RU2350672C2 - Способ удаления ртути из загрязненных ртутью растворов - Google Patents

Способ удаления ртути из загрязненных ртутью растворов Download PDF

Info

Publication number
RU2350672C2
RU2350672C2 RU2005120172/02A RU2005120172A RU2350672C2 RU 2350672 C2 RU2350672 C2 RU 2350672C2 RU 2005120172/02 A RU2005120172/02 A RU 2005120172/02A RU 2005120172 A RU2005120172 A RU 2005120172A RU 2350672 C2 RU2350672 C2 RU 2350672C2
Authority
RU
Russia
Prior art keywords
mercury
solution
alkali
column
alkali metal
Prior art date
Application number
RU2005120172/02A
Other languages
English (en)
Other versions
RU2005120172A (ru
Inventor
Йозеф ГУТ (DE)
Йозеф Гут
Хольгер ФРИДРИХ (DE)
Хольгер Фридрих
Ханс-Юрген БЕНДЕР (DE)
Ханс-Юрген БЕНДЕР
Дитер ШЛЕФЕР (DE)
Дитер Шлефер
Original Assignee
Басф Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32308734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2350672(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Басф Акциенгезельшафт filed Critical Басф Акциенгезельшафт
Publication of RU2005120172A publication Critical patent/RU2005120172A/ru
Application granted granted Critical
Publication of RU2350672C2 publication Critical patent/RU2350672C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B43/00Obtaining mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/11Batch distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/914Mercury

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Removal Of Specific Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к способу удаления ртути из загрязненных ртутью щелочи или спиртового раствора алкоголята щелочного металла Загрязненные ртутью щелочь или спиртовой раствор алкоголята щелочного металла фильтруют сначала через уголь и потом через инертный волокнистый материал. После фильтрации раствор вводят в дистилляционную колонну поверх нижней части, отгоняют воду или спирт и обедненные ртутью щелочь или спиртовой раствор отводят в нижней части колонны. Техническим результатом изобретения является снижение содержания ртути в растворах до значения максимально 3 ч/блн. 3 з.п. ф-лы, 3 табл.

