RU2388533C2 - Модифицированный pt/ru катализатор для раскрытия кольца и способ использования этого катализатора - Google Patents

Модифицированный pt/ru катализатор для раскрытия кольца и способ использования этого катализатора Download PDF

Info

Publication number
RU2388533C2
RU2388533C2 RU2008117404/04A RU2008117404A RU2388533C2 RU 2388533 C2 RU2388533 C2 RU 2388533C2 RU 2008117404/04 A RU2008117404/04 A RU 2008117404/04A RU 2008117404 A RU2008117404 A RU 2008117404A RU 2388533 C2 RU2388533 C2 RU 2388533C2
Authority
RU
Russia
Prior art keywords
catalyst
particles
ruthenium
platinum
component
Prior art date
Application number
RU2008117404/04A
Other languages
English (en)
Other versions
RU2008117404A (ru
Inventor
Фенг КСУ (US)
Фенг Ксу
Лоренц Дж. БАУЕР (US)
Лоренц Дж. БАУЕР
Ральф Д. ДЖИЛЕСПАЙ (US)
Ральф Д. ДЖИЛЕСПАЙ
Маурин Л. БРИКЕР (US)
Маурин Л. БРИКЕР
Стивен А. БРЭДЛИ (US)
Стивен А. БРЭДЛИ
Original Assignee
Юоп Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юоп Ллк filed Critical Юоп Ллк
Publication of RU2008117404A publication Critical patent/RU2008117404A/ru
Application granted granted Critical
Publication of RU2388533C2 publication Critical patent/RU2388533C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/31Rearrangement of carbon atoms in the hydrocarbon skeleton changing the number of rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/63Platinum group metals with rare earths or actinides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к катализаторам для раскрытия нафтеновых колец. Описан катализатор для раскрытия нафтеновых колец, содержащий платиновый компонент, рутениевый компонент и модифицирующий компонент, все диспергированные на подложке из тугоплавкого неорганического оксида, и характеризующийся тем, что, по меньшей мере, 50% платинового и рутениевого компонентов присутствуют в виде частиц, где на поверхности частиц имеется более высокая концентрация рутения, чем в центре частиц. Также описан способ получения ациклических парафинов из циклических парафинов, включающий контактирование потока сырья, содержащего циклические парафины, с катализатором, содержащим платиновый компонент, рутениевый компонент и модифицирующий компонент, все диспергированные на подложке из тугоплавкого неорганического оксида, в условиях раскрытия кольца для превращения, по меньшей мере, части циклических парафинов в ациклические парафины, при этом катализатор характеризуется тем, что, по меньшей мере, 50% платинового и рутениевого компонентов присутствуют в виде частиц, где на поверхности частиц имеется более высокая концентрация рутения, чем в центре частиц. Технический эффект - повышенный синергизм Pt/Ru катализаторов. 2 н. и 8 з.п. ф-лы,6 табл., 2 ил.

