RU2351674C2 - Толстостенная плита из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению (варианты) и способ ее изготовления (варианты) - Google Patents

Толстостенная плита из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению (варианты) и способ ее изготовления (варианты) Download PDF

Info

Publication number
RU2351674C2
RU2351674C2 RU2005125727/02A RU2005125727A RU2351674C2 RU 2351674 C2 RU2351674 C2 RU 2351674C2 RU 2005125727/02 A RU2005125727/02 A RU 2005125727/02A RU 2005125727 A RU2005125727 A RU 2005125727A RU 2351674 C2 RU2351674 C2 RU 2351674C2
Authority
RU
Russia
Prior art keywords
temperature
alloy
maximum
content
workpiece
Prior art date
Application number
RU2005125727/02A
Other languages
English (en)
Other versions
RU2005125727A (ru
Inventor
Гюнтер ХЁЛЛЬРИГЛЬ (CH)
Гюнтер ХЁЛЛЬРИГЛЬ
Кристоф ДЖАКЕРО (CH)
Кристоф ДЖАКЕРО
Original Assignee
Алкан Технолоджи Энд Мэниджмент Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алкан Технолоджи Энд Мэниджмент Лтд. filed Critical Алкан Технолоджи Энд Мэниджмент Лтд.
Publication of RU2005125727A publication Critical patent/RU2005125727A/ru
Application granted granted Critical
Publication of RU2351674C2 publication Critical patent/RU2351674C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Metal Rolling (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Safety Valves (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к толстостенной плите из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению, а также к способу изготовления таких толстостенных плит и может быть использовано в автомобилестроении. Плита из алюминиевого сплава получена непрерывной разливкой сплава с получением заготовки толщиной более 300 мм, нагревом заготовки до температуры 470-490°С, гомогенизацией заготовки при этой температуре, горячей прокаткой гомогенизированной заготовки с получением плиты толщиной менее 300 мм или охлаждением до промежуточной температуры, составляющей 400-410°С, последующим охлаждением от промежуточной температуры 400-410°С до температуры ниже 100°С, охлаждением плиты до комнатной температуры и искусственным старением плиты. Алюминиевый сплав имеет следующий состав, мас.%: Zn от 4,6 до 5,2, Mg от 2,6 до 3,0, Cu от 0,1 до 0,2, Zr от 0,05 до 0,2, Mn максимум 0,05, Cr максимум 0,05, Fe максимум 0,15, Si максимум 0,15, Ti максимум 0,10, остальное алюминий и обусловленные особенностями технологического процесса примеси. Получают толстостенную плиту, обладающую высокой прочностью по всей толщине, с малой чувствительностью к быстрому охлаждению. 5 н. и 29 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится к толстостенной плите из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению, а также к способу изготовления таких толстостенных плит.
В промышленности и прежде всего в автомобилестроении постоянно возрастает потребность в крупных пластмассовых деталях, таких, например, как цельные бамперы. Для изготовления соответственно крупных литьевых форм требуются плиты, толщина которых часто превышает 150 мм, а в некоторых случаях даже превышает 500 мм.
В настоящее время для изготовления литьевых форм с толщиной стенок, например, от 50 до 300 мм, обычно используют горячекатаные и подвергнутые искусственному старению плиты. Более крупные литьевые формы с толщиной стенок более 300 мм изготавливали либо из кованых слитков, либо даже непосредственно из непрерывно-литых заготовок.
Существенный недостаток применяемых в настоящее время для изготовления литьевых форм алюминиевых сплавов состоит в их высокой чувствительности к быстрому охлаждению. Для придания литым заготовкам или плитам путем их искусственного старения необходимой для литьевых форм прочности скорость их охлаждения, начиная с температуры гомогенизации или отжига в области твердого раствора, необходимо с возрастанием толщины плит увеличивать. Из-за возникающей при этом высокой разности температур между поверхностью и сердцевиной литых заготовок или плит в них возрастают опасные остаточные напряжения, и поэтому по одной только этой причине ограничивается возможность дальнейшего повышения скорости охлаждения, а тем самым и окончательно достижимой прочности сплава.
В основу настоящего изобретения была положена задача предложить толстостенную плиту высокой прочности из алюминиевого сплава с малой чувствительностью к быстрому охлаждению.
