RU2348798C2 - Способ транспортировки многофазных смесей, а также насосная установка - Google Patents

Способ транспортировки многофазных смесей, а также насосная установка Download PDF

Info

Publication number
RU2348798C2
RU2348798C2 RU2006118334/03A RU2006118334A RU2348798C2 RU 2348798 C2 RU2348798 C2 RU 2348798C2 RU 2006118334/03 A RU2006118334/03 A RU 2006118334/03A RU 2006118334 A RU2006118334 A RU 2006118334A RU 2348798 C2 RU2348798 C2 RU 2348798C2
Authority
RU
Russia
Prior art keywords
pump
displacement pump
liquid phase
displacement
discharge chamber
Prior art date
Application number
RU2006118334/03A
Other languages
English (en)
Other versions
RU2006118334A (ru
Inventor
Йенс-Уве БРАНДТ (DE)
Йенс-Уве БРАНДТ
Герхард РОЛЬФИНГ (DE)
Герхард РОЛЬФИНГ
Дитрих МЮЛЛЕР-ЛИНК (DE)
Дитрих МЮЛЛЕР-ЛИНК
Original Assignee
Йох. Хайнр. Борнеманн Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34559217&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2348798(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Йох. Хайнр. Борнеманн Гмбх filed Critical Йох. Хайнр. Борнеманн Гмбх
Publication of RU2006118334A publication Critical patent/RU2006118334A/ru
Application granted granted Critical
Publication of RU2348798C2 publication Critical patent/RU2348798C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/062Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/04Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock
    • F04D9/06Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock of jet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Rotary Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Hydroponics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Группа изобретений касается способа транспортировки многофазных смесей, в частности углеводородов из буровой скважины, с помощью насоса вытеснения. Задачей изобретения является улучшение откачивания многофазной смеси и, одновременно, ограничение необходимых затрат на насосную установку. По способу перекачивают многофазную смесь с помощью насоса вытеснения и осуществляют разделение газовой фазы и жидкостной фазы. Согласно изобретению разделение жидкостной фазы и газовой фазы осуществляют в насосе вытеснения. Со стороны нагнетания ответвляют частичный поток жидкости из сепарированной жидкостной фазы основного транспортного потока и проводят к напорной стороне, по меньшей мере, одного струйного насоса, который размещают как вспомогательное средство подачи на стороне всасывания насоса вытеснения. Насосная установка имеет насос вытеснения с корпусом, в котором образована камера нагнетания, и всасывающий трубопровод. Этот трубопровод входит, в частности, в буровую скважину. Согласно изобретению насос вытеснения выполнен в виде многофазного насоса. Внутри корпуса насоса вытеснения образованы устройства сепарирования для разделения газовой и жидкостной фазы в камере нагнетания. Питающий трубопровод связывает камеру нагнетания насоса вытеснения со стороной высокого давления, по меньшей мере, одного струйного насоса, расположенного со стороны всасывания в направлении подачи насоса вытеснения, и подводит сепарированную в насосе вытеснения жидкостную фазу к струйному насосу. 2 н. и 11 з.п. ф-лы, 1 ил.

