RU2351833C2 - Ротационный клапан и узел уплотнения - Google Patents

Ротационный клапан и узел уплотнения Download PDF

Info

Publication number
RU2351833C2
RU2351833C2 RU2005125922/06A RU2005125922A RU2351833C2 RU 2351833 C2 RU2351833 C2 RU 2351833C2 RU 2005125922/06 A RU2005125922/06 A RU 2005125922/06A RU 2005125922 A RU2005125922 A RU 2005125922A RU 2351833 C2 RU2351833 C2 RU 2351833C2
Authority
RU
Russia
Prior art keywords
rotor
seal
valve body
fluid
sealing
Prior art date
Application number
RU2005125922/06A
Other languages
English (en)
Other versions
RU2005125922A (ru
Inventor
Мухаммад ПЕРВАИЗ (US)
Мухаммад ПЕРВАИЗ
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2005125922A publication Critical patent/RU2005125922A/ru
Application granted granted Critical
Publication of RU2351833C2 publication Critical patent/RU2351833C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0457Packings
    • F16K5/0478Packings on the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/16Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member
    • F16K31/163Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member the fluid acting on a piston
    • F16K31/1635Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member the fluid acting on a piston for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Taps Or Cocks (AREA)
  • Sliding Valves (AREA)

Abstract

Группа изобретений относится к трубопроводной арматуре и предназначена для избирательного распределения потока рабочей среды от источника среды в одно из мест назначения. Ротационный клапан содержит корпус с камерой для размещения ротора (14) и множество отверстий для прохождения текучей среды. Ротор (14) содержит, по меньшей мере, один проход для регулирования потока текучей среды через камеру и уплотнение (34). Уплотняющая поверхность (36) уплотнения (34) контактирует с внутренней поверхностью (39) корпуса клапана вблизи выбранного отверстия корпуса клапана. Уплотнение (34) имеет заднюю поверхность (35) на той стороне уплотнения, которая противоположна уплотняющей поверхности (36), проход (52) и выступ (38). Последний обеспечивает направление текучей среды (Ре) под давлением для поджатия уплотняющей поверхности (36) к корпусу клапана. В наружной поверхности ротора выполнено расточенное отверстие (40). В расточенном отверстии (40) располагается выступ (38) уплотнения (34). По периметру выступа расположен уплотняющий элемент (42) для создания барьера по текучей среде между уплотнением и боковой стенкой расточенного отверстия. Уплотняющий элемент ограничивает участок задней поверхности уплотнения, на который действует находящаяся под давлением текучая среда. Имеются другие объекты изобретений: узел уплотнения (34), исполнительный механизм и три варианта выполнения ротационного клапана. Группа изобретений направлена на повышение герметичности и надежности работы клапана. 6 н. и 14 з.п. ф-лы, 16 ил.