Description

Настоящее изобретение относится к способу удаления ртути из жидкостей. В частности, изобретение относится к способу удаления ртути из растворов, в специальных случаях к способу удаления ртути из растворов, образующихся при разложении амальгамы щелочного металла водой или спиртами, прежде всего водного раствора гидроксида щелочного металла или спиртового раствора алкоголята щелочного металла.
При некоторых химических способах образуются содержащие ртуть жидкости. Ртуть вследствие своей токсичности в большинстве случаев представляет собой нежелательную примесь и должна обычно удаляться. Например, при хлорном электролизе получают согласно амальгамному методу хлор и амальгаму щелочного металла. Эта амальгама щелочного металла разлагается для получения важных и изготавливаемых в больших количествах продуктов - гидроксида щелочного металла или алкоголята щелочного металла, при подаче воды или спирта, причем ртуть опять высвобождается и возвращается на электролиз. Полученный при разложении амальгамы водный раствор гидроксида щелочного металла (обычно называемый "щелочью", в специальных случаях "натровым щелоком" водный раствор гидроксида натрия и "калийным щелоком" - водный раствор гидроксида калия) или спиртовый раствор алкоголята щелочного металла постоянно содержит в малых количествах ртуть, обычно в интервале от 10 до 50 ч/млн (или ppm, т.е. "parts per million", или миллионная доля, или миллиграмм на килограмм. В рамках настоящего изобретения единицы ppm или ppb, т.е. "parts per billion", т.е. биллионная доля или микрограмм на килограмм отражают весовые отношения). Это содержание ртути может при некоторых условиях достигать значения выше 100 ч/млн. Это количество ртути для большинства областей применения гидроксидов или алкоголятов щелочного металла недопустимо и должно понижаться способом удаления ртути. При этом стремятся к значениям максимально несколько ч/блн, в идеальном случае максимально 3 ч/блн, т.е. содержание ртути следует снижать на фактор около 104.
Обычно ртуть имеется частично в форме металлической ртути, которая в форме мельчайших капелек диспергирована в жидкости или ниже границы растворимости - растворена.
Уже известны различные способы удаления ртути из потоков продукта также и в связи с расщеплением амальгамы щелочного металла.
ЕР 761830 А2 раскрывает очень простой, чисто механический способ, при котором тонкораспределенная ртуть в жидкостях посредством коалесценции собирается в форме легко отделяемых более крупных капель. Этим способом возможно обеднение ртутью на фактор, по меньшей мере, 10, однако не до нижней границы ч/блн.
Часто для удаления ртути используется образование твердых амальгам. Наиболее пригодными для этого металлами являются металлы одиннадцатой группы Периодической системы элементов, которые в большинстве случаев применяются в форме абсорбционной массы, при которой металл распределен на носителе. DE 2102039 описывает способ удаления ртути из газов, таких как образующийся при получении гидроксида щелочного металла расщеплением амальгамы щелочного металла водой водород, при котором загрязненные ртутью газы приводят в контакт с медью на пористом носителе из оксида алюминия и таким образом освобождают от ртути. US 4230486 описывает способ удаления ртути из жидкостей посредством пропускания через содержащий металлическое серебро на пористом носителе абсорбент. DE 4221207 А1 относится к способу удаления ртути из жидкостей, таких как щелочи или растворы алкоголята щелочного металла посредством пропускания через покрытые серебром волокна. DE 4221205 А1 и DE 4221206 описывают способ переработки таких волокон после их применения по назначению. DE 4116890 описывает ряд абсорбентов для удаления ртути, которые содержат определенные металлы, в частности Cu, Ag, Fe, BI, а также Au, Sn, Zn и Pd, a также смеси приведенных металлов в металлической или оксидной форме или в качестве сульфида на несущем материале. Эти способы, правда, позволяют обеднение ртутью до областей менее ч/блн, однако примененные абсорбционные массы в основном с трудом поддаются регенерированию, их абсорбционная емкость быстро исчерпывается и вследствие необходимого значительного содержания благородных металлов они сравнительно дороги.
Из DE 2643478 известно применение активного угля с удельной поверхностью, по меньшей мере, 250 м2/г для удаления ртути из жидкостей посредством адсорбции. Применение намывных фильтров на активном угле для удаления ртути из натрового щелока, калийного щелока или растворов алкоголята является технически обычным, как это описывается автором Isfort в публикации Chemie Aniagen und Verfahren ("CAV"), сентябрь 1972, стр.65-69. Сравнительно простая обработка активным углем приводит однако не во всех случаях к удовлетворительным результатам. В частности, для достижения желаемых низких значений ртути должен применяться очень мелкозернистый порошок активного угля с большой (развитой) поверхностью. Прежде всего при фильтрации растворов алкоголята, в которых (в противоположность к водным щелокам) вследствие побочных реакций со спиртом или расщепления алкоголята образуются очень тонкодисперсные шламы, фильтры на активном угле засоряются вследствие отложений этих шламов, так что достигается только неудовлетворительный срок службы фильтров, что делает обработку активным углем с экономической точки зрения неудовлетворительной. DE 19704889 описывает в качестве помощи трехстадийный способ для удаления ртути из растворов алкоголятов щелочного металла, при котором на первой стадии раствор пропускают через инертный волокнистый материал, чтобы отделить тонкодисперсные шламы и в качестве побочного эффекта снизить содержание ртути прибл. на фактор 10. Раствор после этого на второй стадии фильтруют через обычный фильтр на активном угле с тонкодисперсным и имеющим большую (развитую) поверхность активным углем, что снижает содержание ртути на фактор около 10. На третьей стадии проводят концентрирование алкоголята дистилляцией, т.е. отпариванием спирта концентрируют раствор и таким образом устанавливают желаемую концентрацию алкоголята, помещая раствор алкоголята в перегонный куб и спирт отгоняют в насадочной колонне. При этом концентрация ртути снижается еще раз на фактор около 10. В общем вышеописанным способом достигают содержания ртути от 28 до 50 ч/блн. Также и этим общим способом не может быть достигнуто желаемое содержание ртути максимально 3 ч/блн.
Задачей настоящего изобретения поэтому является разработка экономически удовлетворительного и простого способа, которым можно снизить содержание ртути в жидкостях, в частности, в щелоке, а также в растворах алкоголятов щелочного металла до значения максимально 3 ч/блн. В соответствии с этим был разработан способ удаления ртути из загрязненных ртутью растворов дистилляцией, который отличается тем, что загрязненный ртутью раствор вводят в дистилляционную колонну поверх нижней части (низа) колонны, отгоняют растворитель и обедненный ртутью раствор отводят в нижней части колонны.