Description

Изобретение касается способа транспортировки многофазных смесей, в частности углеводородов из буровой скважины, с помощью насоса вытеснения, через который перекачивается многофазная смесь, а также насосной установки с насосом вытеснения для подачи многофазных смесей со всасывающим трубопроводом и камерой нагнетания, причем всасывающий трубопровод входит, в частности, в буровую скважину.
Транспортировка углеводородов с помощью многофазных насосов, установленных на поверхности, как правило, поблизости от скважин, представляет собой рентабельную, достаточно надежную в эксплуатации и функционирующую технику для разработки слабых месторождений, а также для повышения степени отбора нефти. Такие многофазные насосы известны, например, из документа ЕР 0699276 A1, к которому полностью отсылается и на публикации которого базируется настоящая заявка. Типично для транспортировки углеводорода, например нефти, и транспортировки природного газа, понижения давления в центральной головке составляют, приблизительно, 2-5 бар, более незначительные давления на устье являются, как правило, менее рентабельными за счет возрастания объема доли газа и вытекающего из этого увеличения затрат на строительство.
Исходя из этого уровня техники в основе изобретения лежит задача предоставить способ и насосную установку, с помощью которой улучшается откачивание многофазной смеси и одновременно ограничиваются необходимые затраты на насосную установку.
Согласно изобретению эта задача решается посредством того, что со стороны нагнетания из основного продуктивного потока ответвляется частичный поток жидкости и проводится к напорной стороне, по меньшей мере, одного струйного насоса, который расположен как вспомогательное подающее средство на стороне всасывания насоса вытеснения, и соответственно, что питающий трубопровод связывает камеру нагнетания насоса вытеснения с напорной стороной, по меньшей мере, одного струйного насоса, и струйный насос расположен со стороны впуска в направлении подачи насоса вытеснения.
Используемая для привода струйного насоса напорная жидкость циркулирует между струйным насосом и насосом вытеснения, выполненным, в частности, как многофазный насос, без появления остающегося загрязнения транспортируемой смеси. Сверх того, обеспечено энергоснабжение струйного насоса, без необходимости предоставления в распоряжение внешнего источника энергии, в частности гидравлического источника энергии.
Подходящим выполнением струйного насоса можно достигать того, что на насос вытеснения подается умеренное предварительное давление, которое составляет, например, 2 бара, так что откачивание многофазной смеси улучшается и одновременно ограничивается свободный объем газа. Вследствие этого могут сокращаться затраты на сооружение насоса вытеснения, что сокращает издержки в целом.
Чтобы облегчать нагнетание углеводородов, предпочтительно струйный насос расположить внутри или на скважине, поскольку из углеводородного месторождения поступает многофазная смесь. Альтернативно возможно, чтобы струйный насос был расположен в пределах всасывающего трубопровода.
Многофазные смеси отличаются высокой переменчивостью по своему составу, причем речь идет о смеси многих веществ, которые могут присутствовать в нескольких фазах. Состав может изменяться от почти 100% жидкой фазы до почти 100% газовой фазы, причем в многофазной смеси могут присутствовать также большие доли твердых веществ. Чтобы способствовать достаточному охлаждению и уплотнению насоса вытеснения, предусмотрено, чтобы в насосе вытеснения проводилось сепарирование газовой фазы и жидкостной фазы, и из отделенной жидкостной фазы частичный поток жидкости ответвляется к струйному насосу. Таким образом, для приведения в действие струйного насоса используется жидкость, которая содержит только лишь незначительную долю газа и соответствует жидкостной фазе транспортируемого продукта. Изменения и, соответственно, загрязнение транспортируемого продукта за счет использования ответвляемого частичного потока жидкости как энергоносителя для струйного насоса, таким образом, не происходит, и насос вытеснения всегда снабжается долей жидкости со всасывающей стороны, так что происходит достаточное смазывание, охлаждение и уплотнение насоса вытеснения.