Description

Эта заявка имеет приоритет от 16 января 2003 г. предварительной заявки США №60/440446, поданной в Патентное ведомство США.
Область техники
Изобретение в общем относится к клапанам, и в частности - к ротационному (или поворотному) клапану.
Уровень техники
Ротационные клапаны используются в устройствах, в которых источник текучей среды должен избирательно направляться в одно из нескольких мест назначения. Такие клапаны имеют ротор, который может поворачиваться вдоль его продольной оси в расточенном отверстии корпуса клапана. При повороте ротора в закрытое положение он блокирует поток текучей среды через клапан. Известная трудность этого типа клапана заключается в обеспечении эффективного уплотнения по текучей среде между сопрягаемыми поверхностями ротора и корпуса клапана, одновременно избегая чрезмерного рабочего крутящего момента.
В патенте США №6308739 описан ротационный клапан, в котором применяется гибкое уплотнение клапана. Этот клапан раскрывается как необходимый для использования в таких средствах, как воздушные кондиционирующие/нагревающие устройства, в которых направление нагревающих и охлаждающих потоков теплового насоса время от времени необходимо изменять на обратное. В этих средствах клапан должен направлять текучую среду из внутренней части клапана в соответствующее выпускное отверстие корпуса клапана и также должен предотвращать выход текучей среды через какое-либо другое выпускное отверстие в корпусе клапана. Уплотнение для такого клапана может быть названо, как уплотнение внутреннего давления.
Правопреемник этого изобретения - компания «Дженерал Электрик» производит локомотивы и вездеходы, работающие с дизельными двигателями с турбонаддувом, в которых используется система охлаждения с раздельными температурами, как описано в патентах США №№5415147 и 6230668, которые включены в данную заявку посредством ссылки. Система охлаждения содержит промежуточный охладитель, в который поступает либо горячая, либо холодная вода для избирательного нагревания или охлаждения всасываемого воздуха для горения в разных режимах работы локомотива. Используемый в таких применениях ротационный клапан должен не только предотвращать выход текучей среды из корпуса клапана через закрытое выпускное отверстие (внутреннее давление), но также и во время определенных режимов работы клапан должен предотвращать прохождение находящейся под давлением текучей среды в корпус клапана через закрытое выпускное отверстие (внешнее давление). Один такой клапан описан в патенте США №6647934, содержание которого включено в данную заявку посредством ссылки. Уплотнение клапана, раскрытое в патенте США №6308739, оказалось не отвечающим требованиям системы охлаждения дизельного двигателя с турбонаддувом.
Краткое описание чертежей
Фиг.1 - изображение в перспективе наборного ротационного клапана.
Фиг.2 - вид сбоку клапана, показанного на Фиг.1.
Фиг.3 - вид с торца клапана, показанного на Фиг.1.
Фиг.4 - поперечное сечение клапана, показанного на Фиг.1, выполненное по сечению 4-4 Фиг.2.
Фиг.5 - поперечное сечение клапана, показанного на Фиг.1, выполненное по сечению 5-5 Фиг.4.
Фиг.6 - поперечное сечение клапана, показанного на Фиг.1, выполненное по сечению 6-6 Фиг.4.
Фиг.7 - поперечное сечение клапана, показанного на Фиг.1, выполненное по сечению 7-7 Фиг.4.
Фиг.8 - изображение в перспективе уплотнения, используемого в клапане, показанном на Фиг.1.
На Фиг.9А, 9В и 9С изображены виды спереди, сзади и сбоку соответственно уплотнения, показанного на Фиг.8.
На Фиг.9D изображено поперечное сечение уплотнения согласно Фиг.8, выполненное по сечению 9D-9D Фиг.9А.
Фиг.10 - увеличенное поперечное сечение поверхности раздела между корпусом клапана и уплотнением клапана, показанного на Фиг.1; показаны участки уплотнения, на которые действует внутреннее давление и внешнее давление.
На Фиг.11А и 11В изображены виды сзади и сбоку еще одного варианта осуществления уплотнения для ротационного клапана.
На Фиг.11С изображено поперечное сечение уплотнения согласно Фиг.11А, выполненное по сечению 11С-11С.
Фиг.12 - вид сбоку секции ротора из секции для горячей воды клапана Фиг.1.
Фиг.13 - увеличенное поперечное сечение поверхности раздела между корпусом клапана и уплотнением согласно Фиг.11, показывающее участки уплотнения, на которые действует внешнее давление.
Фиг.14 - схематическое изображение пневматической системы управления, используемой для размещения исполнительного механизма для клапана согласно Фиг.1 в положении «Режим 1».
Фиг.15 - схематическое изображение пневматической системы управления, используемой для размещения исполнительного механизма для клапана согласно Фиг.1 в положении «Режим 2».
Фиг.16 - схематическое изображение пневматической системы управления, используемой для размещения исполнительного механизма клапана согласно Фиг.1 в положении «Режим 3».
Подробное описание изобретения
На Фиг.1-7 показан наборный ротационный клапан 10, который можно использовать в разделительной системе охлаждения локомотива или вездехода с дизельным двигателем с турбонаддувом. Клапан 10 содержит корпус 12, ограничивающий цилиндрическую камеру клапана и имеющий множество выполненных в нем отверстий, наборный ротор 14 и исполнительный механизм 16. Продольно установленный вал 13 взаимно соединяет ротор 14 и исполнительный механизм 16. Клапан содержит секцию 18 для холодной воды и секцию 20 для горячей воды, включая соответствующую холодную секцию 14с ротора и горячую секцию 14н ротора, которые вместе образуют наборный ротор 14. Вал 13, проходящий через секцию 14с холодной воды, установлен на противоположных концах секции 14с холодной воды на подшипниковых узлах 80. Вал также соединен с секцией 14н горячей воды, которая установлена на конце вала с помощью подшипникового узла 80. Горячая вода из дизельного двигателя входит в секцию 18 горячей воды через впускное отверстие 22 для горячей воды, расположенное на продольной оси клапана 10. Горячая вода избирательно направляется горячей секцией ротора в радиатор через выпускное отверстие 24 радиатора в водяной резервуар через выпускное отверстие 26 для горячей воды в резервуаре и в промежуточный охладитель через выпускное отверстие 28 промежуточного охладителя. Холодная вода из вспомогательного охладителя поступает в секцию 18 холодной воды через впускное отверстие 30 для холодной воды. Холодная вода избирательно направляется холодной секцией ротора в водяной резервуар через выпускное отверстие 32 для холодной воды в резервуаре и в промежуточный охладитель через выпускное отверстие 28 промежуточного охладителя. Необходимо отметить, что выпускное отверстие 28 промежуточного охладителя может принимать воду альтернативно из двух источников, но секция 20 горячей воды и секция 18 холодной воды изолированы друг от друга разделительной пластиной 21 и уплотнением 23 вала. Дренажная линия 33 радиатора соединяет выпускное отверстие 24 радиатора с секцией 18 холодной воды.