Еще одна задача изобретения состояла в разработке соответствующего способа, которым такой алюминиевый сплав можно было бы перерабатывать в толстостенные плиты с достаточно высокой прочностью по всей их толщине.
Указанная задача решается согласно изобретению в плите из алюминиевого сплава, полученной непрерывной разливкой сплава с получением заготовки толщиной более 300 мм, нагревом заготовки до температуры 470-490°С, гомогенизацией заготовки при этой температуре, горячей прокаткой гомогенизированной заготовки с получением плиты толщиной менее 300 мм или 25 охлаждением гомогенизированной заготовки до промежуточной температуры 400-410°С, охлаждением полученной горячей прокаткой плиты или, соответственно, охлажденной до 400-410°С заготовки до температуры ниже 100°С, охлаждением плиты или, соответственно, заготовки до комнатной температуры и искусственным старением плиты или, соответственно, заготовки, причем алюминиевый сплав имеет следующий состав:
Zn от 4,6 до 5,2 мас.%,
Mg от 2,6 до 3,0 мас.%,
Cu от 0,1 до 0,2 мас.%,
Zr от 0,05 до 0,2 мас.%,
Mn максимум 0,05 мас.%,
Cr максимум 0,05 мас.%,
Fe максимум 0,15 мас.%,
Si максимум 0,15 мас.%,
Ti максимум 0,10 мас.%,
остальное алюминий и обусловленные особенностями технологического процесса примеси.
На долю указанных примесей может приходиться по отдельности максимум 0,05 мас.% и в сумме максимум 0,15 мас.%.
Состав сплава выбирают согласно изобретению таким образом, чтобы он имел исключительно низкую чувствительность к быстрому охлаждению, но вместе с тем обладал исключительно высокой прочностью. В соответствии с этим имеющим толстое поперечное сечение изделиям или заготовкам из такого сплава можно путем интенсивного охлаждения на воздухе и дисперсионного твердения придавать высокую прочность.
В предпочтительном варианте сплав содержит отдельные легирующие элементы в следующих количествах:
Zn от 4,6 до 4,8 мас.%,
Mg от 2,6 до 2,8 мас.%,
Cu от 0,1 до 0,15 мас.%,
Zr от 0,08 до 0,18 мас.%,
Mn максимум 0,03 мас.%,
Cr максимум 0,02 мас.%,
Fe максимум 0,12 мас.%,
Si максимум 0,12 мас.%,
Ti максимум 0,05 мас.%.
Для применения сплава в качестве конструкционного материала для изготовления литьевых форм в изготовленной из него плите следует стремиться к максимально изотропному распределению остаточных напряжений по ее поперечному сечению. Для снятия остаточных напряжений важное значение имеет помимо прочего размер и форма зерен сплава, из которого изготовлена плита. Чем мельче и равномернее кристаллы, тем эффективнее могут выравниваться остаточные напряжения по поперечному сечению плиты. При этом границы зерен служат стоками дислокации при снятии локальных пиковых напряжений. Как указано ниже, добавление циркония позволяет получить плиту с мелкозернистой структурой ее материала, для чего скорость нагрева литой заготовки до температуры гомогенизации, соответственно до температуры отжига в области твердого раствора, выбирают с таким расчетом, чтобы субмикронные выделения Al3Zr были максимально равномерно распределены в структуре сплава.
Для изготовления предлагаемых в изобретении плит из алюминиевого сплава можно использовать прежде всего два следующих способа, которые в зависимости от требуемой толщины стенки литьевой формы позволяют получать горячекатаную и подвергнутую искусственному старению плиту либо используемую в качестве нее непрерывно-литую заготовку.
Плиты толщиной до 300 мм изготавливают способом, который отличается тем, что
A) из алюминиевого сплава его непрерывной разливкой изготавливают заготовки толщиной более 300 мм,
Б) заготовки нагревают до температуры 470-490°°С со скоростью, которая в интервале температур от 170 до 410°С составляет максимум 20°С/ч,
B) заготовки гомогенизируют в течение 10-14 ч при температуре 470-490°С,
Г) гомогенизированные заготовки подвергают горячей прокатке с получением из них плит,
Д) плиты охлаждают от температуры 400-410°С до температуры ниже 100°С,
Е) плиты охлаждают до комнатной температуры и
Ж) плиты подвергают искусственному старению.
В качестве плит толщиной более 300 мм и прежде всего толщиной более 500 мм можно использовать непосредственно изготовленные из предлагаемого в изобретении сплава непрерывно-литые заготовки. В этом случае предлагаемый в изобретении способ отличается тем, что
A) из сплава его непрерывной разливкой изготавливают заготовки толщиной более 300 мм,
Б) заготовки нагревают до температуры 470-490°С со скоростью, которая в интервале температур от 170 до 410°С составляет максимум 20°С/ч,