Дальнейшее развитие изобретения предусматривает, чтобы частичный объем потока отделенной жидкостной фазы дозированно подводился через обводной трубопровод к стороне всасывания насоса вытеснения, и значит, что подвод происходит не исключительно через струйный насос, но и происходит через обводной трубопровод, расположенный, предпочтительно, в пределах корпуса насоса вытеснения, вследствие чего можно уменьшать опасность сухого пробега насоса вытеснения.
Дальнейшее развитие изобретения предусматривает, чтобы после ответвления частичного потока жидкости он проводился через дополнительный сепаратор для разделения газовой фазы и жидкостной фазы, если сепарирования внутри насоса вытеснения было недостаточно. Дополнительным сепаратором обеспечивается то, что к струйному насосу подводится жидкостная фаза, в наиболее значительной мере освобожденная от газовой фазы, как напорная жидкость и энергоноситель.
Чтобы предоставлять достаточно высокий уровень давления, в частности постоянный уровень давления, между насосом вытеснения и струйным насосом предусмотрен насос повышения давления, которым повышается давление подачи.
Соответствующая изобретению насосная установка предусматривает, чтобы питающий трубопровод связывал камеру нагнетания насоса вытеснения с напорной стороной, по меньшей мере, одного струйного насоса, причем струйный насос одной стороной расположен в направлении подачи насоса вытеснения, чтобы подавать на насос вытеснения умеренное предварительное давление. Частичный поток жидкости проводится со стороны нагнетания насоса вытеснения к напорной стороне одного или нескольких струйных насосов, которые используются как вспомогательное подающее средство, что способствует особенно экономически целесообразному повышению давления с всасывающей стороны. Иначе, чем при активных компонентах для повышения давления, при которых повышение давления производят механические блоки, к примеру, в форме технологий гидропоршневых насосов, таких как безбалансовый станок-качалка, центробежный насос с электроприводом (ESP), винтовой насос скважины (PCP) или насос одностороннего всасывания (SSP), струйные насосы построены крайне просто и не содержат никаких движущихся частей. В частности, с учетом иногда высоких абразивных качеств транспортируемой многофазной смеси, предпочтителен отказ от механических компонентов. За счет незначительных затрат на техническое обслуживание, установки являются более надежными и экономически целесообразными, тем более, что в области буровой скважины доступ ограничен, и ремонт стоит очень дорого. Это ведет к длительным простоям и к экономическим проблемам для эксплуатационников установки. Предпочтительно, внутри корпуса насоса вытеснения выполнены сепарирующие устройства для разделения газовой фазы и жидкостной фазы в камере нагнетания, вследствие чего газовая фаза многофазной смеси отделяется от жидкостной фазы, и для приведения в действие струйного насоса используется лишь жидкостная фаза.
Чтобы обеспечивать то, что при особенно длинном питающем трубопроводе имеет место определенная циркуляция жидкости для уплотнения, смазывания и охлаждения насоса вытеснения, предусмотрен обводной трубопровод со стороны камеры нагнетания к стороне всасывания насоса вытеснения для дозированного подвода отделенной жидкостной фазы.
Для улучшенного разделения жидкостной фазы и газовой фазы предусмотрен дополнительный сепаратор в питающем трубопроводе, от дополнительного сепаратора перепускная линия отделенной газовой фазы ведет к напорному трубопроводу насоса вытеснения, так что газовая фаза вместе с остальным транспортируемым продуктом может отводиться для дальнейшей обработки.
