RU2390572C1 - Способ переработки кварц-лейкоксеновых концентратов - Google Patents

Способ переработки кварц-лейкоксеновых концентратов Download PDF

Info

Publication number
RU2390572C1
RU2390572C1 RU2008145404A RU2008145404A RU2390572C1 RU 2390572 C1 RU2390572 C1 RU 2390572C1 RU 2008145404 A RU2008145404 A RU 2008145404A RU 2008145404 A RU2008145404 A RU 2008145404A RU 2390572 C1 RU2390572 C1 RU 2390572C1
Authority
RU
Russia
Prior art keywords
fluorination
ammonium fluoride
temperature
titanium
concentrate
Prior art date
Application number
RU2008145404A
Other languages
English (en)
Inventor
Леонид Борисович Чистов (RU)
Леонид Борисович Чистов
Владимир Емельянович Охрименко (RU)
Владимир Емельянович Охрименко
Евгений Владимирович Выговский (RU)
Евгений Владимирович Выговский
Original Assignee
ООО "Гирмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Гирмет" filed Critical ООО "Гирмет"
Priority to RU2008145404A priority Critical patent/RU2390572C1/ru
Application granted granted Critical
Publication of RU2390572C1 publication Critical patent/RU2390572C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способу переработки кварц-лейкоксеновых концентратов, содержащих высокие концентрации рутил-кварцевого агрегата, и может быть использовано для получения искусственного рутила. Способ включает фторирование концентрата с использованием фторида аммония при нагревании с отделением аммиачной воды, термообработку продукта фторирования с разделением соединений кремния в виде возгона кремнефторида аммония и титана в виде остатка искусственного рутила и получение диоксидов титана и кремния в виде товарных продуктов. При этом перед фторированием исходный концентрат смешивают с раствором фторида аммония с концентрацией 300-400 г/л. Смесь сушат при температуре до 100°С и фторирование ведут при поднятии температуры не выше 190°С. Термообработку продукта фторирования с разделением соединений титана и кремния ведут при температуре 250-280°С в течение 0,8-1,0 часа. Полученный остаток искусственного рутила обжигают при температуре 800-850°С с улавливанием фтора аммиачной водой и получением раствора фторида аммония, а возгон кремнефторида аммония обрабатывают аммиачной водой с получением диоксида кремния с наноразмерной крупностью частиц и раствора фторида аммония, который объединяют с раствором фторида аммония, полученного при обжиге остатка искусственного рутила, упаривают до концентрации 300-400 г/л и направляют на смешение с новой порцией исходного концентрата. Техническим результатом является повышение качества искусственного рутила, сокращение энергозатрат и получение диоксида кремния с нанодисперсной крупностью частиц.