B) заготовки гомогенизируют в течение 10-14 ч при температуре 470-490°С,
Г) заготовки охлаждают до промежуточной температуры, составляющей 400-410°С,
Д) заготовки охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С,
Е) заготовки охлаждают до комнатной температуры,
Ж) заготовки подвергают искусственному старению и
З) подвергнутые искусственному старению заготовки используют в качестве плит.
В предпочтительном варианте заготовки охлаждают от температуры гомогенизации, составляющей 470-490°С, до промежуточной температуры, составляющей 400-410°С, в неподвижной воздушной атмосфере.
Охлаждать заготовки от промежуточной температуры, составляющей 400-410°С, необходимо с такой скоростью, при которой обеспечивается минимально возможное снижение их прочности. С другой стороны, скорость охлаждения заготовок не должна быть и слишком высокой, поскольку в противном случае в них будут возникать слишком высокие остаточные напряжения.
Охлаждать заготовки от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С предпочтительно в потоке воздуха (принудительное воздушное охлаждение) либо водяным туманом. При выборе условий охлаждения необходимо учитывать также толщину непрерывно-литых заготовок. Однако для специалистов в данной области очевидно, что оптимальные условия охлаждения непрерывно-литых заготовок заданных размеров можно определять проведением простых опытов.
Нагрев заготовок до температуры гомогенизации с низкой скоростью в интервале температур от 170 до 410°С является важной отличительной особенностью предлагаемого в изобретении способа. В указанном интервале температур, называемом также интервалом температур придания сплаву гетерогенной структуры, равновесная фаза AlZnMg (Т-фаза) остается стабильной. Медленный нагрев заготовок в интервале температур придания 30 сплаву гетерогенной структуры приводит к мелкодисперсному выделению Т-фазы, межфазные поверхности выделившихся частиц которой образуют преимущественные места возникновения зародышей для частиц Al3Zr, выделение которых начинается при температуре, равной примерно 350°С. При дальнейшем нагреве заготовок до температуры гомогенизации выделившиеся ранее частицы Т-фазы растворяются, и остаются равномерно распределенные мелкодисперсные субмикронные выделения Al3Zr, которые располагаются преимущественно на первоначальных границах частиц Т-фазы, а также на субграницах и которые тем самым оказываются равномерно распределены в структуре сплава. Такие мелкодисперсные частицы Al3Zr в значительной степени подавляют рост зерен при рекристаллизации материала плит и при отжиге в области твердого раствора, и при гомогенизационном отжиге литых заготовок, в сплаве которых в результате образуется требуемая изотропная зеренная структура. Тем самым обеспечивается оптимальное использование легирующего элемента Zr как модификатора.
Еще одна важная отличительная особенность предлагаемого в изобретении способа заключается в комбинировании гомогенизационного отжига и отжига в области твердого раствора с последующим двухступенчатым охлаждением, тогда как в обычных, известных из уровня техники методах для обеспечения все еще приемлемой прочности и в сердцевине литой заготовки ее необходимо подвергать отдельному отжигу в области твердого раствора с последующим быстрым охлаждением с высокой скоростью.
Под выражением "охлаждение в потоке воздуха", соответственно "принудительное воздушное охлаждение" в данном контексте подразумевается обеспечиваемое обычно вентиляторами охлаждение на воздухе, при котором коэффициент теплоотдачи на поверхности литой заготовки составляет примерно 40 Вт/м2·К. При охлаждении же водяным туманом коэффициент теплоотдачи на поверхности литой заготовки несколько выше указанного значения.
Предлагаемый в изобретении сплав обладает малой чувствительностью к быстрому охлаждению. При изготовлении толстостенных плит из предлагаемого в изобретении сплава снижение прочности в их сердцевине оказывается несмотря на сравнительно мягкие условия охлаждения меньше, чем у плит, изготовленных из известных из уровня техники сплавов. Помимо этого при создании изобретения неожиданно было установлено, что этот эффект у изготовленных непосредственно из непрерывно-литых заготовок плит имеет еще более высокую выраженность, чем у горячекатаных плит.