В питающем трубопроводе расположен насос повышения давления, так что отделенная жидкостная фаза имеет повышенное энергосодержание.
Оказалось предпочтительным, если насос вытеснения выполнен как винтовой насос, так как винтовые насосы надежно нагнетают многофазные смеси, в частности с высокой долей абразивных материалов и при сильно переменных долях газа, и имеют преимущества в отношении возможности доступа.
Из соображений монтажа предпочтительно, чтобы струйный насос был расположен внутри или на скважине - в конце всасывающего трубопровода, альтернативно, возможно, чтобы струйный насос был расположен в другом месте, например, во всасывающем трубопроводе ближе к насосу вытеснения, или же в скважине - отдельно от всасывающего трубопровода.
Ниже разъясняется пример выполнения изобретения с привлечением чертежа, на котором представлена принципиальная конструкция насосной установки.
Центр насосной установки - это насос 1 вытеснения, который предусмотрен как многофазный насос и выполнен, предпочтительно, как винтовой насос. Со стороны всасывания расположен всасывающий трубопровод 10, который входит в буровую скважину 3. В конце всасывающего трубопровода 10 внутри буровой скважины расположен струйный насос 2, который размещен так, что сторона высокого давления струйного насоса 2 ориентирована в направлении стороны всасывания насоса 1 вытеснения, чтобы подавать на насос 1 вытеснения предварительное давление.
Струйный насос 2, предпочтительно, выполненный как реактивный насос, нагружается частичным потоком 13 жидкости, который ответвляется со стороны нагнетания насоса 1 вытеснения. Через питающий трубопровод 7 частичный поток 13 жидкости подводится к напорной стороне струйного насоса 2.
Частичный поток 13 жидкости ответвляется из сепарированной многофазной смеси, причем внутри насоса вытеснения происходит сепарирование жидкостной фазы и газовой фазы. Предварительно заданный объем жидкостной фазы ответвляется со стороны нагнетания насоса 1 вытеснения, остальной транспортируемый продукт через напорный трубопровод 11 проводится для дальнейшей обработки. Для дальнейшего сепарирования газовой фазы и жидкостной фазы многофазной смеси промежуточно включен дополнительный сепаратор 4, от которого перепускная линия 14 ведет к напорному трубопроводу 11, причем не затребованная жидкостная фаза или дополнительно отделенная газовая фаза подводится к напорному трубопроводу 11.
При необходимости может быть предусмотрен насос 5 повышения давления в питающем трубопроводе 7, чтобы повышать энергетический уровень напорной жидкости для струйного насоса 2.
Также при необходимости может быть предусмотрен обводной трубопровод 15, через который частичный поток сепарированной жидкости подводится со стороны всасывания к насосу 1 вытеснения, чтобы гарантировать всегда достаточное охлаждение и смазывание. Обводной трубопровод 15 может быть выполнен также внутри корпуса насоса вытеснения.
Вспомогательное средство подачи предоставляется за счет циркуляции частичного тока жидкости внутри насосной установки, так что за счет наличествующего предварительного давления насос вытеснения может лучше перекачивать многофазную смесь, причем ограничивается расширение объема газовой доли и предотвращается вытекающее из этого увеличение затрат на строительство. Простая конструкция струйного насоса без подвижных частей уменьшает конструктивные затраты и позволяет избегать простоев из-за ремонтов, которые возникают вследствие износа механических конструктивных элементов. Кроме того, в качестве напорной жидкости не используется никакой внешний энергоноситель, который смешивается с транспортируемым продуктом, что может вызывать затруднения при последующей обработке транспортируемого продукта. Кроме того, во многих случаях в распоряжении нет никакой отдельной напорной жидкости для гидравлических систем, так что гарантирована постоянная возможность использования насосной установки.
Само собой разумеется, нагружать насос 1 вытеснения могут несколько струйных насосов 2.

