RU2390880C1 - ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ - Google Patents

ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ Download PDF

Info

Publication number
RU2390880C1
RU2390880C1 RU2009120423/28A RU2009120423A RU2390880C1 RU 2390880 C1 RU2390880 C1 RU 2390880C1 RU 2009120423/28 A RU2009120423/28 A RU 2009120423/28A RU 2009120423 A RU2009120423 A RU 2009120423A RU 2390880 C1 RU2390880 C1 RU 2390880C1
Authority
RU
Russia
Prior art keywords
silicon carbide
epitaxial layer
junctions
schottky
depth
Prior art date
Application number
RU2009120423/28A
Other languages
English (en)
Inventor
Игорь Всеволодович Грехов (RU)
Игорь Всеволодович Грехов
Павел Анатольевич Иванов (RU)
Павел Анатольевич Иванов
Александр Сергеевич Потапов (RU)
Александр Сергеевич Потапов
Татьяна Павловна Самсонова (RU)
Татьяна Павловна Самсонова
Олег Игоревич Коньков (RU)
Олег Игоревич Коньков
Наталья Дмитриевна Ильинская (RU)
Наталья Дмитриевна Ильинская
Original Assignee
Общество с ограниченной ответственностью "Мегаимпульс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Мегаимпульс" filed Critical Общество с ограниченной ответственностью "Мегаимпульс"
Priority to RU2009120423/28A priority Critical patent/RU2390880C1/ru
Application granted granted Critical
Publication of RU2390880C1 publication Critical patent/RU2390880C1/ru

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

Изобретение относится к области полупроводниковых приборов, конкретно - к конструкции высоковольтных выпрямительных диодов типа диодов Шоттки на основе карбида кремния. Сущность изобретения: интегрированный Шоттки-рn диод на основе карбида кремния включает сильнолегированную подложку из карбида кремния n-типа и эпитаксиальный слой из карбида кремния n-типа толщиной (10-13)мкм с концентрацией примеси (1-2)1015 см-3, расположенный на ее верхней стороне. В эпитаксиальном слое созданы планарные р-n переходы с легированными бором р-областями с одинаковой глубиной залегания, часть которых расположена под никелевым Шоттки контактом, а остальные выполнены в виде покрытой слоем оксида кремния охранной структуры. Охранная структура состоит из основного р-n перехода и плавающих охранных колец. На обратной стороне подложки расположен никелевый омический контакт, а все упомянутые р-n переходы в области металлургической границы имеют диффузионный профиль распределения примесей, а отношение глубины их залегания к толщине эпитаксиального слоя удовлетворяет соотношению 0.08≤h/d≤0.20, где h - глубина залегания р-n переходов; d - толщина эпитаксиального слоя. Изобретение обеспечивает увеличение напряжения пробоя интегрированного карбидкремниевого Шоттки-рn диода при удешевлении прибора. 1 ил.