Description

Область техники
Существует возрастающая потребность в полностью сгорающих высокоэффективных топливах. Дистиллятные топлива, например легкий синтетический бензин прямой гонки, обычно содержат парафины, нафтены и ароматические соединения. Нафтены, т.е. циклические парафины, такие как метилциклопентан (МЦП) и циклогексан (ЦТ) имеют низкие октановые числа (ОЧИ), равные 91 и 83, соответственно. Если циклы раскрыть и изомеризовать, полученные в результате изомеризованные парафины имеют более высокие октановые числа. Парафины также имеют более низкую плотность, чем соответствующие нафтены. Поэтому существует необходимость в улучшенных катализаторах для раскрытия кольца.
Увеличение содержания парафинов также требуется для получения реформулированного бензина. Реформулированный бензин отличается от традиционного продукта тем, что имеет более низкое давление паров, более низкую крайнюю точку кипения, повышенное содержание оксигенатов и более низкое содержание олефинов, бензола и ароматических соединений.
Уменьшение содержания бензола в бензине часто рассматривают как средство для изменения границы разделения между легким и тяжелым бензином и направления большей части потенциальных бензольных составляющих на изомеризацию вместо риформинга. Бензол не образуется при изомеризации, при которой бензол превращается в С6-нафтены, а С6-нафтены изомеризуются в равновесную смесь циклогексана и метилциклопентана или превращаются в парафины через раскрытие кольца. Полагают, что такие С6-циклические соединения предпочтительнее адсорбируются на каталитических центрах, по сравнению с парафинами, и поэтому циклические соединения обладают значительным влиянием на активность катализатора изомеризации парафинов. Нефтепереработчики поэтому сталкиваются с проблемой поддержания эксплуатационных качеств установок изомеризации легкого бензина, которые перерабатывают повышенные концентрации циклических соединений.
Раскрытие кольца является предпочтительной реакцией для улучшения группового состава парафинов исходного сырья для установок изомеризации, потому что раскрытие кольца включает разрыв лишь одной связи углерод-углерод кольца (колец) при сохранении такого же числа углеродных атомов, как в исходной молекуле. Гидрогенолиз, с другой стороны, включает разрыв одной или более связи углерод-углерод, в то время как крекинг включает разрыв более чем одной связи углерод-углерод с образованием молекул с более низким углеродным числом. При таком применении очень желательно использовать катализатор, который имеет высокую активность и селективность к раскрытию кольца при относительно низких температурах от 125°С до 250°С.
Катализаторы, которые пригодны для раскрытия кольца, известны и включают в качестве компонента высший хлорид платины, диспергированный на тугоплавком неорганическом оксиде, и описаны в патенте US 5,463,155. Патент US 5,811,624 описывает катализатор для селективного раскрытия 5- и 6-членных колец, который состоит из катализатора переходного металла, выбранного из группы, состоящей из карбидов, нитридов, оксикарбидов, оксинитридов и оксикарбонитридов. Переходный металл выбран из группы, состоящей из металлов IVA, VA, VIA групп Периодической Таблицы Элементов. Патент US 6,235,962 В1 раскрывает катализатор для раскрытия кольца, который содержит носитель, состоящий из оксида алюминия, металла-модификатора, выбранного из группы, состоящей из скандия, иттрия и лантана, и, по меньшей мере, одного каталитически активного металла, выбранного из группы, состоящей из платины, палладия, родия, рения, иридия, рутения и кобальта. Патент US 5,382,730 раскрывает способ раскрытия кольца и изомеризации углеводородов, в котором катализатор содержит алюмосиликатный цеолит, такой как Цеолит Y или Цеолит Бета, и гидрогенизирующий компонент. Патент US 5,345,026 раскрывает способ превращения циклических углеводородов в нециклические парафиновые углеводороды, где катализатор содержит гидрогенизирующий-дегидрогенизирующий компонент и кислотный твердый компонент, содержащий оксид металла IVB группы, модифицированный оксианионом металла VIB группы. Патент US 3,617,511 раскрывает катализатор превращения циклических углеводородов в парафины, где катализатор содержит родий или рутений на тугоплавком оксиде, промотированном галогеном. Патент US 6,241,876 раскрывает катализатор раскрытия кольца, который содержит компонент, представляющий собой кристаллическое молекулярное сито с большими порами со структурой фожазита и альфа-кислотностью меньше единицы, и благородный металл VIII Группы. Опубликованная заявка US No. 2002/43481 А1 раскрывает катализатор раскрытия кольца нафтенов, который содержит, по меньшей мере, один металл VIII Группы, выбранный из иридия, платины, родия и рутения на подложке из тугоплавкого неорганического оксида, содержащей, по меньшей мере, один из щелочных металлов и щелочно-земельный металл. Опубликованная заявка US No. 2002/40175 A1 раскрывает катализатор раскрытия кольца нафтенов, содержащий металл VIII Группы, выбранный из иридия, платины, палладия, родия, рутения и их сочетаний, с металлом, закрепленным на подложке, содержащей, по меньшей мере, один из металлов Групп IB, IIB и IVА. Опубликованная заявка US No. 2002/50466 A1 раскрывает катализатор раскрытия нафтенового кольца, содержащий иридий в сочетании с, по меньшей мере, одним из платины, родия и рутения. Наконец, опубликованная заявка US No. 2002/63082 A1 раскрывает способ, где исходный бензин вначале контактирует с катализатором раскрытия кольца, содержащим металл VIII Группы, а затем продукт вводят в контакт с катализатором крекинга.
Заявители разработали катализатор, содержащий платину, рутений и модификатор, такой как церий или рений, диспергированный на подложке из тугоплавкого неорганического оксида. Заявители обнаружили, что сочетание рутения с платиной приводит к синергическому эффекту, этот эффект может быть усилен за счет прибавления модифицирующего компонента. Катализатор, кроме того, характеризуется тем, что, по меньшей мере, 50% платиновых и рутениевых компонентов присутствуют в виде частиц, где поверхность частиц обогащена рутением, по сравнению с центром частиц.
Краткое описание чертежей
Фиг.1 представляет график зависимости Фактора Синергизма от массового отношения M/Pt, описанный в Примере 8.
Подробное описание изобретения
Один существенный элемент катализатора настоящего изобретения представляет собой подложку, которая содержит тугоплавкий неорганический оксид. Неорганические оксиды, которые могут быть использованы, представляют собой любые из тех, что хорошо известны в данной области, и включают, но не ограничиваются оксидами алюминия, оксидом кремния/оксидом алюминия, оксидом кремния, оксидом титана, оксидом кальция, оксидом магния, глинами и оксидом циркония. Во избежание путаницы подчеркивается, что термин оксид кремния/оксид алюминия не означает физическую смесь оксида кремния и оксида алюминия, а означает кислотный и аморфный материал, полученный совместным гелеобразованием или соосаждением. Термин хорошо известен в данной области, см., например, патенты US 3,909,450, US 3,274,124 и US 4,988,659. Оксиды алюминия, которые могут быть использованы, включают гамма-оксид алюминия, тета-оксид алюминия, дельта-оксид алюминия и альфа-оксид алюминия.