Claims (13)

1. Способ транспортировки многофазных смесей, в частности, углеводородов из буровой скважины, в котором перекачивают многофазную смесь с помощью насоса (1) вытеснения и осуществляют разделение газовой фазы и жидкостной фазы, отличающийся тем, что разделение жидкостной фазы и газовой фазы осуществляют в насосе (1) вытеснения, со стороны нагнетания ответвляют частичный поток (13) жидкости из сепарированной жидкостной фазы основного транспортного потока и проводят к напорной стороне, по меньшей мере, одного струйного насоса (2), который размещают как вспомогательное средство подачи на стороне всасывания насоса (1) вытеснения.
2. Способ по п.1, отличающийся тем, что струйный насос (2) размещают внутри или на буровой скважине (3).
3. Способ по п.1, отличающийся тем, что частичный объем потока сепарированной жидкостной фазы через обводной трубопровод (15) дозированно подводят к стороне всасывания насоса (1) вытеснения.
4. Способ по п.1 или 2, отличающийся тем, что после ответвления частичного потока (13) жидкости его проводят через дополнительный сепаратор (4) для разделения газовой фазы и жидкостной фазы.
5. Способ по п.1 или 2, отличающийся тем, что между насосом (1) вытеснения и струйным насосом (2) давление подачи повышают насосом (5) повышения давления.
6. Насосная установка с насосом (1) вытеснения для транспортировки многофазных смесей с корпусом насоса, в котором образована камера нагнетания, и всасывающим трубопроводом (10), причем всасывающий трубопровод (10) входит, в частности, в буровую скважину (3), отличающийся тем, что насос (1) вытеснения выполнен в виде многофазного насоса и внутри корпуса насоса вытеснения образованы устройства сепарирования для разделения газовой и жидкостной фазы в камере нагнетания, а питающий трубопровод (7) связывает камеру нагнетания насоса (1) вытеснения со стороной высокого давления, по меньшей мере, одного струйного насоса (2), расположенного со стороны всасывания в направлении подачи насоса (1) вытеснения, и подводит сепарированную в насосе (1) вытеснения жидкостную фазу к струйному насосу (2).
7. Насосная установка по п.6, отличающаяся тем, что струйный насос (2) расположен в области входа всасывающего трубопровода (10) в буровую скважину (3) в направлении подачи насоса (1) вытеснения.
8. Насосная установка по п.6 или 7, отличающаяся тем, что обводной трубопровод (15) со стороны камеры нагнетания ведет к стороне всасывания насоса (1) вытеснения для дозированного подвода сепарированной жидкостной фазы.
9. Насосная установка по п.7, отличающаяся тем, что в питающем трубопроводе (7) расположен дополнительный сепаратор (4) для разделения жидкостной фазы и газовой фазы.
10. Насосная установка по п.9, отличающаяся тем, что от дополнительного сепаратора (4) перепускная линия (14) ведет к напорному трубопроводу (11) насоса (1) вытеснения.
11. Насосная установка по п.6, отличающаяся тем, что в питающем трубопроводе (7) расположен насос (5) повышения давления.
12. Насосная установка по п.6, отличающаяся тем, что насос (1) вытеснения выполнен как винтовой насос.
13. Насосная установка по п.6, отличающаяся тем, что струйный насос (2) расположен внутри или на буровой скважине (3), в частности, в конце всасывающего трубопровода (10).
RU2006118334/03A 2003-10-27 2004-10-21 Способ транспортировки многофазных смесей, а также насосная установка RU2348798C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350226A DE10350226B4 (de) 2003-10-27 2003-10-27 Verfahren zur Förderung von Multiphasengemischen sowie Pumpenanlage
DE10350226.2 2003-10-27

Publications (2)

Publication Number Publication Date
RU2006118334A RU2006118334A (ru) 2007-12-10
RU2348798C2 true RU2348798C2 (ru) 2009-03-10

Family

ID=34559217

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006118334/03A RU2348798C2 (ru) 2003-10-27 2004-10-21 Способ транспортировки многофазных смесей, а также насосная установка

Country Status (14)