Разделительная система охлаждения локомотива, в которой используется клапан 10, может работать в трех режимах. Режим 3 используется при первом пуске двигателя и нагреве двигателя и охлаждающих текучих сред. В режиме 3 горячая вода из двигателя, входящая во впускное отверстие 22 для горячей воды, направляется в выпускное отверстие 28 промежуточного охладителя и в выпускное отверстие 26 для горячей воды в резервуаре; при этом предотвращается ее выход из выпускного отверстия 24 радиатора. В этом режиме в секции 18 холодной воды совсем нет. Режим 2 используется, когда двигатель имеет полную рабочую температуру, и тепло должно отводиться в радиатор, и всасываемый воздух для горения необходимо нагревать из-за холодных атмосферных условий. В режиме 2 часть горячей воды направляется в радиатор через выпускное отверстие 24 радиатора, при этом горячая вода продолжает направляться в промежуточный охладитель, а в резервуар горячая вода не направляется. Проходящая через радиатор вода возвращается в клапан через впускное отверстие 30 для холодной воды после ее охлаждения радиатором и вспомогательным охладителем. Эта холодная вода направляется в водяной резервуар через выпускное отверстие 32 для холодной воды в резервуаре, но ее поступление в выпускное отверстие 28 промежуточного охладителя исключено. Режим 1 является режимом максимального охлаждения, при котором вся горячая вода направляется в радиатор через выпускное отверстие 24 радиатора, а холодная вода, возвращающаяся в клапан через впускное отверстие 30 для холодной воды, вся направляется в выпускное отверстие 28 промежуточного охладителя, чтобы охлаждать всасываемый воздух для горения.
Во время работы в режиме 2 на уплотнение на горячей секции ротор 14, установленное на закрытие выпускного отверстия 26 для горячей воды в резервуаре, действует только внутреннее давление горячей воды в секции 20 горячей воды, так как водяной резервуар имеет по существу атмосферное давление. При переходе из режима 2 в режим 1 это же уплотнение поворачивается ротором 14 в корпусе 12 клапана в положение, которое закрывает выпускное отверстие 28 промежуточного охладителя горячей секции, при этом уплотнение должно предотвращать смешивание горячей воды в секции 20 горячей воды (внутреннее давление) и холодной воды в выпускном отверстии 28 промежуточного охладителя (внешнее давление). Поэтому в режиме 1 на уплотнение действует как внутреннее, так и внешнее давление.
На Фиг.5-7 показаны поперечные сечения клапана 10, выполненные по соответствующим плоскостям В-В, С-С и D-D, показанным на Фиг.4. На Фиг.7 показан ротор 14, размещенный в расточенном отверстии корпуса 12 клапана в положении режима 1, при этом уплотнение 34 находится в положении напротив выпускного отверстия 28 промежуточного охладителя.
Уплотнение 34 более подробно показано на Фиг.8 и 9. Фиг.8 является изображением в перспективе уплотнения 34, на чертеже показана уплотняющая поверхность 36, прижатая к внутренней стенке корпуса 12 клапана вокруг отверстия корпуса клапана, для обеспечения непроницаемого для жидкости уплотнения. На Фиг.9 показаны соответствующие виды спереди, сзади, сбоку и поперечное сечение уплотнения 34. Уплотняющая поверхность 36 выполнена на корпусе 37 уплотнения, которая соответствует кривизне внутренней стенки корпуса 12 клапана и скользит по поверхности внутренней стенки при повороте ротора 14 из одного положения в другое. Уплотнение 34 имеет по существу круглый наружный периметр, окружающий соответствующее отверстие корпуса клапана. Напротив уплотняющей поверхности 36 центрально расположен выступ 38, который плотно входит в сопрягаемое расточенное отверстие 40 (как показано на Фиг.7), выполненное в роторе 14. Уплотнительное кольцо 42 или другой известный тип уплотнительного элемента расположено в пазе 44, выполненном вокруг внешнего периметра выступа 38 для обеспечения уплотнения по текучей среде между уплотнением 34 и ротором 14. Размеры выступа 38, расточенного отверстия 40, уплотнительного кольца 42 и паза 44 могут быть подобраны для обеспечения плотного контакта между уплотнением 34 и ротором 14, без какого-либо влияния на величину усилия, требуемого для поворота ротора 14. Но это не относится к контакту между уплотняющей поверхностью 36 и внутренней поверхностью 39 корпуса 12 клапана, поскольку усилие, развиваемое между этими двумя поверхностями, непосредственно влияет на значение усилия, требуемого для поворота ротора 14.
Уплотнение 34 включает множество пружин 46, расположенных в соответствующих углублениях, таких как отверстия 48 с плоским дном, выполненные в заднем торце 50 выступа 38. Пружины 46 создают усилие FS, воздействующее на ротор 14, чтобы прижимать уплотняющую поверхность 36 к внутренней поверхности корпуса 12 клапана. Согласно данному пояснению небольшие спиральные пружины фиксируются в отверстиях, но специалистам в данной области техники будет ясно, что можно использовать и другие типы пружинных элементов, например твердый эластомер, фиксируемый в отверстиях, или элемент в виде шайбы, металлической пружинной шайбы, консольной пластины или стержневой пружины, пружинной запоминающей формы материала уплотняющей поверхности 36 и пр. Помимо усилия FS имеется усилие FH, действующее в том же направлении, которое создается внутренним давлением Pi горячей воды внутри секции 20 горячей воды и действует на задний торец 50. Поскольку эти два усилия создают синергию, поэтому необходимо свести к минимуму усилие, создаваемое пружинами 46. Пружины 46 удерживают уплотняющую поверхность 36 на месте на корпусе 12, чтобы уплотнение 34 смогло выдерживать резкое повышение давления горячей воды во время пуска дизельного двигателя. С повышением давления текучей среды увеличивается уплотняющее усилие (FS+FH). Если уплотнение 34 разместить вблизи выпускного отверстия 26 для горячей воды в резервуаре, то усилия FS и FH будут единственными усилиями, воздействующими на уплотняющую поверхность 36. Однако в режиме 1, когда уплотнение 34 изолирует выпускное отверстие 28 промежуточного охладителя от секции 20 горячей воды, имеется третье усилие FC, действующее в направлении, противоположном тому, которое создается внешним давлением Ре холодной воды в выпускном отверстии 28 промежуточного охладителя, воздействующим на участок уплотняющей поверхности 36. Объединенные усилия FS+FH существенно превышают FC, чтобы обеспечить непроницаемое для утечки уплотнение для текучей среды. Такой проход, как центрально расположенное отверстие 52 и несколько углубленных участков или пазов 54, обеспечивает давление холодной воды вокруг задней стороны уплотнения 34 к уплотнительному кольцу 42, тем самым позволяя давлению Ре воздействовать на часть участка 35 задней поверхности на уплотнении 34 и снижать совокупную величину усилия FC. На Фиг.10 показан увеличенный вид участка поверхности раздела между уплотнением 34 и ротором 14, причем показаны участки уплотнения 34, на которые действует внутреннее давление Pi и внешнее давление Ре. Необходимо отметить, что отверстие 52 обеспечивает проход через корпус 37 уплотнения от уплотняющей поверхности 36 к задней поверхности 35 уплотнения, чтобы направлять внешнее давление Ре, возникающее в уплотняемом отверстии корпуса клапана, к задней поверхности 35. Это давление воздействует только на часть задней поверхности 35, ограниченной местоположением уплотнительного кольца уплотнения 42. Местоположение уплотнительного кольца уплотнения 42 на задней поверхности 35 уплотнения 34 определяется исходя из конструкционных соображений. В варианте осуществления согласно Фиг.10 пружина 46 расположена радиально наружу от уплотнительного кольца уплотнения 42. Уплотнительное кольцо уплотнения 42 обеспечивает уплотнение по текучей среде между задней стенкой выступающей части 38 уплотнения и стенкой расточенного отверстия 40 в роторе 14. Таким образом, граница давления образована ротором 14, уплотнительным кольцом 42, уплотнением 34 и поверхностью раздела между уплотняющей поверхностью 36 и противоположной внутренней поверхностью корпуса 12 клапана (на Фиг.10 не показано). Эта граница давления предотвращает смешивание горячей воды под давлением Ре с холодной водой под давлением Pi на уплотняющей поверхности 36 или между уплотнением 34 и ротором 14.