Хотя подложки могут быть использованы в виде порошков, предпочтительно формировать из порошка частицы определенной формы. Примеры частиц определенной формы включают сферы, гранулы, экструдаты, частицы неопределенной формы и таблетки, но не ограничиваются ими. Способы образования этих различных частиц хорошо известны в данной области.
Сферические частицы могут быть образованы, например, предпочтительно из оксида алюминия путем (1) превращения порошка оксида алюминия в золь оксида алюминия путем реакции с подходящей пептизирующей кислотой и водой и последующей подачи каплями смеси полученного в результате золя и желирующего агента в масляную баню для образованием сферических частиц геля оксида алюминия, которые легко превращаются в подложку гамма-оксида алюминия известными методами; (2) образования экструдата из порошка установленными способами и последующего перекатывания частиц экструдата на вращающемся диске до тех пор, пока не образуются сферические частицы, которые затем могут быть высушены и подвергнуты прокаливанию с образованием желаемых частиц сферической подложки; и (3) смачивания порошка подходящим пептизирующим агентом и последующего раскатывания частиц порошка в сферические тела желаемой формы.
Вместо пептизирования порошка оксида алюминия сферы могут быть приготовлены так, как описано в патенте US 2,620,314, который включен в описание изобретения полностью в качестве ссылки. Первая стадия в этом способе включает образование гидрозоля алюминия по любой из методик, рекомендованных в данной области, и, предпочтительно, путем взаимодействия металлического алюминия с хлористоводородной кислотой. Образовавшийся в результате гидрозоль смешивают с подходящим желирующим агентом, таким как гексаметилентетрамин (ГМТ). Результирующую смесь капают в масляную баню, температуру которой поддерживают от 90°С до 100°С. Капли смеси оставляют в масляной бане до тех пор, пока они не затвердеют и не сформируются в сферы гидрогеля. Затем сферы непрерывно извлекают из масляной бани и обрабатывают аммиачным раствором при температуре от 80°С до 95°С в течение 2-2,5 часов. После обработки аммиачным раствором сферы высушивают при температуре от 80°С до 150°С и затем прокаливают при температуре от 400°С до 700°С в течение 1-24 часов.
Экструдаты готовят смешиванием неорганического оксида с водой и подходящими пептизирующими агентами, такими как азотная кислота, уксусная кислота и т.д., до тех пор, пока не образуется масса, пригодная для экструдирования. Полученную в результате массу затем экстудируют через фильеры подходящего размера с образованием частиц экструдата. Частицы экструдата высушивают при температуре от 150°С до 200°С и затем прокаливают при температуре от 450°С до 800°С в течение 0,5-10 часов для получения предпочтительной формы тугоплавкого неорганического оксида.
На подложку диспергируют платиновый компонент, рутениевый компонент и модифицирующий компонент. Платиновый и рутениевый компоненты могут быть нанесены на неорганический оксид способами, хорошо известными в данной области, такими как распылительное импрегнирование или испарительное импрегнирование. И при распылительном, и при испарительном импрегнировании используют раствор, содержащий разлагающееся соединение желаемого металла. Под термином "разлагающееся" подразумевают, что при нагревании соединение разлагается с образованием каталитической формы платинового и рутениевого компонента. Неограничивающие примеры разлагающихся соединений, которые могут быть использованы, включают платинахлористоводородную кислоту, хлороплатинат аммония, гидрат тетрахлорида платины, хлорид тетрааминоплатины, нитрат платины, тетрахлорид рутения, нитрат рутения, трихлорид рутения, хлорид гексааминорутения, нитрозилхлорид рутения, нитрозилнитрат рутения, красный гидрат рутения, гексахлорорутенат(IV) аммония, рутеноцен и трирутения додекакарбонил. Растворителем, который используют для приготовления раствора, обычно является вода, хотя могут быть использованы органические растворители, такие как спирты, диметилформамид (ДМФА), диметилсульфоксид (ДМСО), тетрагидрофуран (ТГФ) и амины, например пиридин.
Распылительное импрегнирование включает отбор малого объема раствора и распыление его на подложке, в то время как подложку перемещают. Когда распыление окончено, увлажненная подложка может быть перенесена в другую установку для сушки или завершающих стадий.
Один конкретный способ испарительного импрегнирования включает применение роторного испарителя с паровой рубашкой. В этом способе подложку погружают в импрегнирующий раствор, который помещен в испаритель, и подложку переворачивают вращательным движением испарителя. Упариванию раствора, контактирующего с переворачиваемой подложкой, способствует подведение пара к рубашке испарителя. Импрегнированную подложку затем высушивают при температуре от 60°С до 150°С и затем восстанавливают при температуре от 300°С до 850°С в течение 30 минут - 8 часов с образованием катализатора.
Конечные формы платинового и/или рутениевого компонента на подложке могут представлять собой металл, оксид, сульфид, галогенид или оксигалогенид, причем металл, т.е. восстановленное состояние, является обычным случаем. Количество платины и рутения, присутствующее на катализаторе, может широко варьироваться, но обычно составляет для платины от 0,05 до 10 мас.% катализатора, в расчете на металл, и для рутения от 0,05 до 10 мас.% катализатора, в расчете на металл. Количество модифицирующего компонента составляет от 0,5 до 10 мас.% катализатора, в расчете на элемент.
Также желательно, чтобы металлы платина и рутений присутствовали в основном в виде частиц, содержащих оба компонента. Более конкретно, желательно, чтобы, по меньшей мере, 50%, предпочтительно, по меньшей мере, 70% и наиболее предпочтительно, по меньшей мере, 80% платинового и рутениевого компонентов присутствовали в виде частиц, содержащих атомы обоих компонентов. Эти частицы, кроме того, характеризуются тем, что поверхность частиц содержит более высокие концентрации рутения, чем центр частиц. Желательно, чтобы поверхность содержала, по меньшей мере, на 10 атомных % больше, предпочтительно, по меньшей мере, на 20 атомных % больше и, наиболее предпочтительно, по меньшей мере, на 30 атомных % больше рутения.
Как будет показано на примерах, существует синергический эффект рутения и платины. В этой связи фактор синергизма может быть рассчитан с использованием следующего уравнения:
SF=Реальная Конверсия (Соnv.)/Сумма Отдельных Конверсий (Conv.),
где SF - фактор синергизма. Для систем Pt/Ru значительное число протестированных составов имеют большие SF. Соответственно, желательно иметь катализатор, содержащий платину и рутений с SF, по меньшей мере, 1,5.