Description

Изобретение относится к области полупроводниковых приборов, конкретно - к конструкции высоковольтных выпрямительных диодов типа диодов Шоттки на основе карбида кремния, и может быть использовано в широкой гамме электронных устройств, например в качестве быстродействующих выпрямителей в схемах импульсного преобразования напряжения для увеличения частоты коммутации, плотности мощности и повышения КПД.
Особенностью работы карбидкремниевых диодов Шоттки (ДШ) помимо большого напряжения лавинного пробоя является отсутствие токов обратного восстановления при переключении ДШ из проводящего направления в запорное, что обеспечивает чистые формы сигнала и уменьшает энергетические потери во время переходных процессов, причем практически независимо от температуры окружающей среды, величины прямого тока в открытом состоянии и скорости переключения тока.
При конструировании высоковольтных 4H-SiC ДШ необходимо предпринимать специальные меры для устранения преждевременного краевого пробоя и для подавления объемных токов утечки, возникающих при больших величинах электрического поля на границе раздела металл-полупроводник.
Для того чтобы максимально приблизить напряжение пробоя ДШ к напряжению пробоя плоскостного перехода, используют различные методы, среди которых довольно популярным является формирование системы плавающих охранных p-n переходов, как правило, с помощью ионной имплантации акцепторных примесей.
В последнее время для подавления объемных токов утечки альтернативой диодам Шоттки стали рассматриваться интегрированные Шоттки-pn диоды. Такие интегрированные Шоттки-pn диоды получили название JBS (Junction Barrier Schottky) diode или MPS (Merged PiN Schottky) diode (в отечественных статьях - JBS-диоды). В активной области диода под Шоттки контактом формируют локальные p-n переходы (как правило, с помощью ионной имплантации акцепторных примесей), которые перемежаются с Шоттки областями. При работе JBS-диода в прямом направлении ток протекает через Шоттки области, так что падение напряжения на JBS-диоде в прямом направлении оказывается сравнимым с падением напряжения на ДШ. Расстояние между p-областями подбирается таким образом, чтобы при обратном напряжении области пространственного заряда (ОПЗ) соседних p-n переходов, расширяющиеся вглубь n-области, смыкались. В этом случае электрическое поле в плоскости Шоттки контакта оказывается меньшим по величине по сравнению с ДШ, и, как следствие, токи утечки из металла в полупроводник также оказываются меньшими по величине.
Для изготовления JBS-диодов с заданными электрическими характеристиками (сопротивление в прямом направлении, напряжение пробоя, допробойные токи утечки) необходимо правильно подобрать толщину и уровень легирования эпитаксиального n-слоя, спроектировать геометрию структуры (выбрать число плавающих охранных p-колец, их ширину и зазор между ними, ширину локальных p-областей под Шоттки контактом и расстояние между ними, определить глубину залегания p-n переходов и т.д.), отработать методы формирования омических контактов, методы формирования локальных p-n переходов и Шоттки контактов и др.
Для оценки эффективности той или иной конструкции 4H-SIC JBS-диодов необходимо сравнивать напряжение пробоя диодов (охранную способность краевого контура), величину допробойных токов утечки (эффективность работы структуры JBS, в том числе при повышенных температурах), время переключения из проводящего направления в запорное (коэффициент инжекции p-n перехода), а также сложность технологии изготовления прибора.
Известен JBS-диод [Т. Yamamoto, J. Kojima, Т. Endo etc. al. // Materials Science Forum. Vol.600-603, 2009, P.939]. Он содержит сильнолегированную подложку карбида кремния n-типа, на ней эпитаксиальный слой карбида кремния n-типа толщиной 13 мкм с концентрацией примеси 5·1015см-3, в котором с помощью ионной имплантации алюминия выполнены локальные p-кольца JBS-структуры и плавающие охранные кольца с различной концентрацией имплантированной примеси. Плавающие охранные кольца сделаны тонкими (1.5 мкм), глубина колец не превышает 0.7 мкм. Кольца JBS структуры также сделаны шириной 1.5 мкм и интервалом (0÷5) мкм и глубиной 0.7 мкм. Основной охранный p-n переход выполнен имплантацией алюминия, глубиной 0.7 мкм, с имплантированной дозой 4·1017см-3. В качестве Шоттки контакта, расположенного над JBS структурой, в данном приборе использован молибден. Охранные кольца покрыты слоем диэлектрика - окиси кремния. На обратной стороне подложки сформирован омический контакт. С молибденовым Шоттки контактом падение напряжения в прямом направлении составило 1.6 В при токе 100 А/см2. Максимальное обратное напряжение прибора - 1660 В (66% от теоретически предельного значения для n-слоя толщиной 13 мкм, с концентрацией примеси 5·1015см-3).