Неожиданным образом было установлено, что способом согласно изобретению более простым и экономически удовлетворительным образом, чем известными способами можно удалять ртуть. Ртуть может удаляться простым способом согласно изобретению на фактор более чем 100. Способ согласно изобретению в особенности пригоден для обеднения ртутью щелочей, а также растворов алкоголята щелочного металла и может комбинироваться с другими способами или стадиями очистки, чтобы достичь высокой степени обеднения ртутью. Также и повторное проведение дистилляционного способа очистки согласно изобретению дает соответствующе высокое обеднение ртутью.
Подлежащий очистке раствор вводят в колонну поверх ее нижней части, т.е. при тарельчатой колонне, по меньшей мере, на высоте самой нижней дистилляционной тарелки или при насадочных колоннах, по меньшей мере, на высоте самой нижней (первой) теоретической тарелки. Установка места ввода является простой задачей для специалиста при расчете колонны. Предпочтительно раствор вводится в верхней части колонны.
Обедненный ртутью раствор отводится в нижней части колонны. Это означает то, что раствор забирается из колонны на ее нижнем конце, т.е. ниже собственно дистилляционной структуры, в которой имеет место характеризующая обмен между газом и жидкостью дистилляция. Это может быть как собственно нижняя часть (низ) колонны, так и заполненный в большинстве случаев жидкостью нижний конец колонны, а также связанный с ним прочий накопитель жидкости или приемник дистилляционного аппарата (перегонный куб).
Предпочтительно способ согласно изобретению применяется для удаления ртути из щелочи или растворов алкоголятов щелочного металла, в частности, таких щелочей или растворов алкоголятов щелочного металла, которые получены разложением амальгамы щелочного металла водой или спиртом. Получение амальгамы щелочного металла и ее разложение водой или спиртом без катализаторов или при применении катализаторов являются известными технологиями. В качестве щелочного металла применяются литий, натрий, калий, рубидий или цезий, предпочтительно, натрий или калий. Разложением амальгамы натрия или калия водой образуется натровый или калийный щелок. При разложении амальгамы натрия или калия спиртом образуется раствор соответствующего алкоголята натрия или калия в соответствующем спирте. Щелок или раствор алкоголята постоянно загрязнены, как описано выше, ртутью, которая способом согласно изобретению полностью или значительно удаляется.
В качестве спирта для получения подлежащего обработке способом согласно изобретению раствора алкоголята щелочного металла может применяться любой спирт. Предпочтительно применяется замещенный или незамещенный, алифатический, алициклический, ароматический, арилалифатический, арилалициклический, циклоалкилароматический или алкилароматический спирт. В частности, применяются разветвленные или неразветвленные, алифатические спирты с атомами углерода от одного до шести, такие как метанол, этанол, 1-пропанол ("н-пропанол"), 2-пропанол ("изо-пропанол"), 1-бутанол ("н-бутанол"), 2-бутанол ("изо-бутанол"), 2-метил-1-пропанол ("втор-бутанол"), 1,1-диметил-1-этанол ("трет-бутанол"), или отдельные изомерные С5- или С6-спирты. Особенно предпочтительно применение метанола или этанола.
Разложением амальгамы натрия или калия метанолом или этанолом получают раствор метанолята натрия или метанолята калия в метаноле или раствор этанолята натрия или этанолята калия в этаноле, которые потом подвергаются переработке по способу согласно изобретению.
Концентрация применяемых согласно изобретению растворов, т.е. например, полученного разложением амальгамы натрия водой или спиртом щелока или раствора алкоголята щелочного металла может варьироваться в широких пределах, она не является решающей для способа согласно изобретению. Концентрация загрязненного ртутью раствора и количество отогнанного растворителя устанавливаются таким образом, что в нижней части колонны отводится раствор желаемой концентрации и с желаемым максимальным количеством ртути.
В большинстве случаев концентрация устанавливается или решающе определяется в соответствие с условиями получения растворов, в случае разложения амальгамы щелочного металла в соответствии с применяемыми для разложения количествами спирта или воды и с содержанием амальгамы. Поэтому технически обычны определенные концентрации подлежащего очистке раствора и часто последующие способы рассчитаны на обычные концентрации их исходных веществ. Освобожденный от ртути способом согласно изобретению раствор может без проблем затем разбавляться или концентрироваться и таким образом доводиться до желаемой концентрации. Преимуществом предлагаемого способа дистилляции является то, что выбором концентрации введенного в колонну раствора и количества отогнанного растворителя в нижней части колонны может быть отведен раствор желаемой концентрации. При одной из предпочтительных форм выполнения способа согласно изобретению к раствору добавляется количество растворителя, который отгоняется перед или после дистилляции в качестве дополнительного растворителя и таким образом сохраняется первоначальная концентрация обработанного раствора. Это может происходить разбавлением раствора перед дистилляцией, а также посредством одновременного введения раствора и растворителя в дистилляционную колонну. Таким образом сохраняется образующаяся при обычном получении раствора и поэтому технически обычная концентрация раствора и снижается только его содержание ртути.
Если для отделения ртути применяется исключительно способ дистилляции согласно изобретению, концентрация раствора, например, щелочи или раствора алкоголята, практически не существенна, может применяться также и затор, что означает раствор с концентраций выше насыщения растворенного вещества, т.е. с долей нерастворенного. В экстремальном случае в дистилляционную колонную может вводиться также и загрязненное ртутью твердое вещество, например гидроксид натрия или калия, этанолят натрия или калия или метанолят натрия или калия, однако с технической точки зрения это сложнее, чем ввод способного к перекачиванию раствора или затора. Применение способного к перекачиванию раствора или затора является поэтому предпочтительным. Если в колонну вводится твердое вещество, то также вводится достаточное для его растворения количество дополнительного растворителя.
Если перед дистилляцией согласно изобретению проводятся еще другие стадии очистки, применяемую концентрацию следует устанавливать в соответствие с требованиями этой стадии очистки. Если проводятся дополнительные стадии фильтрации, применение заторов полностью исключается.