При изготовлении толстостенных плит их двухступенчатое охлаждение от температуры гомогенизации до комнатной температуры зарекомендовало себя как наиболее предпочтительное для придания сплаву структуры с малыми остаточными напряжениями. Для искусственного старения сплава его предпочтительно сначала подвергать выдержке при комнатной температуре, затем подвергать первой термообработке выдержкой при первой температуре и в завершение подвергать второй термообработке выдержкой при второй температуре, которая выше первой температуры, например, в следующем режиме:
- выдержка в течение 1-30 дней при комнатной температуре,
- выдержка в течение 6-10 ч при температуре 90-100°С,
- выдержка в течение 8-22 ч при температуре 150-160°С.
Сплав наиболее предпочтительно подвергать искусственному старению до термообработанного состояния Т76.
Область применения предлагаемого в изобретении сплава и изготовленных из него толстостенных плит определяется описанным выше набором его свойств. Изготовленные из предлагаемого в изобретении сплава плиты пригодны прежде всего для изготовления из них литьевых форм, т.е. форм для литья пластмасс под давлением, а также в общем случае для применения в машиностроении, в инструментальном производстве и в производстве литейных и литьевых форм.
Другие преимущества и отличительные особенности изобретения более подробно рассмотрены ниже на примере некоторых предпочтительных вариантов его осуществления со ссылкой на прилагаемые графические материалы, на которых показано:
на фиг.1 - распределение твердости по Бринеллю по части поперечного сечения непрерывно-литой заготовки с размерами поперечного сечения 440×900 мм после ее охлаждения вентиляторами,
на фиг.2 - измеренное изменение температур на поверхности и в сердцевине непрерывно-литой заготовки с размерами поперечного сечения 440×900 мм при ее охлаждении вентиляторами,
на фиг.3 - расчетная внутренняя разность температур, соответствующая показанному на фиг.2 изменению температур,
на фиг.4 - расчетное изменение температур на поверхности и в сердцевине непрерывно-литой заготовки с размерами поперечного сечения 1000×1200 мм при ее охлаждении вентиляторами и
на фиг.5 - расчетная внутренняя разность температур, соответствующая показанному на фиг.4 изменению температур.
Пример
Из сплава следующего состава (в мас.%): 0,040 Si, 0,08 Fe, 0,14 Cu, 0,0046 Mn, 2,69 Mg, 0,0028 Cr, 4,69 Zn, 0,017 Ti, 0,16 Zr, остальное - Al, в промышленных условиях отливали непрерывно-литую заготовку с размерами в поперечном сечении 440×900 мм. Эту литую заготовку в течение 30 ч нагревали до температуры 480°С, при этом скорость нагрева в интервале температур от 170 до 410°С не должна была превышать 20°С/ч. Для компенсации обусловленных затвердеванием микроликваций литую заготовку подвергали гомогенизации ее выдержкой в течение 12 ч при 480°С.
После этого гомогенизированную литую заготовку охлаждали на первой стадии в неподвижной воздушной атмосфере от температуры гомогенизации до промежуточной температуры, равной 400°С, а затем на второй стадии охлаждали вентиляторами от 400°С до 100°С. Последующее охлаждение до комнатной температуры вновь проводили в неподвижной воздушной атмосфере.
Далее литую заготовку после ее выдержки в течение 14 дней при комнатной температуре подвергали искусственному старению выдержкой в течение 8 ч при 95°С, а затем в течение 18 ч при 155°С до переупрочненного состояния Т76.
Затем от подвергнутых искусственному старению литых заготовок перпендикулярно их продольному направлению отрезали контрольные образцы, по поперечному сечению которых измеряли их твердость по Бринеллю. Представленные на фиг.1 зоны одинаковой твердости наглядно свидетельствуют о небольшом снижении твердости, соответственно прочности литой заготовки в ее сердцевине по сравнению с этими же показателями на ее поверхности.
На фиг.2 показаны построенные по измеренным значениям кривые изменения во времени температуры на поверхности (О) и в сердцевине (К) литой заготовки с размерами в поперечном сечении 440×900 мм при ее охлаждении вентиляторами, а на фиг.3 показаны рассчитанные на основе этих кривых графики разности между температурой ТК в сердцевине литой заготовки и температурой ТО на ее поверхности. Для сравнения на фиг.4 и 5 показаны соответствующие кривые для литой заготовки с размерами поперечного сечения 1000×1200 мм. Приведенные на этих графиках результаты свидетельствуют о том, что изготовленные предлагаемым в изобретении способом литые заготовки толщиной вплоть до 1000 мм все еще должны соответствовать требованиям, предъявляемым к механической прочности плит, предназначенных для изготовления из них литьевых форм.