Согласно одному из вариантов осуществления клапана 10 уплотнение 34 на 25% выполнено из пропитанного стеклом политетрафторэтилена («Тефлона») за исключением пружин 46, которые могут быть изготовлены из нержавеющей стали.
Необходимо отметить, что для разных эксплуатационных условий с разными внутренним и внешним давлениями текучей среды соответствующие геометрические конфигурации упомянутых выше деталей могут быть выбраны для обеспечения оптимального уравновешивания усилий, чтобы гарантировать непроницаемое для утечки уплотнение без необходимости излишнего усилия для поворота ротора 14. Чтобы пояснить этот момент, ниже приводится описание еще одного варианта осуществления уплотнения 60 для клапана 10, как показано на Фиг.11. Это уплотнение 60 может быть использовано для секции 18 холодной воды в устройствах, в которых на уплотнение 60 действует только внешнее давление Ре. Такое условие, применительно к локомотиву, может присутствовать во время работы в режиме 3, когда радиатор осушен, и в секции 18 холодной воды клапана текучей среды нет, при этом уплотнение 60 должно предотвращать поступление горячей воды из выпускного отверстия 28 промежуточного охладителя в секцию 18 холодной воды. Уплотнение 60 содержит уплотняющую поверхность 62 для уплотняющего контакта с внутренней поверхностью корпуса 12 клапана (см. увеличенный вид на Фиг.13). Пружины 64, расположенные внутри имеющих плоское дно отверстий 66, воздействуют на ротор 14с, чтобы обеспечить пружинное уплотняющее усилие FS, действующее на уплотняющую поверхность 62. При отсутствии внутреннего давления Pi холодной воды пружинящее усилие FS должно только преодолеть усилие FH горячей воды, создаваемое внешним давлением Ре, действующим на уплотняющую поверхность 62. Для сведения к минимуму размера и числа пружин, необходимых для обеспечения должного уплотнения, отверстие 68 выполнено в центре уплотнения 60, чтобы внешнее давление Ре могло быть обеспечено вокруг уплотнения 60 и действовать на заднюю поверхность 70. Несколько пазов 72 можно выполнить на задней поверхности 70, чтобы содействовать прохождению внешнего давления Ре вдоль задней поверхности уплотнения 60 в местоположение гибкого уплотнения, такого как уплотнительное кольцо 74. В этом осуществлении пружины 64 расположены в участке, ограничиваемом уплотнением 74 в виде уплотнительного кольца. Пружины 64 также создают смещающее усилие, которое создает контактирование уплотняющей поверхности 62 с корпусом 12 клапана, и поэтому уплотнение 60 может быть в состоянии, обеспечивающем выполнение своей функции при резком возрастании усилия FH, создаваемого горячей водой. При увеличении внешнего давления Ре уравновешивающее заднее усилие также возрастает, тем самым обеспечивая непроницаемое для утечки уплотнение, без необходимости увеличения пружинного усилия FS при возрастании внешнего давления горячей воды. Специалистам в данной области техники будет ясно, что пружины 46 и 64, показанные на Фиг.10 и 13, могут быть выполнены по выбору, и уплотнения 34, 60 можно выполнить таким образом, что их действие будет основываться только на уплотняющих усилиях, создаваемых давлением.
На Фиг.4 показан наборный ротор 14, выполненный из двух частей: из холодной секции 14с ротора и горячей секции 14н ротора. Каждая секция содержит цилиндрический корпус 83, выполненный с возможностью поворота вокруг продольной оси и имеющий проход 78 для направления текучей среды между выбранными отверстиями в корпусе 12 клапана. Холодная секция 14 с ротора своими обоими продольными концами опирается на подшипниковые узлы 80 вала, такие как подшипники качения, шарикоподшипники или другие подшипники известного уровня техники. При этом горячая секция 14н ротора имеет консольную конструкцию и опирается на подшипниковый узел 80 только своим одним продольным концом. Такая конструкция обеспечивает выполнение впускного отверстия 81 для воды в роторе в его корпусе 83 на одном конце его оси вращения для приема воды из впускного отверстия 22 для горячей воды. Размеры секций ротора обеспечивают достаточное пространство (например - 0,125 дюйма) между внутренней стенкой корпуса клапана и ротором, чтобы исключить его засорение грязью или мусором, взвешенными в воде. Для обеспечения дополнительной опоры для центрирования горячей секции 14н ротора в полости секции 20 горячей воды и для сведения к минимуму степени сопротивления из-за вращательного трения, создаваемого этой центрирующей опорой, горячая секция 14н ротора имеет множество имеющих низкий коэффициент трения и поверхность скольжения заглушек 82, которые проходят радиально за диаметр ротора для осуществления скользящего контакта с внутренней поверхностью корпуса 12 клапана. Эти заглушки 82 наглядно показаны на Фиг.12, на которой показан вид сбоку горячей секции 14н ротора. Заглушки 82 расположены по окружности ротора 14 на конце, противоположном концу, опирающемуся на вал 13. В этом варианте осуществления восемь заглушек 82 расположены равномерно по окружности ротора 14. Заглушки могут быть выполнены из политетрафторэтилена или другого материала с низким коэффициентом трения. Также на чертеже Фиг.12 показано расточенное отверстие 40, в которое входит уплотнение 34 (не установлено на Фиг.12). В этом варианте осуществления для позиционирования и установки уплотнения 34 предусмотрены два штифта 84. Диаметр горячей секции 14н ротора меньше внутреннего диаметра расточенного отверстия корпуса 12 клапана, чтобы обеспечивать кольцевой зазор для прохождения воды вокруг ротора 14 в целях промывки. Обычно ширина кольцевого зазора для локомотива может составлять около 0,125 дюйма. Заглушки 82 могут быть выполнены из тефлона или другого материала с низким коэффициентом трения, и сопрягаемая поверхность корпуса 12 клапана может быть выполнена в виде твердой хромированной поверхности со значением твердости по Роквеллу, равным 60-70, с чистотой обработки около 8 для сведения к минимуму трения между ними.
Исполнительный механизм 16 обеспечивает движущую силу для поворота вала 13 в любое из трех угловых положений. Вал 13 соединен с зубчатой рейкой 86 (на Фиг.4 не показано) посредством шестерни 87 (на Фиг.14 не показано). Зубчатая рейка 86 соединена с поршнем 88, расположенным в цилиндре 90. Зубчатая рейка 86 и поршень 88 совместно представляют собой один вариант осуществления каретки 89, и специалисты в данной области техники могут предусмотреть другие варианты осуществления каретки для взаимного соединения шестерни 87 с находящимся под давлением цилиндром 90. Поршень 88 согласно Фиг.4 показан в низшем положении внутри цилиндра 90, т.е. в режиме 1 работы локомотива. Термины «низший», «вверх» и «вниз» используются здесь для представления взаимных положений согласно Фиг.4, хотя в практическом осуществлении исполнительный механизм может быть ориентирован в других положениях. Находящаяся под избыточным давлением такая рабочая текучая среда, как сжатый воздух, поступающий в нижнюю камеру 92 цилиндра, будет перемещать поршень 88 вверх до тех пор, пока верхняя поверхность 94 поршня 88 не станет контактировать с неподвижным стопором 96. Линейное перемещение поршня 88 в цилиндре 90 передвигает зубчатую рейку 86, тем самым поворачивая вал 13. При сбросе давления воздуха из нижней камеры 92 цилиндра и при приложении его в среднюю камеру 98 цилиндра поршень 88 и вал 13 возвратятся в свои исходные положения.