В общем при очистке натрового или калийного щелока устанавливается концентрация, по меньшей мере, 10 вес.%, предпочтительно, по меньшей мере, 15 вес.%, особенно предпочтительно, по меньшей мере, 20 вес.%, а также в общем максимально 70 вес.%, предпочтительно максимально 65 вес.% и особенно предпочтительно максимально 60 вес.% гидроксида натрия или калия в воде. При очистке метанолята натрия или калия в общем устанавливается концентрация, по меньшей мере, 20 вес.%, предпочтительно, по меньшей мере, 25 вес.% и особенно предпочтительно, по меньшей мере, 27 вес.%, а также в общем максимально 40 вес.%, предпочтительно максимально 32 вес.% и особенно предпочтительно максимально 31 вес.% метанолята натрия или калия в метаноле. При очистке этанолята натрия или калия в общем устанавливается концентрация, по меньшей мере, 10 вес.%, предпочтительно, по меньшей мере, 15 вес.% и особенно предпочтительно, по меньшей мере, 16 вес.%, а также в общем максимально 30 вес.%, предпочтительно максимально 22 вес.% и особенно предпочтительно максимально 20 вес.% этанолята натрия или калия в этаноле.
Если к раствору перед или во время дистилляции добавляется дополнительный растворитель, применяется такой дополнительный растворитель, который имеет максимально ту же точку кипения, что и загрязненный ртутью раствор. Другими словами, в качестве дополнительного растворителя может применяться растворитель, имеющий более низкую точку кипения, чем растворитель загрязненного ртутью раствора. Предпочтительно растворитель загрязненного ртутью раствора применяется также в качестве дополнительного растворителя. Для удаления ртути из таких щелоков, как натровый или калийный щелок, в качестве растворителя применяется предпочтительно вода, для удаления ртути из метанольных растворов метанолята натрия или калия применяется предпочтительно метанол и для удаления ртути из этанольных растворов этанолята натрия или калия применяется предпочтительно этанол.
Соотношение загрязненного ртутью раствора к дополнительному растворителю и количество отогнанного растворителя выбираются таким образом, что с одной стороны, достигается желаемая конечная концентрация очищенного раствора и, с другой стороны, желаемое обеднение ртутью. Типичным образом соотношение раствора к дополнительному растворителю в общем устанавливается, по меньшей мере, 30:1, предпочтительно, по меньшей мере, 20:1 и особенно предпочтительно, по меньшей мере, 10:3, а также в общем максимально 1:3, предпочтительно, 1:2 и особенно предпочтительно максимально 4:1. Количество отогнанного растворителя выбирается таким образом, что достигается желаемая конечная концентрация очищенного раствора.
Дополнительный растворитель вводится в колонну или в том же месте, что и подлежащий очистке раствор или же в отличном от него месте, например в нижней части колонны, на высоте между нижней частью и верхней (головной) частью колонны или в верхней части колонны. Удобным образом дополнительный растворитель вводят в колонну в том же месте, что и подлежащий очистке раствор.
Давление и температура при отгонке выбираются в соответствие с имеющимися общими условиями (например, с имеющимися в месте колонны нагревающими агентами), это представляет собой задачу, решаемую опытным специалистом.
Ртуть отделяется из отогнанного растворителя в качестве жидкой фазы и отправляется на обезвреживание или возвращается снова на получение амальгамы. Отогнанный растворитель регенерируется или же отправляется на обезвреживание. Он может снова возвращаться в колонну. Если речь идет о том же растворителе, что и в подлежащем очистке растворе, он применяется для получения раствора. При получении щелочи или растворов алкоголята щелочного металла отогнанная вода или отогнанный спирт предпочтительно возвращаются в разлагатель амальгамы. В этом случае обычно не нужно предварительного отделения ртути, содержащаяся в растворителе ртуть возвращается в разлагатель в ртутный цикл получения и разложения амальгамы. Однако рекомендуется, как практически всегда при возвращениях потоков веществ, частичный поток возвращенного потока растворителя выводить и обезвреживать, чтобы предотвращать или ограничивать повышение уровня загрязнений (ртутью и/или возможно другими загрязнениями).
Форма выполнения применяемой дистилляционной колонны не является решающей для настоящего изобретения и может в основном следовать экономическим соображениям, но требуемая мощность разделения для отгонки растворителя должна обеспечиваться. Выполнение таких колонн известно из уровня техники. Могут применяться тарельчатые или насадочные колонны. Применение тарельчатых колон вследствие их простой конструкции предпочтительно. Могут применяться известные формы тарелок колонн, например колпачковые, туннельные или клапанные тарелки.
Способ обеднения ртутью согласно изобретению может быть комбинирован с любым другим способом обеднения ртутью в общий способ, чтобы комбинировать эффективность обеднения различных стадий общего способа. Так например, комбинация способа согласно изобретению с еще одним способом, которым обеднение ртутью может достигать фактора 10, приводит к общему обеднению на фактор прибл. 103, и комбинация с двумя другими способами, которыми можно обеднять ртутью каждым на фактор 10, приводит к общему фактору обеднения 104. Порядок проведения отдельных стадий общего способа может в принципе выбираться свободно. В общем является преимущественным, если сначала проводить те стадии способа, которые пригодны к удалению больших количеств ртути, чтобы потом способом согласно изобретению проводить заключительную тонкую очистку без того, что сравнительно большие количества ртути вводятся в дистилляционную колонну.
Например, рекомендуется проводить механические способы, такие как коалесценцию (слияние) капель ртути в более крупные капли перед дистилляционным способом согласно изобретению. Если дополнительно применяются абсорберы на основе амальгамирующих благородных металлов, при учете их недостатков, то они применяются предпочтительно после дистилляции согласно изобретению, чтобы оптимально использовать их высокий очищающий эффект, однако при малой абсорбционной емкости. Дистилляционный способ согласно изобретению однако делает излишним применение такого абсорбера, в лучшем случае за исключением отдельных особых случаев с экстремальными требованиями к чистоте.
