a shutter
US7276697B2 (en) Infrared apparatus
WO2018106193A1 (en) Gas sensor mems structures and methods of fabrication thereof
US11879773B2 (en) Pyranometer and method of assembling a pyranometer
WO2012098236A2 (en) Heater for a sensor, heated radiation sensor, radiation sensing method
CN104422522B (zh) 红外传感器模块
JP2008519972A (ja) 赤外線検出器
KR100862947B1 (ko) 적외선 온도 센서 및 적외선 온도 센서 모듈
KR20060119950A (ko) 가열 적외선 센서와 이 적외선 센서를 구비하는 적외선온도계
JP3433869B2 (ja) 半導体モジュール
JPH04137658A (ja) 半導体装置
JP2007503586A (ja) 改善された放射活用を備えた赤外線センサー
JP5206484B2 (ja) 温度センサ
Maierna et al. Electronic Packaging for MEMS Infrared Sensor With Filtered Optical Window
JPH0882549A (ja) 焦電型赤外線検出器およびその製造方法
JPH06221926A (ja) 温度センサ及びそれを用いた温度検出システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191213