Третье, промежуточное, положение поршня 88 и вала 13 обеспечивается вторым поршнем 100 в верхнем цилиндре 102. Второй поршень 100 соединен с подвижным стопором 104, который выходит из цилиндра 90, когда второй поршень 100 находится в своем самом верхнем положением, как показано на Фиг.4. Когда сжатый воздух будет приложен к верхней камере 106 цилиндра, второй поршень 100 будет перемещаться вниз, чтобы выдвинуть подвижный стопор 104 в среднюю камеру 98 цилиндра в положение, показанное пунктирными линиями 108. Перемещение вниз поршня 100 останавливается верхней поверхностью стационарного стопора 96. В этом положении диапазон перемещения вверх низшего поршня 88 будет ограничиваться контактом с подвижным стопором 104 в третьем промежуточном положении, когда давление воздуха прилагается к нижней камере 92 цилиндра. Если единичный источник сжатой текучей среды используется для каждой из трех камер цилиндра, то необходимо, чтобы площадь поверхности второго поршня 100 превышала площадь поверхности низшего поршня 88, и поэтому направленное вверх усилие, оказываемое низшим поршнем 88, не будет достаточным для смещения подвижного стопора 104 из его низшего положения 108. Согласно одному из вариантов осуществления диаметр второго поршня 100, по меньшей мере, в 1,4 раза превышает диаметр низшего поршня 88. Поршни могут быть уплотнены в их соответствующих цилиндрах 90, 102 посредством уплотнений в виде уплотнительных колец, и стенки цилиндра имеют твердость по Роквеллу от 60 до 70, и чистоту обработки, равную 8 или ниже, для обеспечения работы с низким коэффициентом трения.
На Фиг.12 также показано в основном прямоугольное углубление 110, выполненное в роторе 14н, форма которого соответствует в основном прямоугольному уплотняющему элементу (не показан). Прямоугольный уплотняющий элемент в поясняемом применении уплотняется только внутренним давлением. Конструкция такого уплотнения может быть аналогичной уплотнению 60, включая пружины (не показаны), которые упираются в глухие отверстия, чтобы уплотнение принудительно прижималось к корпусу 12 клапана. Уплотнение имеет прямоугольную форму, и поэтому площадь поверхности, закрываемой уплотнением, имеет увеличенную длину периметра по сравнению с круглой формой. Эту форму можно использовать, когда будет достаточное круговое пространство для позиционирования двух круглых уплотнений рядом друг с другом. На Фиг.12 показано, что горячая секция 14н ротора выполнена с двумя уплотнениями для избирательного уплотнения или открытия отверстий горячей стороны клапана для выпускного отверстия 24 радиатора, выпускного отверстия 26 для горячей воды в резервуаре и выпускного отверстия 28 промежуточного охладителя. В приведенной ниже таблице указан номер отверстия, которое закрывается каждым из двух уплотнений горячей стороны в трех рабочих режимах локомотива. «X» показывает, что два уплотнения не закрывают какое-либо отверстие в данном определенном режиме.
Режим 1 Режим 2 Режим 3
Прямоуг. уплотнение 26 X 24
Круглое уплотнение 28 (24 откр.) 26 (24, 28 откр.) X (24, 28 откр.)
Аналогичная таблица также приводится ниже для секции 18 холодной воды, при этом отверстия для выпускного отверстия 28 промежуточного охладителя, впускного отверстия 30 для холодной воды, выпускного отверстия 32 для холодной воды в резервуаре и линии дренажа 33 радиатора избирательно закрыты. Для выполнения этих функций четыре уплотнения выполнены по окружности холодной секции 14с ротора и обозначены в приводимой ниже таблице как А, В, С и D. Уплотнения А-С могут быть выполнены в соответствии с конструкцией, показанной для уплотнения 60 на Фиг.11, причем уплотнение С имеет несколько меньший размер, поскольку должно вмещать относительно меньший размер отверстия линии 33 для дренирования радиатора. Уплотнение D может иметь конструкцию, показанную для уплотнения 34 согласно Фиг.9.
Режим 1 Режим 2 Режим 3
Уплотнение 2 А Х 28 X
Уплотнение 3 В Х X 28
Уплотнение 1 С 33 X X
Уплотнение 4 D 32 33 X
На Фиг.14-16 показана пневматическая система 120 управления, которая может быть использована для управления положением исполнительного механизма 16 в этих трех режимах работы. Единственный источник 122 сжатого воздуха используется для подачи сжатого воздуха в три клапана с электромагнитным управлением S1, S2, S3, которые также обозначены номерами 124, 126 и 128. Блок 130 электропитания запитывает оба клапана 124 и 126 с электромагнитным управлением параллельно, и блок 132 электропитания используется для запитывания клапана 128 с электромагнитным управлением, тем самым обеспечивается возможность работы всех трех клапанов с электромагнитным управлением от двух приводов. Клапаны 124, 126 с электромагнитным управлением обычно закрыты, и клапан 128 с электромагнитным управлением обычно открыт. Согласно Фиг.14 работа в режиме 1 осуществляется запитыванием всех трех клапанов с электромагнитным управлением через блоки 130 и 132 электропитания. За счет этого обеспечивается возможность входа сжатого воздуха в среднюю камеру 98 цилиндра и в верхнюю камеру 106 цилиндра, в результате чего поршень 88 занимает свое низшее положение. В режиме 2, согласно Фиг.15, действует только блок 132 электропитания, обеспечивая прохождение сжатого воздуха в верхнюю камеру 106 цилиндра и в нижнюю камеру 92 цилиндра. В этом режиме цилиндр 88 перемещается в упор к подвижному стопору 104, который удерживается в своем низшем положении 108, в результате чего цилиндр 88 и прикрепленная зубчатая рейка 86 занимают среднее положение. Необходимо отметить, что разница площади поперечного сечения цилиндров 88 и 100 гарантирует удерживание цилиндра 100 в упор к неподвижному стопору 96, несмотря на усилие, создаваемое цилиндром 88 на подвижном стопоре 104. В режиме 3, согласно Фиг.16, оба блока 130 и 132 электропитания не действуют, в результате чего сжатый воздух подается только в нижнюю камеру 92 цилиндра, а цилиндр 88 перемещается в его самое верхнее положение. Можно обеспечить индикатор 143 положения, который будет указывать положение клапана. Индикатор 134 положения показан как состоящее из рейки и шестерни устройство, проходящее через стенку камеры клапана, однако для местного или дистанционного указания положения можно использовать любой другой тип известного индикатора положения клапана. Для обеспечения ровной работы поршня(ей) можно предусмотреть отверстие 136, предотвращающее проскакивание.
Как было показано и раскрыто выше, были изложены предпочтительные варианты осуществления настоящего изобретения, которые даны только в качестве примера. Специалистам в данной области техники будут очевидны многочисленные варианты, изменения и замены в рамках предложенного изобретения.