При одной из предпочтительных форм выполнения дистилляционного способа согласно изобретению для очистки, в частности, щелочных растворов или растворов алкоголята щелочного металла, перед или после, однако предпочтительно перед дистилляцией проводят фильтрацию на угле. Для такой стадии фильтрации может применяться любой известный способ фильтрации на активном угле для подобных растворов. Одним из преимуществ способа согласно изобретению является то, что для предварительной стадии фильтрации на угле достаточно применение относительно грубого угля и таким образом предотвращается опасность закупорки тонкими шламами в растворах алкоголятов. Типичным образом для стадии фильтрации на угле применяют уголь со средним размером частиц в общем, по меньшей мере, 10 микрометров, предпочтительно, по меньшей мере, 20 микрометров, а также максимально 1000 микрометров, предпочтительно максимально 500 микрометров. Поверхность по БЭТ такого угля составляет в общем, по меньшей мере, 0,2 м2/г, предпочтительно, по меньшей мере, 0,5 м2/г, а также в общем максимально 1000 м2/г, предпочтительно максимально 10 м2/г. Хорошо пригоден, например, электрографит. Предпочтительный электрографит имеет поверхность прибл. 1 м2/г. Обычно загрязненный ртутью раствор фильтруют через угольный слой, который имеет толщину, по меньшей мере, 0,5 мм, предпочтительно, 1 мм, а также максимально 30, предпочтительно, 10 мм. Для этого может применяться любая конструкция фильтра, в которой может намываться соответствующий слой угольного фильтра, например, плоские фильтры, дисковые фильтры, свечевые фильтры, тарельчатые фильтры, нутч-фильтры, кромочные щелевые фильтры или фильтровальные свечи с полимерным шнуром. Предпочтительно применение кромочных щелевых фильтров, на которые намыт уголь в форме суспензии в примененном растворителе. Это является известным уровнем техники.
Далее дистилляционный способ согласно изобретению может комбинироваться со стадией фильтрации при применении волокнистого материала. Также и эти методы фильтрации известны. Типичным образом применяются инертные волокна, например волокна из полиэтилена, полипропилена, полистирола, политетрафторэтилена, целлюлозы, минеральные волокна, такие как стекловата, или минеральная вата, или смеси таких волокон. Волокна обычно спрессовываются в плоские конструкции и по выбору спекаются, снабжаются связующими, наполнителями или армирующей тканью. Эти маты из нетканого материала имеют открытые каналы или поры и имеют пористость в интервале от 50 до 90%. Они применяются в обычной форме, например, как шайбы, фильтровальные модули, фильтровальные свечи (обычно как цилиндры, с увеличенной за счет фальцевания поверхностью) или в любой другой известной форме.
Фильтрация через волокнистый фильтр осуществляется до дистилляции. Ее проводят после фильтрации на угле. В выполнении настоящего изобретения натровый или калийный щелок, или метанольный раствор метанолята натрия или калия, или этанольный раствор этанолята натрия или калия фильтруют сначала через угольный фильтр, потом через фильтр из инертного волокнистого материала и в заключение освобождают от ртути вводом в дистилляционную колонну совместно с дополнительным количеством растворителя, предпочтительно подлежащим очистке раствором, предпочтительно в верхней части колонны, отгонкой растворителя и отводом очищенной щелочи или раствора алкоголята в нижней части колонны.
Имеется также возможность проводить стадии фильтрации несколько раз или их комбинировать любым образом. Например, можно фильтровать многократно через уголь, многократно через волокнистый материал или многократно через уголь и волокнистый материал. Конкретное выполнение и очередность отдельных стадий фильтрования является обычной задачей для специалистов, которые решают ее в соответствие с подлежащим обработке потоком, его загрязнением и требованиями к обеднению ртутью.
Описанным способом возможно простое обеднение ртутью до достигаемых применением амальгамирующих благородных металлов значений, т.е. на максимально 3 ч/блн, без того, что приходится считаться с недостатками амальгамирующих благородных металлов.
Примеры
Пример 1
Кромочный щелевой фильтр покрывается намывкой суспензии из электрографита (средний размер частиц 300 микрометров, поверхность по БЭТ 1,1 м2/г) в метаноле с угольным слоем толщиной от 2 до 3 мм. При температуре 70-80°С фильтруют нагруженный ртутью метанольный раствор метанолята натрия (27 вес.%) при расходе 12-15 литров на 100 см2 фильтровальной поверхности и в час. После этого стекающий раствор вместе с 20 литрами метанолята на 100 л раствора метанолята натрия подают в верхнюю часть непрерывно работающей колонны с туннельными тарелками. Отгоняют столько метанола, что в нижней части колонны получают 30 вес.%-ый раствор метанолята натрия.
Перед и после фильтрации отбирают по 4 пробы и анализируют на содержание ртути. Результаты представлены в таблице 1.
Таблица 1
до фильтрации [ч/млн] после фильтрации [ч/млн] после дистилляции [ч/блн]
23 3,3 20
21 4,3 10
18 3,3 14
17 3,1 12
Значения показывают, что способом дистилляции согласно изобретению достигают степень обеднения ртутью отчетливо более чем 100 и, несмотря на применение относительно грубого угля для фильтрации и только двухстадийного способа, достигают более низкое содержание ртути, чем способом по немецкой заявке DE 19704889, при котором загрязненный ртутью раствор помещают в перегонный куб и отводят только растворитель.
Пример 2
С 27 вес.%-ым раствором метанолята натрия как в примере 1 проводят фильтрацию на угольном фильтре. Затем раствор метанолята разбавляют в соотношении 5:1 и фильтруют через фильтровальный модуль из фильтровальных шайб с фильтровальным слоем из смеси целлюлозных волокон с кизельгуром с шириной пор от 2 до 5 микрометров. После этого раствор без дальнейшего разбавления подают в верхнюю часть колонны с туннельными тарелками.
Отгоняют столько метанола, что в нижней части колонны получают 30 вес.%-ый раствор метанолята натрия.
Перед и после фильтрации отбирают по 5 проб и анализируют на содержание ртути. Результаты представлены в таблице 2.
Таблица 2
до фильтрации [ч/млн] после фильтрации на угле [ч/млн] после фильтрации на волокнистом материале и дистилляции [ч/блн]
18 2,3 1-2
19 3,5 2
19 2,9 1
19 2,3 2
>100 1,8 <1
Пример 3
С 27 вес.%-ым раствором метанолята натрия как в примере 1 проводят фильтрацию на угольном фильтре. Затем раствор метанолята разбавляют метанолом в соотношении 5:1,1 и фильтруют через модуль свечевых фильтров с фильтровальными свечами из нетканого материала из волокон полипропилена. Свечи нагружают 460 до 550 л/ч, в пересчете на фильтровальный элемент длиной в 25,4 см (10 дюймов). После этого раствор без дальнейшего разбавления подают в верхнюю часть колонны с туннельными тарелками. Отгоняют столько метанола, что в нижней части колонны получают 30 вес.%-ый раствор метанолята натрия.
Перед и после фильтрации отбирают по 2 пробы и анализируют на содержание ртути. Результаты представлены в таблице 3.
Таблица 3
до фильтрации [ч/млн] после фильтрации [ч/млн] после фильтрации через волокнистый материал и дистилляции [ч/блн]
10,8 3,6 1
13,8 4,2 1
Примеры 1 и 2 показывают, что способом согласно изобретению ртуть можно удалять до самой нижней области значений ч/блн при трудоемкости, сравнимой с известными способами.