Другим компонентом катализатора изобретения является модифицирующий компонент. В общем случае модифицирующим компонентом могут быть металлы VIII Группы (IUРАС Групп 8-10) Периодической Таблицы Элементов, редкоземельный элемент или элемент VIB, VIIB, IIIА, IVA Групп или их смеси. Примеры модификаторов включают рений, молибден, вольфрам, олово, германий, церий, иттрий, празеодим, иттербий и тулий, но не ограничиваются ими, причем церий является особенно предпочтительным. Модифицирующий компонент наносят на подложку тем же способом, что и платиновый и/или рутениевый компонент, описанные выше. Неограничивающие примеры разлагающихся соединений включают рениевую кислоту, хлорид олова, гептамолибдат аммония, метавольфрамат аммония, хлорид германия, нитрат церия, хлорид иттрия, хлорид празеодима, хлорид иттербия и нитрат тулия. Платина, рутений и модифицирующий компоненты могут быть нанесены на подложку по отдельности в любом порядке или смешаны в любых сочетаниях, хотя не обязательно с эквивалентными результатами. Предпочтительно модификатор наносят на подложку перед нанесением платины и рутения с промежуточной стадией прокаливания. В некоторых случаях модифицирующее, платиновое и рутениевое соединения могут быть нанесены на подложку в одну стадию. Кислота, такая как хлористоводородная кислота, может быть по желанию добавлена для уменьшения адсорбции соединений платины и рутения на подложке. После импрегнирования Ru и Pt катализатор высушивают при температуре от 60°С до 120°С. Дальнейшая обработка на воздухе, в атмосфере водорода или азота, либо при пониженной, либо при обычной влажности осуществляется по желанию. Эту обработку осуществляют при температурах от 100°С до 550°С в течение 1-8 часов. Либо после сушки, либо после сушки и стадии обработки, которая проводится по желанию, требуется стадия восстановления в водороде для генерирования восстановленного катализатора. Восстановление осуществляют при температуре от 300°С до 850°С в течение 30 минут - 8 часов.
Катализатор, описанный выше, применяют в процессе, где циклические парафины раскрываются или расщепляются с образованием ациклических парафинов. Сырье, которое может быть использовано в процессе раскрытия кольца, представляет собой любое сырье, которое содержит C56 алифатические кольца, т.е. нафтеновые кольца. Бензиновое сырье обычно содержит ароматические, нафтеновые и парафиновые компоненты. Исходное сырье, которое может быть использовано, включает бензины прямой перегонки, бензин из природного газа, синтетические бензины, бензин термического крекинга, бензин каталитического крекинга, частично риформированные бензины или рафинаты после экстракции ароматических соединений. Исходное сырье, по существу, ограничивается пределами кипения полного спектра бензинов, т.е. пределами от 0°С до 230°С. Обычно исходным сырьем является легкий бензин, имеющий начальную точку кипения от 10°С до 65°С и конечную точку кипения от 75°С до 110°С; предпочтительно конечная точка кипения меньше чем 95°С.
Количество ароматических, нафтеновых и парафиновых компонентов, присутствующих в исходном сырье, может варьироваться существенно, но обычно ароматические соединения присутствуют в количестве от 0,1 до 20 мас.%, нафтены от 1 до 35 мас.% и парафины от 45 до 95 мас.%.
Поток сырья вводят в контакт с катализатором при условиях раскрытия кольца, которые включают температуру от 120°С до 300°С, давление 9,87×101 кПа (14,3 psi (фунтов на квадратный дюйм)) - 6,89×103 кПа, (1000 psi) а предпочтительно, от
1,03×103 кПа (150 psi) до 3,10×103 кПа (450 psi), часовую объемную скорость жидкости 0,25-10 час-1 а предпочтительно, 0,5-2 час-1 и H2/HC (углеводород) мольное отношение от 0,5 до 5.
Следующие примеры представлены для иллюстрации этого изобретения и не предназначены для неправомерных ограничений общего широкого объема изобретения, закрепленного в приложенной формуле изобретения.
ПРИМЕР 1
В роторный испаритель добавляли 53 г раствора НСl (5,5% НСl), 50 г раствора платинахлористоводородной кислоты (0,99% Pt), 145 г раствора RuСl3 (0,39% Ru) и 100 г сфер θ-оксида алюминия. Полученную в результате смесь вращали при комнатных условиях в течение одного часа, после чего подводили пар в течение еще одного часа для удаления воды и затем охлаждали до комнатной температуры. Было найдено, что эти катализаторы содержали 0,43% Ru и 0,39% Pt. Этот катализатор обозначали как катализатор А. Полученный в результате катализатор измельчали до 40-60 меш и затем обрабатывали в различных условиях, как указано в Таблице 1.
Образцы катализаторов после каждой обработки при определенных условиях тестировали на активность в раскрытии кольца, как изложено ниже. 35 мг помещали в реактор с неподвижным слоем и восстанавливали в атмосфере водорода в течение 4 часов при 450°С. Затем температуру понижали до 200°С и водород/метилциклопентан (мольное отношение 35:1) пропускали через слой катализатора с весовой часовой скоростью газа (WHSV) 0,5 час.-1 и эффлюент анализировали в непрерывном режиме методом газовой хроматографии. Результаты представлены в Таблице 1 совместно с контрольным катализатором, приготовленным, как описано выше, но содержащим только 0,37% Pt, диспергированной на гамма-оксиде алюминия.
Figure 00000001
Результаты показывают, что для наилучшей конверсии и селективности катализатор А следует прокаливать на воздухе при температуре между 150°С и 200°С или нагревать в азоте при 210°С-250°С. Наилучшая конверсии, т.е. наивысшая активность, была получена после нагревания в водороде при 450°С. Также отмечено, что катализатор, содержащий только платину, неактивен в этих условиях.
ПРИМЕР 2
В роторный испаритель добавляли 25 г раствора НСl (10% HCl) и 17,3 г раствора платинахлористоводородной кислоты (0,99% Pt). К этой смеси добавляли 50 г сфер θ-оксида алюминия, а затем 30,2 г раствора рутения красного (0,51% Ru). Импрегнированные сферы вращали при комнатных условиях в течение одного часа, после чего нагревали паром в течение еще одного часа для удаления воды. Было найдено, что этот катализатор содержал 0,29% Pt и 0,32% Ru и его обозначали как катализатор В.
Описанный выше катализатор из сферических частиц измельчали до частиц 40-60 меш и затем обрабатывали в различных условиях, как указано в Таблице 2. После обработки образцы катализатора тестировали, как в Примере 1, а результаты представлены в Таблице 2.
Figure 00000002
При сравнении результатов Таблицы 1 и Таблицы 2, конкретно образца А-3 с образцом В-2 и образца А-8 с образцом В-4, видно, что катализаторы, приготовленные с RuCI3, более активны, чем те, что приготовлены с использованием рутения красного.
ПРИМЕР 3
Триметаллические катализаторы раскрытия кольца с различными модификаторами получали исходя из частиц гамма-оксида алюминия размером 40-60 меш. Примерно 300 мг подложки помещали в обособленные лунки. Модифицирующие соли металлов растворяли в воде, и растворы добавляли в лунки. Смесь перемешивали в течение получаса, высушивали на воздухе при 80-100°С, а затем прокаливали в муфельной печи при 350°С на воздухе в течение 4 часов. Хлорид рутения и платинахлористоводородную кислоту добавляли с помощью пипеток в лунки, содержащие прокаленную подложку. Хлористоводородную кислоту также добавляли в некоторые лунки. После краткого перемешивания и сушки катализаторы загружали в микрореакторную систему с высокой пропускной способностью для каталитических тестов по восстановлению и раскрытию кольца. Высушенные катализаторы восстанавливали и тестировали, как в примере 1. Никакой другой обработки не производили перед тем, как катализаторы восстанавливали. Образцы также готовили без модификаторов. Описание этих образцов наряду с результатами тестов представлены в Таблице 3.