Description

Изобретение относится к металлургии редких металлов, а именно к способам переработки кварц-лейкоксеновых концентратов Ярегского месторождения, содержащих высокие концентрации рутил-кварцевого агрегата, и может быть использовано для получения искусственного рутила - сырья для производства хлорным способом титана и пигментного диоксида титана.
Технической задачей, решаемой заявленным изобретением, является комплексная переработка флотационных кварц-лейкоксеновых концентратов Ярегского месторождения с целью получения искусственного рутила, а также диоксида кремния в виде товарного продукта.
Кварц-лейкоксеновые руды Ярегского месторождения подвергают флотационному обогащению до получения концентрата, содержащего 66-80% диоксида титана и до 25% диоксида кремния. Этот концентрат является исходным продуктом для получения искусственного рутила.
Технология получения искусственного рутила из кварц-лейкоксеновых концентратов является актуальной задачей, т.к. отечественым и зарубежными рынками востребованы высококачественные титановые материалы и прежде всего искусственный рутил, являющийся исходным компонентом для производства металлического титана, титановых лигатур и сварочных электродов. Попутное извлечение кварца в виде товарного диоксида кремния существенно повышает эффективность изобретения.
Известен способ переработки лейкоксенового концентрата, содержащего 45-60% диоксида титана и 30-45% диоксида кремния, с получением искусственного рутила, включающий обжиг концентрата в присутствии модифицирующих добавок оксидных соединений железа при температуре 1450-1525°С, последующее охлаждение, измельчение и предварительную дешламацию. Затем полученный продукт подвергают выщелачиванию щелочными растворами в автоклаве, пульпу фильтруют и твердую фазу подвергают повторной дешламации. После сушки конечный продукт содержит 90,6-92,8% диоксида титана, 1,4-3,8 диоксида кремния. Сквозное извлечение титана из концентрата составляет 87,8- 89,4% (См. патент РФ №2216517, C01G 23/047, опубл. 20.11.2003).
Недостатком способа является многооперационность, высокая энергоемкость, потери титана со шламами. Способ не предусматривает регенерацию реагентов.
Известен способ переработки лейкоксенового концентрата, содержащего 48-50% двуокиси титана и 45% двуокиси кремния, с получением рутильной двуокиси титана, включающий обработку 40-43%-ным раствором серной кислоты при 100-120°С и
Т:Ж=1: (5-7) для удаления примеси фосфора, очищенный концентрат подвергают сернокислотному разложению при 250-300°С, полученный плав выщелачивают при нагревании с переходом титана в раствор, а кремния в остаток, полученный при этом титансодержащий сернокислый раствор подвергают термогидролизу с последующей отмывкой осадка гидратированной двуокиси титана от серной кислоты и прокалкой его при 750-800°С с получением рутильной двуокиси титана. Степень рутилизации двуокиси титана равна 99,2-99,85 (См. патент РФ №975578, C01G 23/053, опубл. 28.11.82).
Недостатком способа является его высокая энергоемкость, использование концентрированных реагентов и отсутствие их регенерации.
Известен способ переработки кварц-лейкоксеновых концентратов, включающий фторирование исходного концентрата фторсодержащей солью аммония при нагревании с отделением аммиачной воды, термообработку полученного продукта, разделение соединений кремния и титана, получение диоксидов титана и кремния в виде товарных продуктов. Фторированию подвергают флотационный кварц-лейкоксеновый концентрат крупностью - 0,1 мм, а в качестве фторсодержащей соли аммония используют твердый фторид аммония при массовом соотношении к концентрату (0,6-1,25):1, фторирование проводят при температуре 195-205°С, а разделение соединений титана и кремния ведут при термообработке полученного продукта при температуре 295-305°С с возгонкой кремнефторида аммония и получением в остатке искусственного рутила, содержащего 90-95% диоксида титана, возгоны кремнефторида аммония обрабатывают аммиачной водой, полученной при фторировании исходного концентрата с получением осадка диоксида кремния, а раствор фторида аммония после отделения осадка диоксида кремния упаривают с получением твердого фторида аммония, который возвращают на фторирование новой порции исходного концентрата (См. патент РФ №2264478, С22В 34/12, опубл. 2005 г.). Способ принят за прототип.
Недостатком способа является высокое до 5-7% содержание фтора в искусственном рутиле, за счет перехода образующихся в процессе нелетучих фторидов металлов - примесей Al, Ca, Fe, Mg - в конечный продукт - диоксид титана.
Наличие фтора в искусственном рутиле, помимо снижения содержания диоксида титана, отрицательно сказывается на последующих технологических процессах, где искусственный рутил используют в качестве исходного сырья.
Так, например, при хлорировании искусственного рутила наличие фтор-иона резко увеличивает коррозию конструкционных материалов, снижая сроки службы хлораторов и другого технологического оборудования.
Техническим результатом изобретения является повышение качества искусственного рутила, снижение энергозатрат и получение диоксида кремния с наноразмерной структурой.
Технический результат достигается тем, что в способе переработки кварц-лейкоксеновых концентратов, включающем фторирование исходного обогащенного флотационного кварц-лейкоксенового концентрата с использованием фторида аммония при нагревании с отделением аммиачной воды, термообработку полученного продукта фторирования с разделением соединений кремния в виде возгона кремнефторида аммония и титана в виде остатка искусственного рутила и получение диоксидов титана и кремния в виде товарных продуктов, согласно изобретению перед фторированием исходный концентрат смешивают с раствором фторида аммония с концентрацией 300-400 г/л, смесь сушат при температуре до 100°С и фторирование ведут при поднятии температуры не выше 190°С, термообработку продукта фторирования с разделением соединений титана и кремния ведут при температуре 250-280°С в течение 0,8-1,0 часа, полученный остаток искусственного рутила обжигают при температуре 800-850°С в течение 0,5-1,2 часа с улавливанием фтора аммиачной водой и получением раствора фторида аммония, а возгон кремнефторида аммония обрабатывают аммиачной водой с получением диоксида кремния с наноразмерной крупностью частиц и раствора фторида аммония, который объединяют с раствором фторида аммония, полученного при обжиге остатка искусственного рутила, упаривают до концентрации 300-400 г/л и направляют на смешение с новой порцией исходного концентрата.