Недостатками этого диода являются резкое увеличение токов утечки с ростом температуры из-за молибденового контакта Шоттки, а также удорожание прибора, т.к. имплантация при создании такого прибора происходит в два этапа через разные маски. Кроме того, довольно велико время обратного восстановления таких диодов вследствие легирования алюминием JBS-структуры по причине достаточно высокой инжектирующей способности р<А1>-эмиттера.
Наиболее близким устройством к заявляемому изобретению по совокупности признаков является один из интегрированных карбидкремниевых Шоттки-pn диодов (JBS-диод), описанных в [WO2006122252, опубл. 16.11.2006, заявка США 2006255423]. Он содержит сильнолегированную подложку карбида кремния n-типа, на ее верхней стороне - эпитаксиальный слой карбида кремния n-типа толщиной (5÷13) мкм с концентрацией примеси от 1·1015 см-3, в котором имплантацией бора выполнена структура JBS (т.е. подконтактные p-n переходы), основное охранное кольцо и плавающие охранные кольца. Плавающие охранные кольца (4 шт.) имеют ширину 1.5 мкм, с интервалом 4 мкм, глубина колец (0.5÷1) мкм, имплантированная доза 4 1014 см-2. Кольца JBS (подконтактные p-n переходы) имеют ширину 2.75 мкм и интервал 1.75 мкм, и глубину (0.5÷1.0) мкм. Основной охранный p-n переход выполнен имплантацией бора, глубиной (0.5÷1.0) мкм, шириной 15 мкм. В качестве Шоттки контакта использован никель. Охранные кольца пассивированы слоем диэлектрика - оксидом кремния. На обратной (тыльной) стороне подложки изготовлен омический контакт из никеля. В приборе для уменьшения инжекции неосновных носителей из p-областей при работе диода в прямом направлении верхние части p-областей обеднены, что несколько уменьшает время его обратного восстановления.
Бор является глубокой примесью в карбиде кремния (0.65 эВ у бора против 0.19 эВ у алюминия), инжекция из борных p-областей меньше, чем из алюминиевых, что делает приборы с борными охранными p-n переходами более быстрыми, чем интегрированные Шоттки-pn диоды с алюминиевой имплантацией.
Однако обеспечение формирования дополнительных p-структур над р+-областями, а также необходимость использования для ионной имплантации очень точной и дорогой субмикронной фотолитографии (с точностью до десятых долей мкм) усложняет технологию создания и, следовательно, увеличивает стоимость прибора-прототипа, а достигнутое в этом приборе напряжение пробоя 1200 В составляет всего лишь 43% от теоретического предела и является недостаточным во многих случаях применения устройства.
Предлагаемое изобретение решает задачу увеличения напряжения пробоя интегрированного карбидкремниевого Шоттки-pn диода при удешевлении прибора.
Задача решается интегрированным Шоттки-pn диодом на основе карбида кремния, включающим сильнолегированную подложку из карбида кремния n-типа, эпитаксиальный слой из карбида кремния n-типа толщиной (10÷13) мкм с концентрацией примеси (1÷2) 1015 см-3, расположенный на ее верхней стороне, выполненные в эпитаксиальном слое планарные p-n переходы с легированными бором р-областями с определенной одинаковой глубиной залегания, часть которых расположена под никелевым Шоттки контактом, а остальные выполнены в виде покрытой слоем оксида кремния охранной структуры, состоящей из основного p-n перехода и плавающих охранных колец, и никелевый омический контакт на обратной стороне подложки, в котором все упомянутые p-n переходы в области металлургической границы имеют диффузионный профиль распределения примесей, а отношение глубины их залегания к толщине эпитаксиального слоя удовлетворяет соотношению 0.08≤h/d≤0.20, где:
h - глубина залегания p-n переходов;
d - толщина эпитаксиального слоя.
Сущность изобретения поясняется тем, что предлагаемый диод обладает существенно большим напряжением пробоя по сравнению с прототипом, как в абсолютных величинах (1800 В против 1200 В), так и в относительных (72% от теоретического предела против 43%) в связи с существенно более глубоким залеганием p-n переходов и с их геометрией, а именно - с нерезкой границей, т.е. с расширенной зоной перекомпенсации в области металлургической границы p-n перехода, при этом уменьшается также стоимость прибора за счет отсутствия необходимости использования сложных устройств и приемов при его изготовлении.