Figure 00000003
Результаты в Таблице 3 показывают, что при этих условиях и методах приготовления церий и иттербий являются предпочтительными модификаторами.
ПРИМЕР 4
В роторный испаритель помещали 30 г раствора СеСl3 (5,3% Се) и 165 г воды, затем добавляли 110 г сферического гамма-оксида алюминия. Импрегнированные сферы вращали при комнатных условиях в течение одного часа, а затем нагревали паром в течение дополнительного часа для удаления воды. После охлаждения до комнатной температуры полученные в результате подложки прокаливали в муфельной печи при различных температурах. Разнообразные подложки из Се/гамма-оксида алюминия импрегнировали RuCl3 и платинахлористоводородной кислотой, как в Примере 1. Высушенные катализаторы затем измельчали, и примерно 35 мг катализаторов (40-60 меш) загружали в микрореакторы для тестирования. Процедуры восстановления и тестирования были такими же, как описано в Примере 1. Для сравнения, контрольный катализатор Ru/Pt/гамма-оксид алюминия был приготовлен и протестирован тем же способом. Таблица 4 представляет описание катализаторов и результаты тестов.
Figure 00000004
Результаты в Таблице 4 показывают, что предпочтительно проводить стадию прокаливания между импрегнированием церия, т.е. импрегнированием модификатора, и импрегнированием Pt/Ru. Также предпочтительно прокаливать при температуре от 350°С до 750°С.
ПРИМЕР 5
Гамма-подложки, модифицированные Re и Yb, готовили, как в Пример 4. Хлоридом рутения и платинахлористоводородной кислотой импрегнировали подложки, содержащие модификатор, как в Примере 4. Наконец их восстанавливали и тестировали, как в Примере 1. Таблица 5 представляет описание катализаторов, а также результаты тестирования.
Figure 00000005
Результаты в Таблице 5 показывают, что прокаливание не является необходимым для достижения хорошей активности катализатора, содержащего Re или Yb.
ПРИМЕР 6
Сферический гамма-оксид алюминия измельчали до частиц 40-60 меш, которые затем импрегнировали водным раствором нитрата церия, что давало 3,5 мас.% Се. Импрегнированную подложку высушивали в течение шести (6) часов при 150°С и затем прокаливали при 350°С в течение двух часов. Затем прокаленную подложку, содержащую церий, импрегнировали водным раствором, содержащим RuCl3, платинахлористоводородную кислоту и НСl в достаточных количествах, чтобы получить 0,25 мас.% Pt, 0,5 мас.% Ru и 1% Сl в расчете на конечный катализатор. Избыток воды отгоняли, и катализатор высушивали при 150°С в течение 6 часов. Этот катализатор был обозначен, как образец С.
Другой катализатор был приготовлен так: брали частицы 40-60 меш того же гамма-оксида алюминия, что и ранее, и импрегнировали его водой с последующим высушиванием при 150°С и затем прокаливанием при 350°С в течение двух часов. Эту прокаленную подложку импрегнировали, как описано выше, чтобы получить катализатор с 0,25 мас.% Pt, 0,5 мас.% Ru и 1% Сl. Этот катализатор был обозначен как образец D.
Два катализатора были протестированы в микрореакторной системе высокого давления, как изложено ниже. Катализаторы восстанавливали в токе водорода при 450°С в течение 4 часов. Затем подавали сырье, содержащее 30% метилциклопентана (МЦП), 15% циклогексана, 50% гептана и 5% толуола. Водород добавляли из расчета 4 моль Н2 на 1 моль общего количества углеводородов. Сырье пропускали через катализатор при температуре 250°С и 350 psig (манометрическое давление в фунтах на квадратный дюйм). Катализаторы приводили в равновесное состояние в течение 40 часов и затем тестировали при температурах, показанных в Таблице 6.
Таблица 6
Влияние церия на активность в раскрытии кольца
ID катализатора С С С D
Темп. (°С) 200 225 250 250
Давление (psig) 350 350 350 350
Время эксплуатации 60 80 40 40
Молярное отношение Водород/Углеводород 4 4 4 4
HSV (жидкость) 1 1 1 1
Конверсия МЦП (%) 17,8 51,3 96,6 55,4
Селективность раскрытия кольца (%) 84,6 75,3 45,8 68,7
Выходы продуктов (мас.%)
С4 0,4 2,7 24,2 4,8
С5 0,4 2,5 14,2 3,3
С6 парафины 4,7 16,0 32,6 17,9
Метилциклопентан 24,9 14,8 1,0 13,5
Циклогексан 14,2 12,5 3,2 11,7
Метилциклогексан 5,3 4,9 1,7 4,6
Гептан 49,9 46,7 22,8 44,1
Толуол 0,0 0,0 0,0 0,0
Результаты Таблицы 6 показывают, что прибавление церия улучшает и активность, и селективность раскрытия кольца даже при таких низких температурах как 200°С.
ПРИМЕР 7
В роторном испарителе растворяли 6,2 г Се (NO3)2·6H2O в 800 мл деионизированной воды. К этому раствору добавляли 400 мл сфер гамма-оксида алюминия диаметром 1,6 мм (1/16 дюйма). Полученную в результате смесь вращали при комнатной температуре в течение одного часа и затем нагревали паром в течение еще одного часа для удаления воды. После охлаждения до комнатной температуры полученную в результате импрегнированную подложку прокаливали в муфельной печи при 350°С в течение 6 часов. Прокаленные сферы, содержащие Се, импрегнировали рутением и платиной, как описано в Примере 1, и затем восстанавливали в водороде при 450°С в течение 4 часов. Анализ конечного катализатора показал, что он содержал 0,75 мас.% Ru, 0,5 мас.% Pt и 1 мас.% Се.
Катализатор, приготовленный выше, анализировали с использованием Сканирующей Трансмиссионной Электронной Микроскопии (STEM) для определения размеров частиц и распределения металлов Pt и Ru. STEM-анализ показал, что средний размер частиц или кластеров составлял 8,6Å. Кроме того, анализ кластеров размером от 20 до 30Å показал, что поверхность кластеров обогащена рутением.
ПРИМЕР 8
Серия катализаторов была приготовлена и протестирована для определения синергизма каталитических металлов. Готовили катализаторы, содержащие следующие металлы: только Pt; только Pd; только Ir; только Ru; только Rh; Pt-Pd; Pt-Ru; Pt-Ir и Pt-Rh. Катализаторы готовили внесением 300 мг тета-оксида алюминия (40-60меш) в каждую из 48 лунок реакционного планшета. В каждую лунку добавляли деионизированную воду. Затем добавляли желаемый водный раствор металла. Использовали отдельные растворы, содержащие H2PtCl6, PdCl2, рутений красный,
RhCl3 или H2IrCl6. В случае биметаллических композиций сначала добавляли раствор Н2РtCl6, затем раствор второго металла. Общий объем растворов, добавленных в каждую лунку, сохраняли постоянным и равным 650 микролитрам. После того как все лунки были заполнены раствором, планшет запечатывали и затем встряхивали на механическом шейкере при 60 об/мин в течение 15, минут перед тем как пропустить воздух через каждую лунку для удаления воды. После дальнейшего высушивания при 120°С в течение 6 часов образцы затем прокаливали в муфельной печи при 350°С в течение 6 часов.
Образцы тестировали по примеру 1 и фактор синергизма (SF) рассчитывали, как изложено ниже:
SF=Конверсия на биметаллическом катализаторе/Сумма Конверсии на каждом металле.
Результаты этого тестирования представлены на фиг.1, где приведена кривая зависимости SF от масс. отношения M/Pt. Из фиг.1 видно, что катализаторы Pt-Ru обладают наивысшим синергизмом, причем большинство из этих Pt/Ru катализаторов имеют SF>1,5.
На фиг.2 показано, что содержание Ru на поверхности исследованных кластеров выше, чем его содержание в центре кластерных частиц катализатора, по крайней мере, на 10%.