Сущность способа заключается в следующем.
Для получения искусственного рутила из кварц-лейкоксенового концентрата используют фторидную технологию, как и в прототипе. Но в отличие от прототипа, где исходный концентрат смешивают с твердым фторидом аммония и фторирование ведут при температуре 195-205°С, в заявленном способе фторирование осуществляют с предварительным смешиванием концентрата с насыщенным раствором фторида аммония. Новым является и то, что разделение титана и кремния ведут при температуре 250-280°С, полученный рутил обжигают при температуре 800-850°С, а выделяющийся фтор улавливают аммиачной водой, полученный раствор фторида аммония объединяют с таким же раствором со стадии обработки возгонов кремниефторида, объединенные растворы упаривают до концентрации 300-320 г/л и возвращают на стадию смешения с исходным концентратом. При смешении исходного концентрата с насыщенным раствором фторида аммония происходит равномерное распределение фторирующего агента по всему объему за счет пропитки твердого материала жидкой фазой и заполнение реагентом всех пор. При этом существенно увеличивается поверхность взаимодействия компонентов, обеспечивая более тесный контакт реагента и концентрата. В результате уже в процессе сушки, которую проводят при температуре до 100°С, получают смесь в реакционно подготовленной форме. Именно этот прием позволяет сократить в 1,5-2 раза время стадии фторирования и последующей термообработки, а также снизить температуру на этих операциях.
Новым результатом новой совокупности признаков является получение из возгонов кремнефторида аммония диоксида кремния с наноразмерной крупностью частиц.
Таким образом, существенное повышение эффективности фторирования достигают при одновременном сокращении времени, а также температуры фторирования и последующей термообработки, с получением товарного продукта - диоксида кремния с новыми потребительскими свойствами.
Введение операции обжига искусственного рутила повышает его качество и содержание диоксида титана, а также исключает дополнительную коррозию аппаратуры при его дальнейшем использовании.
Объединение на стадии упаривания растворов фторида аммония с двух разных операций обеспечивает большую полноту возврата фторида аммония и большую полноту его использования в процессе.
Обоснование режимов осуществления способа
Исходный концентрат смешивают с раствором фторида аммония с концентрацией 300-400 г/л.
При увеличении концентрации фторида аммония в растворе более чем 400 г/л, возможна кристаллизация фторида аммония и уменьшается поверхность взаимодействия концентрата с реагентом. Эффективность процесса фторирования падает.
При концентрации в растворе фторида аммония менее 300 г/л непроизводительно увеличиваются затраты электроэнергии на стадии сушки.
Проведение процесса фторирования при температуре не выше 190°С обеспечивает требуемую полноту фторирования концентрата. Увеличение температуры непроизводительно увеличивает расход электроэнергии.
Разделение титана и кремния и получение диоксида титана проводят термообработкой при температуре 250-280°С в течение 0,8-1,0 часа.
Снижение температуры термообработки ниже 250°С и сокращение времени термообработки менее 0,8 часа уменьшает степень разделения титана и кремния и ухудшает качество получаемого искусственного рутила.
Повышение температуры термообработки выше 280°С и увеличение времени термообработки более 1,0 часа непроизводительно увеличивает энергозатраты, не улучшая показатели процесса переработки кварц-лейкоксеновых концентратов в целом.
Пример 1
Флотационный кварц-лейкоксеновый концентрат с содержанием (% масс.): 66,71 TiO2; 25,62 SiO2; 3,61 Al2O3; 2,3 Fe2O3, оксиды примесей металлов - остальное, измельчали до крупности - 0,1 мм, смешивали с раствором фторида аммония с концентрацией 340 г/л в массовом соотношении концентрат:фторид аммония 1:1,1. Смесь загружали в стеклографитовый тигель, помещали его в электропечь и выдерживали при температуре 96°С в течение 30 мин до полного удаления воды. Затем температуру поднимали до 180°С.
Пары воды и аммиака улавливали с получением аммиачной воды. Затем из продуктов обжига отгоняли пары кремнефторида аммония (NH4)2SiF6 при температуре 260°С в течение 1,0 часа. Нелетучий остаток представлял собой искусственный рутил следующего состава (% масс.): 91,84 TiO2; 0,31 SiO2; 2,5 Al2O3; 1,7 Fe2O3, содержание фтора ~5%. Полученные возгоны (NH4)2SiF6 обрабатывали раствором гидроксида аммония, образовавшегося при фторировании исходного концентрата с получением осадка SiO2·n Н2О и раствора NH4F. Осадок диоксида кремния сушили с получением материала с нанодисперсной размерностью - 10 нм.
Искусственный рутил подвергали обжигу при температуре 820°С в течение 0,9 часа. Пары фтора улавливали аммиачной водой с получением раствора фторида аммония.
Растворы фторида аммония после обжига рутила объединяли с раствором фторида аммония после получения диоксида кремния, упаривали до концентрации 300-400 г/л и направляли на смешение с исходным концентратом.
Искусственный рутил после обжига содержал ~96% TiO2.
Пример 2
Флотационный кварц-лейкоксеновый концентрат с содержанием (% масс.): 79,2 TiO2; 19,0 SiO2, примеси оксидов металлов - остальное, измельчали до крупности - 0,1 мм, смешивали с раствором фторида аммония NH4F с концентрацией 400 г/л в массовом соотношении концентрат:фторид аммония 1:1. Смесь загружали в стеклографитовый тигель, помещали его в электропечь и сушили при температуре 80°С, затем фторировали при температуре 170°С до полного удаления аммиака. Затем из продуктов обжига отгоняли пары кремнефторида аммония (NH4)2SiF6) в условиях, указанных в примере 1.
Полученный искусственный рутил имел следующий состав (% масс.): 95,86 TiO2; 0,46 SiO2; 1,7 Al2O3; 0,9 Fe2O3; F ~2,1%.
После обжига искусственного рутила при температуре 800°С в течение 1,0 часа получили продукт с содержанием ~98% TiO2.
Таким образом, предложенное изобретение позволяет из обогащенного флотационного кварц-лейкоксенового концентрата, содержащего до 80% диоксида титана и до 25% диоксида кремния, получать искусственный рутил с содержанием до 98% диоксида титана, при этом по сравнению с прототипом сократить расход электроэнергии, повысить качество получаемого искусственного рутила, получить товарный диоксид кремния с наноразмерной структурой.