Claims (34)

1. Плита из алюминиевого сплава, полученная непрерывной разливкой сплава с получением заготовки толщиной более 300 мм, нагревом заготовки до температуры 470-490°С, гомогенизацией заготовки при этой температуре, горячей прокаткой гомогенизированной заготовки с получением плиты толщиной менее 300 мм, охлаждением полученной горячей прокаткой плиты до температуры ниже 100°С, охлаждением плиты до комнатной температуры и искусственным старением плиты, причем алюминиевый сплав имеет следующий состав, мас.%:
Zn от 4,6 до 5,2 Mg от 2,6 до 3,0 Cu от 0,1 до 0,2 Zr от 0,05 до 0,2 Mn максимум 0,05 Cr максимум 0,05 Fe максимум 0,15 Si максимум 0,15 Ti максимум 0,10

алюминий и обусловленные
особенностями технологического
процесса примеси остальное
2. Плита по п.1, отличающаяся тем, что содержание в сплаве Zn составляет от 4,6 до 4,8 мас.%.
3. Плита по п.1, отличающаяся тем, что содержание в сплаве Mg составляет от 2,6 до 2,8 мас.%.
4. Плита по п.1, отличающаяся тем, что содержание в сплаве Cu составляет от 0,10 до 0,15 мас.%.
5. Плита по п.1, отличающаяся тем, что содержание в сплаве Zr составляет от 0,08 до 0,18 мас.%.
6. Плита по п.1, отличающаяся тем, что содержание в сплаве Mn составляет максимум 0,03 мас.%.
7. Плита по п.1, отличающаяся тем, что содержание в сплаве Cr составляет максимум 0,02 мас.%.
8. Плита по п.1, отличающаяся тем, что содержание в сплаве Fe составляет максимум 0,12 мас.%.
9. Плита по п.1, отличающаяся тем, что содержание в сплаве Si составляет максимум 0,12 мас.%.
10. Плита по п.1, отличающаяся тем, что содержание в сплаве Ti составляет максимум 0,05 мас.%.
11. Плита из алюминиевого сплава, полученная непрерывной разливкой сплава с получением заготовки толщиной более 300 мм, нагревом заготовки до температуры 470-490°С, гомогенизацией заготовки при этой температуре, охлаждением гомогенизированной заготовки до промежуточной температуры 400-410°С, охлаждением заготовки, охлажденной до 400-410°С, до температуры ниже 100°С, охлаждением заготовки до комнатной температуры и искусственным старением заготовки, причем алюминиевый сплав имеет следующий состав, мас.%:
Zn от 4,6 до 5,2 Mg от 2,6 до 3,0 Cu от 0,1 до 0,2 Zr от 0,05 до 0,2 Mn максимум 0,05 Cr максимум 0,05 Fe максимум 0,15 Si максимум 0,15 Ti максимум 0,10