Claims (10)

1. Катализатор для раскрытия нафтеновых колец, содержащий платиновый компонент, рутениевый компонент и модифицирующий компонент, все диспергированные на подложке из тугоплавкого неорганического оксида, и характеризующийся тем, что, по меньшей мере, 50% платинового и рутениевого компонентов присутствуют в виде частиц, где на поверхности частиц имеется более высокая концентрация рутения, чем в центре частиц.
2. Катализатор по п.1, где модификатор выбран из группы, состоящей из редкоземельных элементов, рения, молибдена, вольфрама, олова, германия и их смесей.
3. Катализатор по п.1, где подложка из тугоплавкого неорганического оксида выбрана из группы, состоящей из оксидов алюминия, оксида кремния, оксида кремния-оксида алюминия, оксида циркония, оксида титана и их смесей.
4. Катализатор по п.1 или 2, или 3, где на поверхности частиц рутения содержится, по меньшей мере, на 10 атомных % больше, чем в центре частиц.
5. Катализатор по п.1 или 2, или 3, кроме того, характеризующийся тем, что он имеет фактор синергизма, по меньшей мере, 1,5.
6. Способ получения ациклических парафинов из циклических парафинов, включающий контактирование потока сырья, содержащего циклические парафины, с катализатором, содержащим платиновый компонент, рутениевый компонент и модифицирующий компонент, все диспергированные на подложке из тугоплавкого неорганического оксида, в условиях раскрытия кольца для превращения, по меньшей мере, части циклических парафинов в ациклические парафины, при этом катализатор характеризуется тем, что, по меньшей мере, 50% платинового и рутениевого компонентов присутствуют в виде частиц, где на поверхности частиц имеется более высокая концентрация рутения, чем в центре частиц.
7. Способ по п.6, где условия раскрытия кольца включают температуру от 120 до 300°С, давление от 1,03·103 до 3,10·103 кПа, часовую объемную скорость жидкости от 0,5 до 2,0 час-1 и мольное отношение Н2/НС (углеводород) от 0,5 до 5.
8. Способ по п.6, где модификатор выбирают из группы, состоящей из редкоземельных элементов, рения, молибдена, вольфрама, олова, германия и их смесей.
9. Способ по п.6, где на поверхности частиц рутения содержится, по меньшей мере, на 10 атомных % больше, чем в центре частиц.
10. Способ по п.6, где катализатор, кроме того, характеризуется тем, что имеет фактор синергизма, по меньшей мере, 1,5.
RU2008117404/04A 2005-10-03 2006-10-02 Модифицированный pt/ru катализатор для раскрытия кольца и способ использования этого катализатора RU2388533C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/242,560 US7345214B2 (en) 2005-10-03 2005-10-03 Modified PT/RU catalyst for ring opening and process using the catalyst
US11/242,560 2005-10-03