Country Link
US (1) US7810572B2 (ru)
EP (1) EP1687509B1 (ru)
JP (1) JP4505463B2 (ru)
KR (1) KR101121243B1 (ru)
CN (1) CN1867753B (ru)
AT (1) ATE416300T1 (ru)
BR (1) BRPI0415548B1 (ru)
CA (1) CA2543772C (ru)
DE (2) DE10350226B4 (ru)
DK (1) DK1687509T3 (ru)
ES (1) ES2315714T3 (ru)
NO (1) NO336383B1 (ru)
RU (1) RU2348798C2 (ru)
WO (1) WO2005045189A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098003A1 (en) * 2007-10-11 2009-04-16 General Electric Company Multiphase screw pump
SE533444C2 (sv) * 2008-10-27 2010-09-28 Gva Consultants Ab Pumpaggregat
SE535053C2 (sv) * 2008-10-27 2012-03-27 Gva Consultants Ab Barlastsystem uppvisandes pump och recirkulationsanordning
US20110223039A1 (en) * 2010-03-15 2011-09-15 General Electric Company Pump assembly and method
DE102012015064B4 (de) 2012-07-31 2018-08-02 Joh. Heinr. Bornemann Gmbh Verfahren zum Betreiben einer Multiphasenpumpe und Vorrichtung dazu
WO2014086415A1 (en) 2012-12-05 2014-06-12 Blue Wave Co S.A. Cng offloading system
KR102203738B1 (ko) 2013-12-26 2021-01-15 대우조선해양 주식회사 바이패스부를 구비한 탑사이드 분리기 시스템
CN103883290A (zh) * 2014-03-26 2014-06-25 中国海洋石油总公司 海上油气田多相流混合输送系统
US10801482B2 (en) * 2014-12-08 2020-10-13 Saudi Arabian Oil Company Multiphase production boost method and system
ES2703380T3 (es) * 2014-12-18 2019-03-08 Sulzer Management Ag Procedimiento operativo para una bomba, en particular una bomba multifásica, así como bomba
MX2020000564A (es) * 2017-07-21 2020-09-18 Forum Us Inc Aparatos y sistemas para regular el flujo de una formacion geologica y metodos relacionados.
WO2020037427A1 (en) * 2018-08-24 2020-02-27 Keyowski Timothy System for producing fluid from hydrocarbon wells
US11008848B1 (en) 2019-11-08 2021-05-18 Forum Us, Inc. Apparatus and methods for regulating flow from a geological formation
RU2743550C1 (ru) * 2020-09-01 2021-02-19 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Система сбора и транспортирования продукции нефтяных скважин
US11835183B1 (en) 2023-02-01 2023-12-05 Flowserve Management Company Booster-ejector system for capturing and recycling leakage fluids

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1623239A (en) * 1924-12-08 1927-04-05 Edwin B Galbreath Hydraulic pump and system
US2080622A (en) * 1935-03-23 1937-05-18 Mcmahon William Frederick Apparatus for entraining oil and gas from oil wells
US2651259A (en) * 1949-05-20 1953-09-08 Alanson P Brush Apparatus for controlling the operation of domestic water systems
JPS4919287B1 (ru) * 1970-12-24 1974-05-16
US3709292A (en) * 1971-04-08 1973-01-09 Armco Steel Corp Power fluid conditioning unit
US4066123A (en) * 1976-12-23 1978-01-03 Standard Oil Company (Indiana) Hydraulic pumping unit with a variable speed triplex pump
US4294573A (en) * 1979-05-17 1981-10-13 Kobe, Inc. Submersible electrically powered centrifugal and jet pump assembly
DE3022600A1 (de) * 1979-06-21 1981-01-29 Kobe Inc Vorrichtung und verfahren zum pumpen eines bohrlochs
US4381175A (en) * 1980-09-11 1983-04-26 Kobe, Inc. Jet electric pump
US4603735A (en) * 1984-10-17 1986-08-05 New Pro Technology, Inc. Down the hole reverse up flow jet pump
US4718486A (en) * 1986-06-24 1988-01-12 Black John B Portable jet pump system with pump lowered down hole and raised with coiled pipe and return line
NO175020C (no) * 1986-08-04 1994-08-17 Norske Stats Oljeselskap Fremgangsmåte ved transport av ubehandlet brönnström
US5156537A (en) * 1989-05-05 1992-10-20 Exxon Production Research Company Multiphase fluid mass transfer pump
US4981175A (en) * 1990-01-09 1991-01-01 Conoco Inc Recirculating gas separator for electric submersible pumps
US5302294A (en) * 1991-05-02 1994-04-12 Conoco Specialty Products, Inc. Separation system employing degassing separators and hydroglyclones
GB2264147A (en) * 1992-02-12 1993-08-18 Peco Machine Shop & Inspection Multi-phase pumping arrangement
DE4316735C2 (de) * 1993-05-19 1996-01-18 Bornemann J H Gmbh & Co Pumpverfahren zum Betreiben einer Multiphasen-Schraubenspindelpumpe und Pumpe
FR2724424B1 (fr) * 1994-09-14 1996-12-13 Inst Francais Du Petrole Systeme de pompage polyphasique a boucle de regulation
US6007306A (en) * 1994-09-14 1999-12-28 Institute Francais Du Petrole Multiphase pumping system with feedback loop
NZ336855A (en) * 1999-07-21 2002-03-01 Unitec Inst Of Technology Multi-phase flow pump with vanes having large spaces there between
US6260627B1 (en) * 1999-11-22 2001-07-17 Camco International, Inc. System and method for improving fluid dynamics of fluid produced from a well
EP1243748A1 (en) * 2001-03-16 2002-09-25 DCT Double-Cone Technology AG Double-cone device and pump
CA2357887C (en) * 2001-09-28 2006-07-04 Pradeep Dass Method of adapting a downhole multi-phase twin screw pump for use in wells having a high gas content and a downhole multi-phase twin screw pump
WO2003033865A1 (en) * 2001-10-11 2003-04-24 Weatherford/Lamb, Inc. Combination well kick off and gas lift booster unit
CA2465111C (en) * 2001-10-22 2008-10-21 Ion Peleanu Method for conditioning wellbore fluids and sucker rod therefore