алюминий и обусловленные
особенностями технологического
процесса примеси остальное
12. Плита по п.11, отличающаяся тем, что содержание в сплаве Zn составляет от 4,6 до 4,8 мас.%.
13. Плита по п.11, отличающаяся тем, что содержание в сплаве Mg составляет от 2,6 до 2,8 мас.%.
14. Плита по п.11, отличающаяся тем, что содержание в сплаве Cu составляет от 0,10 до 0,15 мас.%.
15. Плита по п.11, отличающаяся тем, что содержание в сплаве Zr составляет от 0,08 до 0,18 мас.%.
16. Плита по п.11, отличающаяся тем, что содержание в сплаве Mn составляет максимум 0,03 мас.%.
17. Плита по п.11, отличающаяся тем, что содержание в сплаве Cr составляет максимум 0,02 мас.%.
18. Плита по п.11, отличающаяся тем, что содержание в сплаве Fe составляет максимум 0,12 мас.%.
19. Плита по п.11, отличающаяся тем, что содержание в сплаве Si составляет максимум 0,12 мас.%.
20. Плита по п.11, отличающаяся тем, что содержание в сплаве Ti составляет максимум 0,05 мас.%.
21. Способ изготовления плит толщиной до 300 мм из алюминиевого сплава, отличающийся тем, что
A) из алюминиевого сплава с составом по любому из пп.1-10 непрерывной разливкой изготавливают заготовки толщиной более 300 мм,
Б) заготовки нагревают до температуры 470-490°С со скоростью, которая в интервале температур от 170 до 410°С составляет максимум 20°С/ч,
B) заготовки гомогенизируют в течение 10-14 ч при температуре 470-490°С,
Г) гомогенизированные заготовки подвергают горячей прокатке с получением из них плит,
Д) плиты охлаждают от температуры 400-410°С до температуры ниже 100°С,
Е) плиты охлаждают до комнатной температуры и
Ж) плиты подвергают искусственному старению.
22. Способ по п.21, отличающийся тем, что плиты охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С в потоке воздуха (принудительное воздушное охлаждение).
23. Способ по п.21, отличающийся тем, что плиты охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С водяным туманом.
24. Способ по п.21, отличающийся тем, что для искусственного старения сплава его последовательно подвергают выдержке при комнатной температуре, затем подвергают первой термообработке выдержкой при первой температуре и в завершение подвергают второй термообработке выдержкой при второй температуре, которая выше первой температуры.
25. Способ по п.24, отличающийся тем, что сплав выдерживают в течение 1-30 дней при комнатной температуре, в течение 6-10 ч при температуре 90-100°С, в течение 8-22 ч при температуре 150-160°С.
26. Способ по п.25, отличающийся тем, что сплав подвергают искусственному старению до термообработанного состояния Т76.
27. Способ изготовления плит толщиной более 300 мм из алюминиевого сплава, отличающийся тем, что
А) из алюминиевого сплава с составом по любому из пп.11-20 непрерывной разливкой изготавливают заготовки толщиной более 300 мм,
Б) заготовки нагревают до температуры 470-490°С со скоростью, которая в интервале температур от 170 до 410°С составляет максимум 20°С/ч,
В) заготовки гомогенизируют в течение 10-14 ч при температуре 470-490°С,
Г) заготовки охлаждают до промежуточной температуры, составляющей 400-410°С,
Д) заготовки охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С,
Е) заготовки охлаждают до комнатной температуры,
Ж) заготовки подвергают искусственному старению и
З) подвергнутые искусственному старению заготовки используют в качестве плит.
28. Способ по п.27, отличающийся тем, что заготовки охлаждают от температуры гомогенизации, составляющей 470-490°С, до промежуточной температуры, составляющей 400-410°С, в неподвижной воздушной атмосфере.
29. Способ по п.27, отличающийся тем, что заготовки охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С в потоке воздуха (принудительное воздушное охлаждение).
30. Способ по п.27, отличающийся тем, что заготовки охлаждают от промежуточной температуры, составляющей 400-410°С, до температуры ниже 100°С водяным туманом.
31. Способ по п.27, отличающийся тем, что для искусственного старения сплава его последовательно подвергают выдержке при комнатной температуре, затем подвергают первой термообработке выдержкой при первой температуре и в завершение подвергают второй термообработке выдержкой при второй температуре, которая выше первой температуры.
32. Способ по п.31, отличающийся тем, что сплав выдерживают в течение 1-30 дней при комнатной температуре, в течение 6-10 ч при температуре 90-100°С, в течение 8-22 ч при температуре 150-160°С.
33. Способ по п.32, отличающийся тем, что сплав подвергают искусственному старению до термообработанного состояния Т76.
34. Применение плиты, изготовленной способом по любому из пп.21-33, в машиностроении, в инструментальном производстве и в производстве литейных и литьевых форм, прежде всего форм для литья пластмасс под давлением.
RU2005125727/02A 2003-01-16 2003-12-20 Толстостенная плита из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению (варианты) и способ ее изготовления (варианты) RU2351674C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03405013A EP1441041A1 (de) 2003-01-16 2003-01-16 Aluminiumlegierung mit hoher Festigkeit und geringer Abschreckempfindlichkeit
EP03405013.8 2003-01-16

Publications (2)

Publication Number Publication Date
RU2005125727A RU2005125727A (ru) 2007-02-27
RU2351674C2 true RU2351674C2 (ru) 2009-04-10

Family

ID=32524285

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005125727/02A RU2351674C2 (ru) 2003-01-16 2003-12-20 Толстостенная плита из алюминиевого сплава с высокой прочностью и малой чувствительностью к быстрому охлаждению (варианты) и способ ее изготовления (варианты)

Country Status (16)