Авторы экспериментально определили, что зависимость напряжения пробоя интегрированного Шоттки-pn диода с борными охранными p-n переходами от глубины залегания этих p-n переходов имеет максимум. Положение этого максимума зависит от концентрации примеси в эпитаксиальном слое и его толщины. Выяснено, что напряжение пробоя большее, чем в прототипе, достигается при глубине залегания p-n перехода, составляющей от 0.08 до 0.20 от толщины эпитаксиального слоя. Кроме того, все p-n переходы в предлагаемом приборе, в отличие от p-n переходов с резкой границей в прототипе, выполнены с нерезкой границей, т.е. концентрация акцепторных примесей (бора) в переходе плавно уменьшается вглубь эпитаксиального слоя, образуя протяженную область перекомпенсации, что также, как показывают эксперименты, приводит к увеличению напряжения пробоя.
Таким образом, в предлагаемом диапазоне зависимости глубины залегания p-n переходов от толщины эпитаксиального слоя и при нерезкой границе p-n переходов (при соразмерных с прототипом других параметрах прибора) напряжение пробоя заявляемого устройства будет выше, чем у прототипа. При этом предлагаемое устройство является более простым и дешевым, т.к. технология его создания не требует формирования дополнительных p-структур над p+-областями, а также использования для ионной имплантации очень точной и дорогой субмикронной фотолитографии (с точностью до десятых долей мкм).
Предлагаемое устройство схематически изображено на чертеже, где:
1 - подложка;
2- эпитаксиальный слой;
3 - плавающие охранные кольца;
4 - подконтактная p-n структура (JBS-структура);
5 - слой SiO2;
6 - контакт Шоттки;
7 - основной охранный переход;
8 - омический контакт.
Высоколегированная подложка 1 выполнена из карбида кремния n-типа, на ее верхней стороне расположен эпитаксиальный слой 2 из карбида кремния n-типа. В этом слое расположены выполненные из бора с определенной глубиной залегания подконтактная p-n структура 4 (состоящая из нескольких p-n переходов), интегрированная с никелевым контактом Шоттки 6, и охранная структура, состоящая из основного охранного p-n перехода 7 и плавающих охранных колец 3 в виде p-n переходов, слой 5 оксида кремния расположен над охранной структурой, а никелевый омический контакт 8 - на обратной стороне подложки 1.
Устройство работает следующим образом. При приложении прямого напряжения электроны из контакта Шоттки 6 через зазоры между подконтактной структурой 4, преодолевая потенциальный барьер между металлом Шоттки контакта и карбидом кремния, перемещаются через эпитаксиальный слой 2 и подложку 1 к омическому контакту 8. При приложении обратного напряжения происходит быстрое смыкание ОПЗ между элементами структуры 4, что препятствует протеканию тока утечки через объем прибора. Слой оксида кремния 5 и основной охранный переход 7 уменьшают напряженность поля на краю контакта Шоттки 6 за счет увеличения радиуса его кривизны на краю металлического контакта. Плавающие охранные кольца 3 способствуют дальнейшему распространению ОПЗ в сторону края контакта Шоттки 6, увеличивая максимальное блокируемое обратное напряжение.
Пример 1.
Согласно формуле изобретения был создан интегрированный Шоттки-pn диод с подложкой 1 SiC n-типа с сопротивлением 0.015 Ом·см, эпитаксиальным слоем 2 карбида кремния n-типа, с концентрацией примеси 2·1015 -3, толщиной 12 мкм, никелевым контактом Шоттки 6, слоем SiO2 5 толщиной 300 нм, основным охранным борным p-n переходом 7 шириной 50 мкм, глубиной 2 мкм и нерезкой границей, с имплантированной дозой 9·1013 см-2, четырьмя плавающими охранными борными кольцами 3 шириной 10 мкм каждое, с интервалом 5 мкм, глубиной 2 мкм и нерезкой границей, с имплантированной дозой 9·1013 -2, с борной подконтактной структурой 4, состоящей из 73 p-n переходов шириной по 8 мкм каждый, с интервалом 10 мкм, глубиной 2 мкм и нерезкой границей, с имплантированной дозой 9·1013см-2, с никелевым омическим контактом 8. Отношение глубины всех p-n переходов к толщине эпитаксиального слоя составляет 0.17, что попадает в интервал 0.08≤h/d≤0.20.
В приборе достигнуто падение напряжения в прямом направлении при токе 100 А/см2 - 2.6 В, объемные утечки при обратном смещении 1280 В (50% от теоретического предела) и комнатной температуре не превышали 85 мкА/см2, а напряжение пробоя составило 1800 В (72% от теоретического предела и в 1.5 раза больше, чем у прототипа).
Пример 2.
То же, что в примере 1, но отношение глубины всех p-n переходов к толщине эпитаксиального слоя составило 0.06. Напряжение пробоя составило 1000 В, т.е. ниже, чем в прототипе.
Пример 3.
То же, что в примере 1, но отношение глубины всех p-n переходов к толщине эпитаксиального слоя составило 0.24. Наблюдалась деградация поверхности прибора. Напряжение пробоя составило 200 В, т.е. ниже, чем в прототипе.
Таким образом, заявляемое изобретение обладает более высокими техническими характеристиками по сравнению с прототипом при более простом и дешевом изготовлении.