Claims (4)

1. Способ удаления ртути из загрязненных ртутью щелочи или спиртового раствора алкоголята щелочного металла, отличающийся тем, что загрязненные ртутью щелочь или спиртовой раствор алкоголята щелочного металла фильтруют сначала через уголь и потом через инертный волокнистый материал, а затем вводят в дистилляционную колонну поверх нижней части, отгоняют воду или спирт и обедненные ртутью щелочь или спиртовой раствор отводят в нижней части колонны.
2. Способ по п.1, отличающийся тем, что кроме загрязненных ртутью щелочи или спиртового раствора алкоголята щелочного металла в колонну подают дополнительный растворитель, такой как вода или спирт.
3. Способ по п.2, отличающийся тем, что загрязненные ртутью щелочь или спиртовой раствор алкоголята щелочного металла и дополнительный растворитель, такой как вода или спирт, вводят в колонну в объемном соотношении в интервале от 30:1 до 1:3.
4. Способ по п.1, отличающийся тем, что загрязненные ртутью щелочь или спиртовой раствор алкоголята щелочного металла вводят в верхнюю часть колонны.
RU2005120172/02A 2002-11-26 2003-11-17 Способ удаления ртути из загрязненных ртутью растворов RU2350672C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10255239A DE10255239A1 (de) 2002-11-26 2002-11-26 Verfahren zur Entfernung von Quecksilber aus mit Quecksilber verunreinigten Lösungen
DE10255239.8 2002-11-26