Country Link
US (2) US20060096676A1 (ru)
EP (2) EP1441041A1 (ru)
AT (1) ATE367456T1 (ru)
AU (1) AU2003293963A1 (ru)
CA (1) CA2513333C (ru)
DE (1) DE50307736D1 (ru)
DK (1) DK1587965T3 (ru)
ES (1) ES2290544T3 (ru)
HR (1) HRP20050704B1 (ru)
NO (1) NO340750B1 (ru)
PL (1) PL203780B1 (ru)
PT (1) PT1587965E (ru)
RU (1) RU2351674C2 (ru)
SI (1) SI1587965T1 (ru)
TW (1) TWI291993B (ru)
WO (1) WO2004063407A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457422C2 (ru) * 2010-04-16 2012-07-27 Российская Федерация в лице Министерства промышленности торговли Российской Федерации Способ изготовления слоистой плиты на основе алюминия для противопульной сварной брони
RU2489217C1 (ru) * 2011-12-27 2013-08-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Способ производства листов из термически упрочняемых алюминиевых сплавов, легированных скандием и цирконием

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005001724D1 (de) * 2005-01-19 2007-11-29 Fuchs Kg Otto Abschreckunempfindliche Aluminiumlegierung sowie Verfahren zum Herstellen eines Halbzeuges aus dieser Legierung
CN100363146C (zh) * 2005-05-20 2008-01-23 东北轻合金有限责任公司 浮桥用铝合金型材的制造方法
WO2007135838A1 (ja) 2006-05-18 2007-11-29 Kabushiki Kaisha Kobe Seiko Sho アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
CN100523242C (zh) * 2006-11-13 2009-08-05 上海昊华模具有限公司 车用子午线轮胎模具用铝合金
EP2288738B1 (en) 2008-06-24 2014-02-12 Aleris Rolled Products Germany GmbH Al-zn-mg alloy product with reduced quench sensitivity
DE102008053893B4 (de) * 2008-10-30 2010-08-19 Audi Ag Vorrichtung und Verfahren zum Kühlen wenigstens eines Gussbauteils
FR2968675B1 (fr) 2010-12-14 2013-03-29 Alcan Rhenalu Produits epais en alliage 7xxx et procede de fabrication
JP6344923B2 (ja) * 2014-01-29 2018-06-20 株式会社Uacj 高強度アルミニウム合金及びその製造方法
CA3032261A1 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
EP3521479A4 (en) * 2016-09-30 2020-03-25 Obshchestvo s Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno- Tekhnoloicheskiy Tsentr" METHOD FOR PRODUCING MOLDED SEMI-PRODUCT FROM ALUMINUM ALLOYS
CA3040622A1 (en) 2016-10-24 2018-05-03 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
CN112921220A (zh) * 2021-01-25 2021-06-08 西南铝业(集团)有限责任公司 一种Al-Zn-Cu-Mg铸锭及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542606A (en) * 1968-03-13 1970-11-24 Kaiser Aluminium Chem Corp Hot worked metal article of aluminum base alloy and method of producing same
US3694272A (en) * 1970-12-24 1972-09-26 Kaiser Aluminium Chem Corp Method for forming aluminum sheet
ATA113876A (de) * 1976-02-18 1978-04-15 Vmw Ranshofen Berndorf Ag Schweissbare, gut warmverformbare borfreie aluminiumguss- und -knetlegierung mit hoher bestandigkeit gegen spannungsriss- und schicht korrosion bei gleichzeitig guten mechanischen eigenschaften
US4618382A (en) * 1983-10-17 1986-10-21 Kabushiki Kaisha Kobe Seiko Sho Superplastic aluminium alloy sheets
JPH0794701B2 (ja) * 1991-04-01 1995-10-11 住友軽金属工業株式会社 溶接構造用アルミニウム合金軟質材の製造方法
US5389165A (en) * 1991-05-14 1995-02-14 Reynolds Metals Company Low density, high strength Al-Li alloy having high toughness at elevated temperatures
ZA925491B (en) * 1991-07-23 1993-03-05 Alcan Int Ltd Aluminum alloy.
JPH07252573A (ja) * 1994-03-17 1995-10-03 Kobe Steel Ltd 靭性に優れたAl−Zn−Mg−Cu系合金及びその製造方法
US5961752A (en) * 1994-04-07 1999-10-05 Northwest Aluminum Company High strength Mg-Si type aluminum alloy
JP4204650B2 (ja) 1996-12-09 2009-01-07 三井金属鉱業株式会社 高強度耐熱亜鉛合金及び成形品
JP3638188B2 (ja) * 1996-12-12 2005-04-13 住友軽金属工業株式会社 耐応力腐食割れ性に優れた自動二輪車のフロントフォークアウターチューブ用高力アルミニウム合金押出管の製造方法
EP1409759A4 (en) * 2000-10-20 2004-05-06 Pechiney Rolled Products Llc HIGH RESISTANCE ALUMINUM ALLOY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МОНДОЛЬФО Л.Ф. Структура и свойства алюминиевых сплавов. - М.: Металлургия, 1979, с.546. ГОСТ 4784-97 Алюминий и сплавы алюминиевые деформируемые. - Минск, 1999, ИПК Издательство стандартов, 1999, с.7. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457422C2 (ru) * 2010-04-16 2012-07-27 Российская Федерация в лице Министерства промышленности торговли Российской Федерации Способ изготовления слоистой плиты на основе алюминия для противопульной сварной брони
RU2489217C1 (ru) * 2011-12-27 2013-08-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Способ производства листов из термически упрочняемых алюминиевых сплавов, легированных скандием и цирконием