Publications (2)

Publication Number Publication Date
RU2008117404A RU2008117404A (ru) 2009-11-10
RU2388533C2 true RU2388533C2 (ru) 2010-05-10

Family

ID=37902726

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008117404/04A RU2388533C2 (ru) 2005-10-03 2006-10-02 Модифицированный pt/ru катализатор для раскрытия кольца и способ использования этого катализатора

Country Status (7)

Country Link
US (1) US7345214B2 (ru)
EP (1) EP1931464A4 (ru)
JP (1) JP5160430B2 (ru)
AU (1) AU2006299398B2 (ru)
CA (1) CA2621283C (ru)
RU (1) RU2388533C2 (ru)
WO (1) WO2007041605A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877674B2 (en) * 2006-04-26 2014-11-04 Battelle Memorial Institute Selective CO methanation catalysis
US7655595B2 (en) * 2006-06-02 2010-02-02 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sol-gel based oxidation catalyst and coating system using same
FR2908056B1 (fr) * 2006-11-07 2009-06-26 Inst Francais Du Petrole Catalyseur bimetallique a base de platine et d'un second metal du groupe viii utilise pour l'ouverture de composes cycliques
US7976784B2 (en) * 2007-12-18 2011-07-12 Basf Corporation Methods and systems including CO oxidation catalyst with low NO to NO2 conversion
US8415511B2 (en) * 2009-06-08 2013-04-09 University Of Kansas Polyol hydrogenolysis by in-situ generated hydrogen
US9040449B2 (en) 2012-03-22 2015-05-26 Governors Of The University Of Alberta Platinum-free monometallic and bimetallic nanoparticles as ring-opening catalysts
CN108654612B (zh) * 2017-03-28 2020-09-18 中国石油化工股份有限公司 一种负载型双金属催化剂及其制备方法和环烷烃氢解开环方法
US10472577B2 (en) * 2017-06-22 2019-11-12 Uop Llc Composition for opening polycyclic rings in hydrocracking
BR102017021428B1 (pt) * 2017-10-05 2022-04-19 Petróleo Brasileiro S.A. - Petrobras Processo para preparação de um catalisador de pré-reforma