Also Published As

Publication number Publication date
BRPI0415548B1 (pt) 2015-05-19
CA2543772C (en) 2009-10-06
ATE416300T1 (de) 2008-12-15
ES2315714T3 (es) 2009-04-01
NO336383B1 (no) 2015-08-10
DE10350226B4 (de) 2005-11-24
US7810572B2 (en) 2010-10-12
EP1687509B1 (de) 2008-12-03
CA2543772A1 (en) 2005-05-19
CN1867753B (zh) 2010-09-22
KR20070027495A (ko) 2007-03-09
US20080210436A1 (en) 2008-09-04
DE10350226A1 (de) 2005-07-21
DE502004008600D1 (de) 2009-01-15
EP1687509A1 (de) 2006-08-09
JP2007509259A (ja) 2007-04-12
RU2006118334A (ru) 2007-12-10
KR101121243B1 (ko) 2012-03-23
JP4505463B2 (ja) 2010-07-21
NO20062026L (no) 2006-05-05
BRPI0415548A (pt) 2006-12-26
CN1867753A (zh) 2006-11-22
DK1687509T3 (da) 2009-03-16
WO2005045189A1 (de) 2005-05-19

Similar Documents

Publication Publication Date Title
RU2348798C2 (ru) Способ транспортировки многофазных смесей, а также насосная установка
CA2519635C (en) A system and process for pumping multiphase fluids
US20200011165A1 (en) System and method for the use of pressure exchange in hydraulic fracturing
US10167706B2 (en) Oil/gas production apparatus
NL8701815A (nl) Transportstelsel.
GB2450565A (en) Pressure boosting apparatus with jet pump, mechanical pump and separator
WO2007004886A1 (en) Device and method for cleaning a compressor
US20120282116A1 (en) Subsea pumping system
KR20200032638A (ko) 다상 펌프
CN104832406A (zh) 利用第二流体输送第一流体的泵系统
RU2236639C1 (ru) Система сбора и транспортирования продукции нефтяных скважин
US6406281B1 (en) Screw-type pumping unit for treatment of fluids in several phases
RU2406917C2 (ru) Способ сбора и транспортирования продукции нефтяных скважин с высоким газовым фактором и система для его осуществления
CA2376830A1 (en) Energy exchange pressure-elevating liquid injection system
WO2011068692A2 (en) Surface separation system for separating fluids
US11719260B2 (en) Multi-fluid management with inside out fluid systems
NL8902673A (nl) Werkwijze voor het verpompen van een veelfasig gas-vloeistofmengsel door het gebruik van een pomp.
RU2107809C1 (ru) Подземная насосная установка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201022