Claims (20)

1. Ротационный клапан (10), содержащий корпус (12) клапана, содержащий камеру ротора и множество отверстий (22, 24, 26, 28, 30) для прохождения текучей среды, ротор (14), расположенный в камере ротора, причем ротор содержит по меньшей мере один проход (78) для регулирования потока текучей среды через камеру, уплотнение (34), установленное на роторе, представляющее собой уплотняющую поверхность (36), контактирующую с внутренней поверхностью (39) корпуса клапана вблизи выбранного отверстия корпуса клапана, для ограничения потока текучей среды через выбранное отверстие корпуса клапана, и заднюю поверхность (35) на той стороне уплотнения, которая в основном противоположна уплотняющей поверхности, и проход (52), выполненный в уплотнении и обеспечивающий направление текучей среды (Ре) под давлением из выбранного отверстия корпуса клапана к задней поверхности уплотнения для создания уплотняющего усилия, прижимающего уплотняющую поверхность к корпусу клапана в уплотняющий контакт, при этом ротор дополнительно содержит расточенное отверстие (40) в его наружной поверхности и представляет собой боковую стенку, ограничивающую расточенное отверстие, а уплотнение дополнительно содержит выступ (38), проходящий в расточенное отверстие, и уплотняющий элемент (42), расположенный по периметру выступа и создающий барьер по текучей среде между уплотнением и боковой стенкой расточенного отверстия, причем уплотняющий элемент ограничивает участок задней поверхности уплотнения, на который действует находящаяся под давлением текучая среда.
2. Ротационный клапан по п.1, дополнительно содержащий пружинный элемент (46), который прижимает уплотняющую поверхность к корпусу клапана.
3. Ротационный клапан по п.1, дополнительно содержащий пружинный элемент (46), расположенный между ротором и уплотнением внутри участка, на который действует находящаяся под давлением текучая среда, при этом пружинный элемент обеспечивает прижим уплотняющей поверхности к корпусу клапана.
4. Ротационный клапан по п.1, дополнительно содержащий пружинный элемент (46), расположенный между ротором и уплотнением снаружи участка, на который воздействует находящаяся под давлением текучая среда, при этом пружинный элемент обеспечивает прижим уплотняющей поверхности к корпусу клапана.
5. Ротационный клапан по п.1, в котором проход содержит центрально расположенное сквозное отверстие (52), выполненное в выступе.
6. Ротационный клапан по п.1, в котором уплотнение содержит политетрафторэтиленовый материал, пропитанный стеклом.
7. Ротационный клапан (10), содержащий корпус (12) клапана, содержащий камеру ротора и множество отверстий (22, 24, 26, 28, 30) для прохождения текучей среды, ротор (14), расположенный в камере ротора, причем ротор содержит по меньшей мере один проход (78) для регулирования потока текучей среды через камеру, уплотнение (34), установленное на роторе, представляющее собой уплотняющую поверхность (36), контактирующую с внутренней поверхностью (39) корпуса клапана вблизи выбранного отверстия корпуса клапана, для ограничения потока текучей среды через выбранное отверстие корпуса клапана, и заднюю поверхность (35) на той стороне уплотнения, которая в основном противоположна уплотняющей поверхности, и проход (52), выполненный в уплотнении и обеспечивающий направление текучей среды (Ре) под давлением из выбранного отверстия корпуса клапана к задней поверхности уплотнения для создания уплотняющего усилия, прижимающего уплотняющую поверхность к корпусу клапана в уплотняющий контакт, при этом ротор в корпусе клапана своим первым концом опирается на подшипник (80), и своим вторым концом, противоположным первому концу, опирается на множество распределенных по окружности имеющих поверхность скольжения элементов (82), проходящих в кольцевое пространство между ротором и корпусом клапана, для осуществления скользящего контакта ротора в корпусе клапана для обеспечения опоры ротора.
8. Ротационный клапан (10), содержащий корпус (12) клапана, содержащий камеру ротора и множество отверстий (22, 24, 26, 28, 30) для прохождения текучей среды, ротор (14), расположенный в камере ротора, причем ротор содержит по меньшей мере один проход (78) для регулирования потока текучей среды через камеру, уплотнение (34), установленное на роторе, представляющее собой уплотняющую поверхность (36), контактирующую с внутренней поверхностью (39) корпуса клапана вблизи выбранного отверстия корпуса клапана, для ограничения потока текучей среды через выбранное отверстие корпуса клапана, и заднюю поверхность (35) на той стороне уплотнения, которая в основном противоположна уплотняющей поверхности, проход (52), выполненный в уплотнении и обеспечивающий направление текучей среды (Ре) под давлением из выбранного отверстия корпуса клапана к задней поверхности уплотнения для создания уплотняющего усилия, прижимающего уплотняющую поверхность к корпусу клапана в уплотняющий контакт, и исполнительный механизм (16), связанный с ротором валом для поворота ротора между множеством положений в корпусе клапана, при этом исполнительный механизм содержит зубчатую рейку (86), связанную с валом шестерней (87), первый поршень (88), соединенный с зубчатой рейкой и расположенный в первом цилиндре (90) для перемещения зубчатой рейки под воздействием давления, приложенного внутри первого цилиндра, второй поршень (100), расположенный во втором цилиндре (102), и стопор (104), выполненный с возможностью перемещения вторым поршнем под воздействием давления внутри второго цилиндра в положение, определяющее положение ротора за счет ограничения диапазона движения первого поршня.
9. Ротационный клапан по п.8, в котором диаметр второго поршня больше диаметра первого поршня.
10. Узел уплотнения (34) для уплотнения отверстия (22, 24, 26, 28, 30) корпуса клапана в ротационном клапане (10), имеющем ротор (14), установленный в корпусе (12) клапана, причем узел уплотнения содержит корпус (37), имеющий часть, размер которой соответствует ее посадке внутри расточенного отверстия (40) в роторе ротационного клапана, и заднюю поверхность (35), которая по меньшей мере частично размещена в расточенном отверстии и имеет уплотняющую поверхность (36), противоположную задней поверхности, для контактирования с внутренним пространством (39) корпуса клапана, окружающим отверстие корпуса клапана, проход (52), выполненный в корпусе от уплотняющей поверхности к задней поверхности и обеспечивающий давление (Ре) текучей среды от отверстия корпуса клапана к задней поверхности для создания уплотняющего усилия на части задней поверхности, расположенной внутри расточенного отверстия, уплотняющий элемент (42), расположенный по периметру корпуса внутри расточенного отверстия в роторе и ограничивающий по меньшей мере часть задней поверхности, на которую действует давление текучей среды и пружинный элемент (46) для приложения уплотняющего усилия на корпус, при этом пружинный элемент размещен в углублении (48), выполненном в корпусе, причем углубление расположено в задней поверхности снаружи той части задней поверхности, на которую действует текучая среда.
11. Узел уплотнения по п.10, в котором корпус содержит политетрафторэтиленовый материал, пропитанный стеклом.
12. Узел уплотнения по п.10, в котором уплотняющий элемент содержит кольцевое уплотнение.
13. Узел уплотнения по п.10, в котором проход содержит центрально расположенное сквозное отверстие (52), выполненное в корпусе уплотнения.
14. Узел уплотнения по п.13, в котором проход дополнительно содержит углубленный участок (54), выполненный на задней поверхности и сообщающийся по текучей среде с центрально расположенным отверстием.
15. Исполнительный механизм (16), действующий под действием текучей среды под давлением, для избирательного позиционирования ротора (14) ротационного клапана (10) в любом одном положении из числа по меньшей мере трех положений, причем исполнительный механизм содержит каретку (89), выполненную с возможностью соединения с ротором ротационного клапана, причем каретка имеет первый поршень (88), расположенный в первом цилиндре (90) для обеспечения диапазона движения для поворота ротора между первым положением и вторым положением под действием давления текучей среды внутри первого цилиндра, и стопор (104), выполненный с возможностью избирательного перемещения из его отведенного положения в выдвинутое положение для ограничения диапазона движения каретки, когда стопор находится в своем выдвинутом положении, чтобы обеспечить третье положение ротора между первым положением и вторым положением, при этом стопор соединен со вторым поршнем (100), расположенным во втором цилиндре (102) для перемещения стопора под действием давления текучей среды внутри второго цилиндра.
16. Исполнительный механизм по п.15, дополнительно содержащий общий источник (122) текучей среды под давлением, который избирательно обеспечивает текучую среду под давлением в каждый из первого и второго цилиндра, при этом площадь второго поршня больше площади первого поршня, в результате чего усилие, оказываемое первым поршнем, недостаточно для смещения стопора из его выдвинутого положения, когда текучая среда под давлением присутствует как в первом, так и во втором цилиндрах.
17. Исполнительный механизм по п.16, в котором площадь второго поршня по меньшей мере в 1,4 раза больше площади первого цилиндра.
18. Ротационный клапан (10), содержащий корпус (12) клапана, ротор (14), представляющий собой цилиндрический ротор (14), выполненный с возможностью поворота вокруг продольной оси в корпусе клапана, подшипниковую опору (80), расположенную вдоль оси первого продольного конца ротора и обеспечивающую консольную опору для ротора внутри корпуса клапана, впускное отверстие (81), выполненное в роторе в основном вдоль оси на втором продольном конце ротора, противоположном первому концу, и исполнительный механизм по п.15.
19. Ротационный клапан по п.18, в котором ротор дополнительно содержит множество распределенных по окружности имеющих поверхность скольжения элементов (82), проходящих радиально в кольцевом пространстве между ротором и корпусом клапана вблизи второго продольного конца для обеспечения опоры ротору.
20. Ротационный клапан по п.19, в котором имеющие поверхность скольжения элементы являются заглушками, выполненными из материала с низким коэффициентом трения на внешней поверхности ротора.
RU2005125922/06A 2003-01-16 2004-01-07 Ротационный клапан и узел уплотнения RU2351833C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US44044603P 2003-01-16 2003-01-16
US60/440,446 2003-01-16
US10/742,473 US6994316B2 (en) 2003-01-16 2003-12-19 Rotor valve and seal
US10/742,473 2003-12-19