Publications (2)

Publication Number Publication Date
RU2005120172A RU2005120172A (ru) 2006-01-20
RU2350672C2 true RU2350672C2 (ru) 2009-03-27

Family

ID=32308734

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005120172/02A RU2350672C2 (ru) 2002-11-26 2003-11-17 Способ удаления ртути из загрязненных ртутью растворов

Country Status (10)

Country Link
US (1) US7517435B2 (ru)
EP (1) EP1567684B2 (ru)
AT (1) ATE328126T1 (ru)
AU (1) AU2003296578A1 (ru)
DE (2) DE10255239A1 (ru)
ES (1) ES2263070T5 (ru)
PL (1) PL209399B1 (ru)
RU (1) RU2350672C2 (ru)
UA (1) UA84856C2 (ru)
WO (1) WO2004048625A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727374B2 (en) * 2004-09-23 2010-06-01 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
DE102005062654A1 (de) * 2005-12-23 2007-06-28 Basf Ag Verfahren zur Gewinnung von Alkoholaten
EP2205341B1 (en) 2007-09-20 2012-02-01 Skyonic Corporation Removing carbon dioxide from waste gas streams through co-generation of carbonate and/or bicarbonate minerals
EA201290528A1 (ru) 2009-12-18 2013-01-30 Скайоник Корпорейшн Секвестрация диоксида углерода через образование карбонатов 2 группы и диоксида кремния
CN107673352A (zh) 2010-07-08 2018-02-09 斯凯约尼克公司 涉及基于两种盐的散热方法的二氧化碳封存
US9523043B2 (en) 2013-09-16 2016-12-20 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
WO2015109190A1 (en) 2014-01-17 2015-07-23 Skyonic Corporation Acid gas removal from a gaseous stream
KR102537634B1 (ko) 2015-02-23 2023-05-31 카본프리 케미칼스 홀딩스, 엘엘씨 수산화마그네슘을 사용하는 이산화탄소의 격리 및 수산화마그네슘의 재생성