Claims (1)

  1. Способ переработки кварц-лейкоксеновых концентратов, включающий фторирование исходного обогащенного флотационного кварц-лейкоксенового концентрата с использованием фторида аммония при нагревании с отделением аммиачной воды, термообработку полученного продукта фторирования с разделением соединений кремния в виде возгона кремнефторида аммония и титана в виде остатка искусственного рутила и получение диоксидов титана и кремния в виде товарных продуктов, отличающийся тем, что перед фторированием исходный концентрат смешивают с раствором фторида аммония с концентрацией 300-400 г/л, смесь сушат при температуре до 100°С и фторирование ведут при поднятии температуры не выше 190°С, термообработку продукта фторирования с разделением соединений титана и кремния ведут при температуре 250-280°С в течение 0,8-1,0 ч, полученный остаток искусственного рутила обжигают при температуре 800-850°С в течение 0,5-1,2 ч с улавливанием фтора аммиачной водой и получением раствора фторида аммония, а возгон кремнефторида аммония обрабатывают аммиачной водой с получением диоксида кремния с наноразмерной крупностью частиц и раствора фторида аммония, который объединяют с раствором фторида аммония, полученного при обжиге остатка искусственного рутила, упаривают до концентрации 300-400 г/л и направляют на смешение с новой порцией исходного концентрата.
RU2008145404A 2008-11-19 2008-11-19 Способ переработки кварц-лейкоксеновых концентратов RU2390572C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008145404A RU2390572C1 (ru) 2008-11-19 2008-11-19 Способ переработки кварц-лейкоксеновых концентратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008145404A RU2390572C1 (ru) 2008-11-19 2008-11-19 Способ переработки кварц-лейкоксеновых концентратов