Publications (2)

Publication Number Publication Date
RU2005125922A RU2005125922A (ru) 2006-03-20
RU2351833C2 true RU2351833C2 (ru) 2009-04-10

Family

ID=35058028

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005125922/06A RU2351833C2 (ru) 2003-01-16 2004-01-07 Ротационный клапан и узел уплотнения

Country Status (7)

Country Link
US (2) US6994316B2 (ru)
CN (2) CN101245865B (ru)
AU (2) AU2004311371B2 (ru)
CA (1) CA2520334A1 (ru)
MX (1) MXPA05007621A (ru)
RU (1) RU2351833C2 (ru)
WO (1) WO2005090841A1 (ru)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901572A1 (fr) * 2006-05-26 2007-11-30 Mark Iv Systemes Moteurs Soc P Circuit de refroidissement d'un moteur a combustion interne
US7587824B2 (en) * 2006-09-05 2009-09-15 General Electric Company Flow control valve and method for rebuilding a flow control valve
JP5246670B2 (ja) 2006-10-27 2013-07-24 アウディー アーゲー 特に複数の枝管を備えた内燃機関の冷却水循環経路用の回転滑り弁および電気機械組立品
JP4786503B2 (ja) * 2006-11-01 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ セルサーチ方法、移動局及び基地局
US7819948B2 (en) * 2007-10-29 2010-10-26 Air Products And Chemicals, Inc. Rotary valve
MX2010007381A (es) * 2008-01-02 2010-10-25 Arfesan Arkan Fren Elemanlari Sanayi Veticaret A S Accionador de freno de piston diafragma para ventilacion interna.
FR2937394B1 (fr) * 2008-10-20 2010-12-03 Valeo Sys Controle Moteur Sas Vanne a volet rotatif
DE102009006904A1 (de) 2009-01-30 2010-08-12 Audi Ag Dichtungsanordnung für einen Drehschieber
WO2012064958A2 (en) 2010-11-12 2012-05-18 Norfolk Southern Corporation Ge evolution series power assembly test stand system and method
MD20110053A2 (ru) 2011-05-31 2012-12-31 Владимир ЮРКИН Гидравлический привод с замкнутой системой циркуляции рабочей жидкости и гидравлический распределитель для него
JP5895942B2 (ja) * 2011-11-07 2016-03-30 トヨタ自動車株式会社 エンジンの冷却制御装置
US8919378B2 (en) * 2012-04-04 2014-12-30 GM Global Technology Operations LLC Compact electrically controlled four-way valve with port mixing
JP6050952B2 (ja) * 2012-05-15 2016-12-21 株式会社ミクニ 冷却水制御バルブ装置
DE102012220450B4 (de) * 2012-11-09 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Ventilbaugruppe, Kühlmittelbaugruppe und Motorbaugruppe
DE102013210577A1 (de) 2013-05-02 2014-11-06 Magna Powertrain Ag & Co. Kg Rotationsventil
CN105209807B (zh) * 2013-05-17 2018-11-13 麦格纳动力系有限公司 用于热管理阀的低阻力密封方法
US9500299B2 (en) * 2013-07-25 2016-11-22 Schaeffler Technologies AG & Co. KG Thermal management valve module with isolated flow chambers
US9382833B2 (en) 2013-07-25 2016-07-05 Schaeffler Technologies AG & Co. KG Actuation system for multi-chamber thermal management valve module
DE102013215971A1 (de) 2013-08-13 2015-02-19 Magna Powertrain Ag & Co. Kg Ventil
DE102014201170A1 (de) * 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Entlüftung eines Wärmemanagementsystems einer Verbrennungskraftmaschine
DE102014003802B4 (de) * 2014-03-15 2015-10-29 Diehl Aerospace Gmbh Mehrfachventil
US20150276086A1 (en) * 2014-03-31 2015-10-01 General Electric Company System and method for performing valve diagnostics
US9404594B2 (en) 2014-06-04 2016-08-02 Schaeffler Technologies AG & Co. KG Multi-chamber thermal management rotary valve module
WO2016009748A1 (ja) 2014-07-18 2016-01-21 三菱電機株式会社 空気調和装置
WO2016009749A1 (ja) 2014-07-18 2016-01-21 三菱電機株式会社 熱媒体流路切替装置およびこれを備えた空気調和装置
CN106574543B (zh) * 2014-08-05 2019-07-02 舍弗勒技术股份两合公司 具有用于旋转阀控制的同心轴的热管理阀模块
US9957875B2 (en) 2014-08-13 2018-05-01 GM Global Technology Operations LLC Coolant pump control systems and methods for backpressure compensation
US9599011B2 (en) 2014-08-13 2017-03-21 GM Global Technology Operations LLC Electric coolant pump diagnostic systems and methods
US10480391B2 (en) 2014-08-13 2019-11-19 GM Global Technology Operations LLC Coolant control systems and methods to prevent coolant boiling
US9540987B2 (en) * 2014-08-13 2017-01-10 GM Global Technology Operations LLC System and method for diagnosing a fault in a partitioned coolant valve
CN106574731B (zh) * 2014-08-22 2019-12-10 三菱电机株式会社 复合阀
KR101601234B1 (ko) * 2014-11-18 2016-03-08 현대자동차주식회사 냉각수 제어밸브를 갖는 엔진시스템
CN104482272A (zh) * 2014-12-30 2015-04-01 高克伟 电动换向器
EP3040588B1 (en) * 2014-12-31 2017-05-03 Cameron International Corporation Double piston effect lip seal seating assemblies
DE102015201244B3 (de) * 2015-01-26 2016-05-12 Ford Global Technologies, Llc Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
US10337389B2 (en) 2015-01-26 2019-07-02 Ford Global Technologies, Llc Control means for controlling the coolant flows of a split cooling system
WO2017007235A1 (ko) * 2015-07-06 2017-01-12 인지컨트롤스 주식회사 차량용 멀티밸브
CN107542569B (zh) 2016-06-27 2021-05-28 舍弗勒技术股份两合公司 热管理模块
CN106122521B (zh) * 2016-06-28 2018-03-09 苏州麦可旺志生物技术有限公司 一种多种流体周期性定向导流装置
JP6772991B2 (ja) * 2016-09-27 2020-10-21 株式会社デンソー 弁装置および冷却システム
US10344883B2 (en) * 2016-11-02 2019-07-09 Schaeffler Technologies AG & Co. KG Modular electro-mechanical rotary valve
US10295076B2 (en) 2016-11-02 2019-05-21 Schaeffler Technologies AG & Co. KG Modular electro-mechanical rotary valve with activated seal interface
DE102018106204A1 (de) 2017-05-18 2018-11-22 Yamada Manufacturing Co., Ltd. Steuerventil
DE102018106208A1 (de) * 2017-06-28 2019-01-03 Yamada Manufacturing Co., Ltd. Steuerventil
SE542611C2 (en) * 2017-08-24 2020-06-16 Scania Cv Ab A thermostat device for a cooling system
WO2019094956A1 (en) * 2017-11-10 2019-05-16 Versum Materials Us, Llc Cylinder type auto valve shutter
JP2019089524A (ja) * 2017-11-17 2019-06-13 アイシン精機株式会社 車両用熱交換装置
US11473859B2 (en) * 2018-11-05 2022-10-18 Schaeffler Technologies AG & Co. KG Method of seating a valve seal
US11112015B2 (en) 2019-06-06 2021-09-07 Robert Bosch Llc Fluid valve assembly including seal having retention features
US10914390B2 (en) 2019-06-06 2021-02-09 Robert Bosch Llc Fluid valve assembly including valve body with seal retention features
US11054043B2 (en) 2019-06-06 2021-07-06 Robert Bosch Llc Fluid valve assembly including fluid driven sealing
JP2021004670A (ja) * 2019-06-27 2021-01-14 株式会社デンソー バルブ装置
DE102020201190A1 (de) * 2019-10-14 2021-04-15 Vitesco Technologies GmbH Fluidventil
JP7331646B2 (ja) * 2019-11-07 2023-08-23 株式会社デンソー バルブ装置
KR20210098087A (ko) 2020-01-31 2021-08-10 현대자동차주식회사 유량제어밸브 장치
CA3169979A1 (en) * 2020-02-19 2021-08-26 Convatec Limited An outlet valve for an ostomy appliance
CN113280152A (zh) * 2020-02-19 2021-08-20 伊利诺斯工具制品有限公司
KR20210119659A (ko) * 2020-03-25 2021-10-06 현대자동차주식회사 유량제어밸브 장치
US11698140B2 (en) * 2020-06-05 2023-07-11 Illinois Tool Works Inc. Ball valve with multi-angular sealing for coolant control regulator
US11560952B2 (en) * 2020-09-01 2023-01-24 Hanon Systems Variable cylinder wall for seals on plug valve
US11781662B2 (en) * 2021-05-28 2023-10-10 Hanon Systems Efp Deutschland Gmbh Multi-port rotary actuated valve assembly
DE102021123271A1 (de) 2021-09-08 2023-03-09 Woco Industrietechnik Gmbh Mehrwegeventil, Verwendung des Mehrwegeventils, Fluidkreislauf und Kraftfahrzeug
CN115654177B (zh) * 2022-12-26 2023-03-14 四川芯智热控技术有限公司 一种多通阀