Also Published As

Publication number Publication date
PT1587965E (pt) 2007-10-12
RU2005125727A (ru) 2007-02-27
CA2513333A1 (en) 2004-07-29
NO20053832D0 (no) 2005-08-15
DE50307736D1 (de) 2007-08-30
HRP20050704A2 (en) 2006-02-28
US7901522B2 (en) 2011-03-08
HRP20050704B1 (en) 2008-06-30
ATE367456T1 (de) 2007-08-15
EP1587965A1 (de) 2005-10-26
US20090223608A1 (en) 2009-09-10
SI1587965T1 (sl) 2007-12-31
PL376309A1 (en) 2005-12-27
CA2513333C (en) 2010-09-14
ES2290544T3 (es) 2008-02-16
US20060096676A1 (en) 2006-05-11
TW200427850A (en) 2004-12-16
EP1441041A1 (de) 2004-07-28
PL203780B1 (pl) 2009-11-30
DK1587965T3 (da) 2007-11-19
NO340750B1 (no) 2017-06-12
TWI291993B (en) 2008-01-01
AU2003293963A1 (en) 2004-08-10
NO20053832L (no) 2005-10-17
WO2004063407A1 (de) 2004-07-29
EP1587965B1 (de) 2007-07-18

Similar Documents

Publication Publication Date Title
US7901522B2 (en) Aluminum alloy with increased resistance and low quench sensitivity
JP3194742B2 (ja) 改良リチウムアルミニウム合金系
US5198045A (en) Low density high strength al-li alloy
CN102676962B (zh) 热处理型Al-Zn-Mg系铝合金挤压材的制造方法
JP4308834B2 (ja) 連続的に鋳造アルミニウムシートを製造する方法
JPWO2008072776A1 (ja) 高強度アルミニウム合金材およびその製造方法
EP3039166B1 (en) Method for the manufacturing of al-mg-si and al-mq-si-cu extrusion alloys
KR101950595B1 (ko) 알루미늄 합금 및 그 제조방법
US5098490A (en) Super position aluminum alloy can stock manufacturing process
US6660111B2 (en) Method of manufacturing Al-Mg-Si series alloy plate excellent in thermal conductivity and intensity
US5662750A (en) Method of manufacturing aluminum articles having improved bake hardenability
US5634991A (en) Alloy and method for making continuously cast aluminum alloy can stock
JPS63235454A (ja) アルミニウムベース合金の平圧延製品の製造方法
RU2722950C1 (ru) Сплав на основе алюминия и способ получения изделия из него
JPH04341546A (ja) 高強度アルミニウム合金押出形材の製造方法
CN112680612A (zh) 一种浮桥用高强高韧7046铝合金热挤压型材的制造方法
JPH01225756A (ja) 高強度A1‐Mg‐Si系合金部材の製造法
KR101680046B1 (ko) 소성 가공 전 시효 처리에 의한 고강도 마그네슘 합금 가공재 제조방법 및 이에 의해 제조된 고강도 마그네슘 합금 가공재
JPS61166938A (ja) 展伸用Al−Li系合金およびその製造方法
JPH05230579A (ja) 空調器フィン用高強度アルミニウム合金薄板およびその製造方法
JPH0696756B2 (ja) 加工用Al―Cu系アルミニウム合金鋳塊の熱処理法およびこれを用いた押出材の製造法
JPH0588302B2 (ru)
CN115161523B (zh) 一种散热器用铝合金型材及其制备方法
JP2000001730A (ja) 缶胴用アルミニウム合金板およびその製造方法
JPH02290952A (ja) 構造用Al―Cu―Mg―Li系アルミニウム合金材料の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111221