Publications (1)

Publication Number Publication Date
RU2390572C1 true RU2390572C1 (ru) 2010-05-27

Family

ID=42680437

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008145404A RU2390572C1 (ru) 2008-11-19 2008-11-19 Способ переработки кварц-лейкоксеновых концентратов

Country Status (1)

Country Link
RU (1) RU2390572C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734513C1 (ru) * 2020-03-20 2020-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ переработки кварц-лейкоксенового концентрата
CN111989413A (zh) * 2017-07-11 2020-11-24 泰尼尔项目管理有限公司 处理钛磁铁矿矿石材料的方法
RU2768386C1 (ru) * 2021-10-22 2022-03-24 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ переработки кварц-лейкоксенового концентрата
RU2779624C1 (ru) * 2021-11-23 2022-09-12 Акционерное общество "РУССКИЕ ТИТАНОВЫЕ РЕСУРСЫ" Способ переработки кварц-лейкоксеновых концентратов с получением искусственного пористого рутила, синтетического игольчатого волластонита и прокаленного кварцевого песка

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989413A (zh) * 2017-07-11 2020-11-24 泰尼尔项目管理有限公司 处理钛磁铁矿矿石材料的方法
RU2734513C1 (ru) * 2020-03-20 2020-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ переработки кварц-лейкоксенового концентрата
RU2768386C1 (ru) * 2021-10-22 2022-03-24 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ переработки кварц-лейкоксенового концентрата
RU2779624C1 (ru) * 2021-11-23 2022-09-12 Акционерное общество "РУССКИЕ ТИТАНОВЫЕ РЕСУРСЫ" Способ переработки кварц-лейкоксеновых концентратов с получением искусственного пористого рутила, синтетического игольчатого волластонита и прокаленного кварцевого песка

Similar Documents

Publication Publication Date Title
RU2454369C1 (ru) Способ получения оксида ванадия
RU2456241C2 (ru) Способ получения оксида ванадия с использованием экстракции
RU2710613C1 (ru) Способ восстановления аммиака из соединения ванадия для получения соединения аммиака и рециркуляции сточных вод
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
CN109402415A (zh) 一种低品位天然金红石制备可氯化富钛料的方法
CN102838158B (zh) 利用电解锌酸浸渣氨法脱碳生产高纯纳米氧化锌的方法
JP2017119901A (ja) イルメナイト鉱からの金属チタン製造用酸化チタンの回収方法
CN106276935A (zh) 水玻璃联产白炭黑清洁化生产工艺
RU2390572C1 (ru) Способ переработки кварц-лейкоксеновых концентратов
WO2019137542A1 (zh) 一种高钛渣选择性浸出提质的方法
CN111989413B (zh) 处理钛磁铁矿矿石材料的方法
AU2005230943A1 (en) F-treatment of titanium materials
RU2365647C1 (ru) Способ переработки титансодержащего сырья
RU2624749C2 (ru) Способ получения оксида бериллия и металлического бериллия
DE60013134T2 (de) Herstellung von titandioxid pigmenten aus wässrigen, titanhaltigen lösungen
US20130264217A1 (en) Recovery method of tin and nickel from scraps of steel ball for barrel plating
CN104843777B (zh) 一种由钛渣制备金红石型二氧化钛的方法
JP4183926B2 (ja) タンタル/ニオブ含有の炭化物系原料からのタンタル/ニオブの回収方法
CN104805292B (zh) 稀土镨钕熔盐电解废料中有价成分的分离及回收方法
Ultarakova et al. Processing of titanium production sludge with the extraction of titanium dioxide
RU2264478C1 (ru) Способ переработки титан-кремнийсодержащих концентратов
RU2262544C1 (ru) Способ переработки кварц-лейкоксенового концентрата
RU2058408C1 (ru) Способ переработки титансодержащего минерального сырья
RU2314259C1 (ru) Способ переработки вольфрамсодержащего материала
Karshyga et al. Processing of Titanium-Magnesium Production Waste

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101120