Claims (1)

  1. Интегрированный Шоттки-рn диод на основе карбида кремния, включающий сильнолегированную подложку из карбида кремния n-типа, эпитаксиальный слой из карбида кремния n-типа толщиной (10-13)мкм с концентрацией примеси (1-2)1015 см-3, расположенный на ее верхней стороне, выполненные в эпитаксиальном слое планарные р-n-переходы с легированными бором р-областями с определенной одинаковой глубиной залегания, часть которых расположена под никелевым Шоттки контактом, а остальные выполнены в виде покрытой слоем оксида кремния охранной структуры, состоящей из основного р-n-перехода и плавающих охранных колец, и никелевый омический контакт на обратной стороне подложки, причем все упомянутые р-n-переходы в области металлургической границы имеют диффузионный профиль распределения примесей, а отношение глубины их залегания к толщине эпитаксиального слоя удовлетворяет соотношению 0,08≤h/d≤0,20,
    где h - глубина залегания р-n-переходов;
    d - толщина эпитаксиального слоя.
RU2009120423/28A 2009-05-25 2009-05-25 ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ RU2390880C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009120423/28A RU2390880C1 (ru) 2009-05-25 2009-05-25 ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009120423/28A RU2390880C1 (ru) 2009-05-25 2009-05-25 ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ

Publications (1)

Publication Number Publication Date
RU2390880C1 true RU2390880C1 (ru) 2010-05-27

Family

ID=42680590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009120423/28A RU2390880C1 (ru) 2009-05-25 2009-05-25 ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ

Country Status (1)

Country Link
RU (1) RU2390880C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528554C1 (ru) * 2013-04-25 2014-09-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ формирования высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур
RU172077U1 (ru) * 2016-12-27 2017-06-28 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Дрейфовый диод с резким восстановлением на основе карбида кремния
RU172837U1 (ru) * 2017-04-05 2017-07-26 Закрытое акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Диод с барьером шоттки на основе карбида кремния
RU178705U1 (ru) * 2017-11-28 2018-04-17 Закрытое акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Полупроводниковый прибор на основе карбида кремния
RU2683377C1 (ru) * 2015-06-02 2019-03-28 Диотек Семикондактор Аг Усовершенствованный полупроводниковый прибор с диодом шоттки
RU188360U1 (ru) * 2018-12-25 2019-04-09 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528554C1 (ru) * 2013-04-25 2014-09-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ формирования высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур
RU2683377C1 (ru) * 2015-06-02 2019-03-28 Диотек Семикондактор Аг Усовершенствованный полупроводниковый прибор с диодом шоттки
RU172077U1 (ru) * 2016-12-27 2017-06-28 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Дрейфовый диод с резким восстановлением на основе карбида кремния
RU172837U1 (ru) * 2017-04-05 2017-07-26 Закрытое акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Диод с барьером шоттки на основе карбида кремния
RU178705U1 (ru) * 2017-11-28 2018-04-17 Закрытое акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Полупроводниковый прибор на основе карбида кремния
RU188360U1 (ru) * 2018-12-25 2019-04-09 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД

Similar Documents

Publication Publication Date Title
JP5357014B2 (ja) サージ電流保護を伴う半導体デバイスとその製造方法
TWI573282B (zh) 電子裝置、肖基特二極體及形成半導體裝置之方法
JP5663045B2 (ja) ヘテロ接合障壁領域を含む半導体デバイス及びその製造方法
Ren et al. Design and experimental study of 4H-SiC trenched junction barrier Schottky diodes
TWI584483B (zh) 具有未經植入障壁區之半導體裝置及其製造方法
US8232558B2 (en) Junction barrier Schottky diodes with current surge capability
EP2710635B1 (en) Sic devices with high blocking voltage terminated by a negative bevel
RU2390880C1 (ru) ИНТЕГРИРОВАННЫЙ ШОТТКИ-pn ДИОД НА ОСНОВЕ КАРБИДА КРЕМНИЯ
CN102544114B (zh) 一种积累型槽栅二极管
JP2004515080A5 (ru)
TWI540738B (zh) 半導體裝置(二)
JP4119148B2 (ja) ダイオード
CN102593154B (zh) 一种具有p型埋层结构的槽栅二极管
TWI470802B (zh) 溝槽式金氧半導體電晶體元件及其製造方法
JP2007311822A (ja) ショットキーバリヤダイオード
Lynch et al. Design considerations for high voltage SiC power devices: An experimental investigation into channel pinching of 10kV SiC junction barrier schottky (JBS) diodes
CN102376777A (zh) 具有低正向压降的结势垒型肖特基
US7709864B2 (en) High-efficiency Schottky rectifier and method of manufacturing same
CN105226104B (zh) 一种碳化硅肖特基二极管及其制备方法
TW201125129A (en) Schottkydiode
CN102456748A (zh) 一种肖特基二极管及其制造方法
KR20150048360A (ko) 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드
US20210328077A1 (en) Merged PiN Schottky (MPS) Diode With Multiple Cell Designs And Manufacturing Method Thereof
US20210036167A1 (en) MERGED PiN SCHOTTKY (MPS) DIODE WITH PLASMA SPREADING LAYER AND MANUFACTURING METHOD THEREOF
RU140005U1 (ru) Высоковольтный интегрированный шоттки-pn диод на основе карбида кремния

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110526