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE404928C (de) * 1923-02-04 1924-10-24 Fritz Projahn Entfernung von Quecksilber und Arsen und Gewinnung von Quecksilber aus quecksilber aus quecksilberhaltiger Schwefelsaeure
BE413594A (ru) * 1935-02-08
US3857704A (en) * 1971-03-05 1974-12-31 Bp Chem Int Ltd Mercury recovery process
GB1530489A (en) * 1971-03-05 1978-11-01 Bp Chem Int Ltd Process for the removal of mercury from aqueous solutions
US3814799A (en) 1972-01-14 1974-06-04 Basf Ag Purifying gases containing mercury or mercury and oxygen as impurities
IT1043119B (it) 1975-10-03 1980-02-20 Tecneco Spa Metodo per la rimozione di mer curio metallico
US4230486A (en) 1978-04-28 1980-10-28 Olin Corporation Process for removal and recovery of mercury from liquids
US5031883A (en) * 1988-12-23 1991-07-16 Gte Products Corporatioin Apparatus for mercury refinement
JP2578514B2 (ja) 1989-03-03 1997-02-05 三井石油化学工業株式会社 液体炭化水素化合物中の水銀の除去方法
US5080799A (en) 1990-05-23 1992-01-14 Mobil Oil Corporation Hg removal from wastewater by regenerative adsorption
DE4221207A1 (de) 1992-06-27 1994-01-05 Huels Chemische Werke Ag Verfahren zur Entfernung von Quecksilber aus Flüssigkeiten
DE4221206A1 (de) 1992-06-27 1994-01-05 Huels Chemische Werke Ag Verfahren zur Entsorgung von mit einer Silberamalgamschicht überzogenen Trägern aus schmelzbarem Kunststoff
DE4221205A1 (de) 1992-06-27 1994-01-05 Huels Chemische Werke Ag Verfahren zur Aufarbeitung von mit einer Silberamalgamschicht überzogenen Trägern aus in einem Lösemittel löslichen Kunststoff
DE19532364A1 (de) 1995-09-01 1997-03-06 Basf Ag Verfahren zur Entfernung von metallischem Quecksilber aus Flüssigkeiten
DE19704889C2 (de) * 1997-02-10 1999-11-04 Degussa Verfahren zur Entfernung von Quecksilber aus Alkalialkoholat-Lösungen
JPH11181477A (ja) 1997-12-18 1999-07-06 Kao Corp 洗浄剤組成物
DE10255240A1 (de) * 2002-11-26 2004-06-09 Basf Ag Verfahren zur Entfernung von Quecksilber aus mit Quecksilber verunreinigten Lösungen

Also Published As

Publication number Publication date
WO2004048625A1 (de) 2004-06-10
PL377321A1 (pl) 2006-01-23
PL209399B1 (pl) 2011-08-31
US20060076228A1 (en) 2006-04-13
US7517435B2 (en) 2009-04-14
ES2263070T5 (es) 2010-03-15
ATE328126T1 (de) 2006-06-15
UA84856C2 (ru) 2008-12-10
ES2263070T3 (es) 2006-12-01
EP1567684B1 (de) 2006-05-31
EP1567684B2 (de) 2009-10-14
DE50303616D1 (de) 2006-07-06
AU2003296578A1 (en) 2004-06-18
RU2005120172A (ru) 2006-01-20
DE10255239A1 (de) 2004-06-09
EP1567684A1 (de) 2005-08-31

Similar Documents

Publication Publication Date Title
US8133459B2 (en) Method for purifying aqueous alkaline solution
RU2350672C2 (ru) Способ удаления ртути из загрязненных ртутью растворов
KR20150028305A (ko) 귀금속 흡착용 활성탄 그리고 귀금속 흡착 필터 및 귀금속 회수 방법
CA2111052C (en) Adsorption/reaction equipment
CZ45096A3 (en) Regeneration process of support catalyst
RU2323269C2 (ru) Способ удаления ртути из загрязненных ртутью растворов
JP3087680B2 (ja) 半導体製造装置
EP0653950B1 (en) Material for extracting hydrophobic components dissolved in water
JP3915597B2 (ja) 浄水カートリッジ
US6623547B2 (en) Method for removing sulfuric acid mist and apparatus for removing the same
JP3065158B2 (ja) 有機溶剤中の水分および酸分の吸着分離装置
US3502434A (en) Process and apparatus for removing mercury from caustic soda solutions
US6764603B2 (en) Material for extracting hydrophobic components dissolved in water
US6156214A (en) Process for removing mercury from alkali metal alkoxide solutions
EP2656905B1 (de) Entquickung von Lösungen durch Ultrafiltration
CN210945124U (zh) 一种酸性蚀刻废液中有机物去除装置及其应用的回收系统
CN219652737U (zh) 一种用于净水处理的活性炭过滤装置
CN209501061U (zh) 一种用于家具喷漆活性炭过滤装置
SU1106529A1 (ru) Способ очистки мышь ксодержащих газов
RU2264856C2 (ru) Способ получения углеродсодержащего сорбента для извлечения ртути
JPH06142645A (ja) 重金属の除去に好適な除去装置
RU138349U1 (ru) Фильтрующий патрон для очистки хромсодержащей воды
JP2002301470A (ja) 活性炭カートリッジ及び純水製造装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141118