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB553261A (en) * 1942-04-01 1943-05-13 Arthur Larue Parker Improvements in fluid control valves
US2371657A (en) 1943-12-30 1945-03-20 Parker Appliance Co Valve assembly
FR1338381A (fr) * 1962-06-29 1963-09-27 Robinet à tournant
US3218026A (en) 1963-03-28 1965-11-16 Quality Controls Company Inc Plug valve having renewable sealing inserts
US4165763A (en) 1977-06-06 1979-08-28 Cummins Engine Company, Inc. Valve construction
US4548385A (en) 1979-12-18 1985-10-22 Quality Controls, Inc. Flexible seal for rotor valves
US4338857A (en) 1980-07-14 1982-07-13 Lee Engineering, Inc. Rotary actuator for valve
US4414109A (en) 1980-09-29 1983-11-08 Purex Corporation Multi-ported valve with sealing network between valve body and rotor
SE435311B (sv) * 1983-02-11 1984-09-17 Wm Regler Ab Tryckfluidumpaverkat manoverdon for stegvis ventilreglering
IT1217711B (it) * 1988-05-24 1990-03-30 Aurelio Messina Attuatore perfezionato per l'azionamento,in apertura ed in genere
US5154147A (en) * 1991-04-09 1992-10-13 Takumi Muroki Rotary valve
US5246655A (en) 1991-04-30 1993-09-21 The Young Industries, Inc. Method of making thermoplastic valve rotors
US5372104A (en) * 1993-10-08 1994-12-13 Griffin; Bill E. Rotary valve arrangement
US5415147A (en) 1993-12-23 1995-05-16 General Electric Company Split temperature regulating system and method for turbo charged internal combustion engine
US5556271A (en) * 1994-11-23 1996-09-17 Coltec Industries Inc. Valve system for capacity control of a screw compressor and method of manufacturing such valves
AUPN559395A0 (en) 1995-09-22 1995-10-19 Smith, Brian Rotary valve for an internal combustion engine
US6076799A (en) 1996-04-12 2000-06-20 Fisher Controls International, Inc. Rotary valve actuator and linkage
US5867900A (en) 1997-08-26 1999-02-09 Ecowater Systems, Inc. Plastic coated valve rotor and a method of manufacturing
US6308739B1 (en) 1998-02-13 2001-10-30 Quality Controls, Inc. Flexible rotor valve seal and ganged rotor valve incorporating same
IT1301877B1 (it) * 1998-07-29 2000-07-07 Giovanni Trevisan Dispositivo per la regolazione della posizione centrale dei pistoni edella posizione angolare del pignone in un attuatore di comando per
US6196167B1 (en) 1999-02-01 2001-03-06 General Electric Company Cooling system for internal combustion engine
US6098576A (en) 1999-02-12 2000-08-08 General Electric Company Enhanced split cooling system
US6345805B1 (en) 2000-01-04 2002-02-12 Vijay R. Chatufale Rotary valve with seat assembly
US6230668B1 (en) 2000-05-22 2001-05-15 General Electric Company Locomotive cooling system
US6647934B2 (en) 2001-10-01 2003-11-18 General Electric Company Unified rotary flow control valve for internal combustion engine cooling system

Also Published As

Publication number Publication date
CA2520334A1 (en) 2005-09-29
RU2005125922A (ru) 2006-03-20
AU2009240049A1 (en) 2009-12-10
US7163194B2 (en) 2007-01-16
AU2004311371A8 (en) 2008-07-31
AU2009240049B2 (en) 2012-02-09
CN100396976C (zh) 2008-06-25
CN101245865B (zh) 2011-03-02
CN101245865A (zh) 2008-08-20
WO2005090841A1 (en) 2005-09-29
AU2004311371A1 (en) 2005-09-15
AU2004311371B2 (en) 2009-12-17
US20060102865A1 (en) 2006-05-18
US6994316B2 (en) 2006-02-07
CN1780999A (zh) 2006-05-31
MXPA05007621A (es) 2006-01-24
US20040140445A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
RU2351833C2 (ru) Ротационный клапан и узел уплотнения
US5617815A (en) Regulating valve
EP2909514B1 (en) Valve system and method
US6487858B2 (en) Method and apparatus for diminishing the consumption of fuel and converting reciprocal piston motion into rotary motion
CN105042110A (zh) 用于车辆的阀门
KR101610175B1 (ko) 차량용 오일 쿨러
AU2016321973B2 (en) Dual-acting expansion cylinder with adaptive support
CN106065957A (zh) 转换阀和具有转换阀的连杆
JP2015508866A (ja) 回転圧縮機用の密閉要素
CN101622473B (zh) 用于牵引工具驱动器的液压张紧元件
US6508638B2 (en) Dual stage compressor
JP3958059B2 (ja) 四方向切換弁
US3974744A (en) Engines, or prime movers
US6880507B2 (en) Internal combustion engine with switchable cam follower
US3314337A (en) Piston for an expansion engine
US3394633A (en) Expansion engine
JPH052805B2 (ru)
US20050025633A1 (en) Rotating fluid machine
CN112780761A (zh) 用于车辆的阀设备
DE69719262T2 (de) Kraftfahrzeug- Heizanlage
US7083402B2 (en) Rotating fluid machine
US4262579A (en) Single acting steam engine
JPH0338425Y2 (ru)
GB2598032A (en) Engine cylinder
KR970004384B1 (ko) 피스톤식 압축기에 있어서 냉매가스 흡입구조