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953455A (en) * 1957-08-28 1960-09-20 Du Pont Photographic silver halide emulsions containing a ruthenium, palladium or platinum hydroxide in stabilizing amounts and process for preparing the same
US3183278A (en) * 1962-11-20 1965-05-11 Engelhard Ind Inc Process for hydrogenating carbocyclic aromatic compounds
US3271322A (en) * 1964-06-30 1966-09-06 Du Pont Catalytic surface
GB1108317A (en) * 1964-11-24 1968-04-03 Exxon Research Engineering Co Catalyst composition
US3554929A (en) * 1967-06-08 1971-01-12 Du Pont High surface area alumina coatings on catalyst supports
US3723078A (en) * 1968-10-25 1973-03-27 Gen Am Transport Electroless alloy coatings having metallic particles dispersed therethrough
US3617511A (en) * 1969-04-07 1971-11-02 Shell Oil Co Ring-opening process
US3759841A (en) * 1971-05-10 1973-09-18 Universal Oil Prod Co P metal rhenium or group iv-a metal method of manufacturing a supported catalyst containing platinum grou
US3806447A (en) 1972-08-03 1974-04-23 Universal Oil Prod Co Continuous low pressure catalytic reforming process
US4783575A (en) * 1987-12-17 1988-11-08 Uop Inc. Isomerization with cyclic hydrocarbon conversion
DE69218616T2 (de) 1991-10-25 1997-07-03 Mobil Oil Corp Kombiniertes paraffinisomerisierungs-/ringöffnungs-verfahren
US5382731A (en) * 1993-07-22 1995-01-17 Mobil Oil Corp. Combined paraffin isomerization/ring opening process
US5345026A (en) 1993-07-22 1994-09-06 Mobil Oil Corp. Ring opening process
US5463155A (en) 1993-11-15 1995-10-31 Uop Upgrading of cyclic naphthas
JPH11512394A (ja) * 1995-09-05 1999-10-26 エクソン リサーチ アンド エンジニアリング カンパニー ナフテン環の選択的開環方法
US5811624A (en) 1995-09-05 1998-09-22 Exxon Research And Engineering Company Selective opening of five and six membered rings
US5763731A (en) * 1995-09-05 1998-06-09 Exxon Research And Engineering Company Process for selectively opening naphthenic rings
EP0875288B1 (en) 1997-04-28 2002-10-09 Haldor Topsoe A/S Process for ring opening of cyclic compounds
US6241876B1 (en) 1998-12-30 2001-06-05 Mobil Oil Corporation Selective ring opening process for producing diesel fuel with increased cetane number
DE19949211A1 (de) * 1999-10-13 2001-05-31 Veba Oel Ag Verfahren zur Herstellung von n-Alkanen aus Mineralölfraktionen und Katalysator zur Durchführung des Verfahrens
US6551960B1 (en) * 2000-06-19 2003-04-22 Canon Kabushiki Kaisha Preparation of supported nano-sized catalyst particles via a polyol process
US6586650B2 (en) 2000-07-21 2003-07-01 Exxonmobil Research And Engineering Company Ring opening with group VIII metal catalysts supported on modified substrate
US6623625B2 (en) * 2000-07-21 2003-09-23 Exxonmobil Research And Engineering Company Naphthene ring opening over group VIII metal catalysts containing cracking moderators
US6652737B2 (en) * 2000-07-21 2003-11-25 Exxonmobil Research And Engineering Company Production of naphtha and light olefins
US6589416B2 (en) 2000-07-21 2003-07-08 Exxonmobil Research And Engineering Company Method and catalyst for opening naphthenic rings of naphthenic ring-containing compounds
US7419928B2 (en) * 2003-04-11 2008-09-02 Exxonmobil Research And Engineering Company Fischer-Tropsch catalyst production
US20050101474A1 (en) 2003-11-07 2005-05-12 Galperin Leonid B. Catalyst for selective opening of cyclic naphtha and process for using the catalyst
US20050101819A1 (en) 2003-11-07 2005-05-12 Galperin Leonid B. Dual functional catalyst for selective opening of cyclic paraffins and process for using the catalyst
JP2005144432A (ja) * 2003-11-18 2005-06-09 Rohm & Haas Co アルカンをアルケン、およびそれらの対応する酸素化生成物に転化するための触媒系
US20050164879A1 (en) * 2004-01-28 2005-07-28 Engelhard Corporation Layered SOx tolerant NOx trap catalysts and methods of making and using the same
US7855021B2 (en) * 2004-12-22 2010-12-21 Brookhaven Science Associates, Llc Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

Also Published As

Publication number Publication date
US7345214B2 (en) 2008-03-18
WO2007041605A1 (en) 2007-04-12
JP2009509764A (ja) 2009-03-12
RU2008117404A (ru) 2009-11-10
JP5160430B2 (ja) 2013-03-13
CA2621283C (en) 2011-06-21
EP1931464A4 (en) 2010-03-10
EP1931464A1 (en) 2008-06-18
AU2006299398A1 (en) 2007-04-12
CA2621283A1 (en) 2007-04-12
US20070078289A1 (en) 2007-04-05
AU2006299398B2 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
RU2388533C2 (ru) Модифицированный pt/ru катализатор для раскрытия кольца и способ использования этого катализатора
US4165276A (en) Hydrocarbon conversion with a superactive multimetallic catalytic composite
US5128300A (en) Reforming catalyst with homogeneous metals dispersion
AU2012284529B2 (en) Reforming catalyst and process
US6048449A (en) Process for reforming NAPHTHA feedstock using selective multimetallic-multigradient reforming catalyst
US6235962B1 (en) Catalysts and process for ring opening of cyclic compounds
US4964975A (en) Reforming catalyst with homogeneous metals dispersion
US5858908A (en) Selective multimetallic-multigradient reforming catalyst
US4149962A (en) Hydrocarbon conversion with a superactive multimetallic catalytic composite
JP2019098333A (ja) 特定の前駆体を含む溶液からのizm−2をベースとする触媒の調製方法およびパラフィン系供給原料の異性化のための使用
US4176088A (en) Superactive multimetallic catalytic composite comprising platinum group metal and rhenium
US4246095A (en) Hydrocarbon conversion with a sulfided superactive multimetallic catalytic composite
US4175056A (en) Activated multimetallic catalytic composite comprising pyrolized ruthenium carbonyl
US4210561A (en) Activated and attenuated multimetallic catalytic composite
US4256566A (en) Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite
JPH05220399A (ja) 改良されたナフサリホ−ミング触媒及び触媒支持体
US4156640A (en) Hydrocarbon conversion with an activated and attenuated multimetallic catalytic composite
US4175031A (en) Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite
JPS581973B2 (ja) ケツシキウセイアルミノケイサンエンスイテンヘンカンシヨクバイノ セイホウ
EP1417282B1 (en) Process for the hydrogenation of aromatics
CN110064415B (zh) 一种半再生重整催化剂及其制备方法
US4190557A (en) Attenuated superactive multimetallic catalytic composite
JP4043556B2 (ja) 多金属を含む炭化水素転化触媒複合物及びその使用方法
US4333854A (en) Sulfided superactive multimetallic catalytic composite
CA2254129A1 (en) Selective, rugged layered isomerization catalyst for use in a paraffin isomerization process

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141003