RU2332356C1 - Способ получения магнитной жидкости - Google Patents

Способ получения магнитной жидкости Download PDF

Info

Publication number
RU2332356C1
RU2332356C1 RU2007108641/15A RU2007108641A RU2332356C1 RU 2332356 C1 RU2332356 C1 RU 2332356C1 RU 2007108641/15 A RU2007108641/15 A RU 2007108641/15A RU 2007108641 A RU2007108641 A RU 2007108641A RU 2332356 C1 RU2332356 C1 RU 2332356C1
Authority
RU
Russia
Prior art keywords
solution
particles
magnetite particles
magnetite
hydrogen peroxide
Prior art date
Application number
RU2007108641/15A
Other languages
English (en)
Inventor
Юрий Павлович Грабовский (RU)
Юрий Павлович Грабовский
Михаил Борисович Евтушенко (RU)
Михаил Борисович Евтушенко
Антон Валентинович Лисин (RU)
Антон Валентинович Лисин
Original Assignee
Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка" filed Critical Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка"
Priority to RU2007108641/15A priority Critical patent/RU2332356C1/ru
Application granted granted Critical
Publication of RU2332356C1 publication Critical patent/RU2332356C1/ru

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

Изобретение относится к области получения жидких намагничивающихся сред на различных основах с частицами магнетита или ферритов и может быть использовано в уплотнительных устройствах, в дефектоскопии, в приборах контроля, при разделении немагнитных материалов по плотности. Способ получения магнитной жидкости включает осаждение частиц магнетита путем смешения водного раствора двухвалентного железа с щелочным раствором перекиси водорода, стабилизацию и пептизацию полученных частиц магнетита в дисперсионной среде. Осаждение частиц магнетита проводят в процессе распыления раствора двухвалентного железа в щелочном растворе перекиси водорода, причем для приготовления щелочного раствора перекиси водорода используют 5-10% раствор аммиака, в котором содержание перекиси водорода составляет 0,3-0,4 моля Н2O2/моль FeSO4. Кроме того, стабилизацию частиц магнетита и пептизацию его в дисперсионной среде проводят при комнатной температуре, причем сначала проводят стабилизацию частиц магнетита, затем диспергирование стабилизированных частиц в углеводородном растворителе, после чего осуществляют нагрев реакционной смеси, оставшейся после декантации маточного раствора. Изобретение обеспечивает получение жидкости, устойчивой в градиентном магнитном поле и пригодной для процессов разделения немагнитных материалов по плотности. 1 з.п. ф-лы.

Description

Изобретение относится к области получения жидких намагничивающихся сред на различных основах с частицами магнетита или ферритов и может быть использовано в уплотнительных устройствах, в дефектоскопии, в приборах контроля, при разделении немагнитных материалов по плотности и т.д.
Известен способ получения феррожидкости (а.с. СССР №568598, МКИ С01G 49/08, опубл. 15.08.1977 г.), включающий осаждение высокодисперсных частиц магнетита из раствора солей двух- и трехвалентного железа раствором аммиака с последующей промывкой осадка и пептизацией его при нагревании в растворе олеиновой кислоты в жидкости-носителе.
Общими признаками известного и предлагаемого способов являются смешение водного раствора, содержащего ионы железа со щелочью, в качестве которой используется раствор аммиака, последующая стабилизация и пептизация полученных после осаждения частиц магнетита в дисперсионной среде.
Недостатками известного способа являются:
- наличие в полученной магнитной жидкости значительного количества крупных частиц, что подтверждается центрифугированием синтезированных образцов магнитной жидкости;
- сложность методики получения, связанная с многократной промывкой осадка магнетита;
- использование хлорного железа в качестве трехвалентного, растворы которого обладают высокой коррозионностью, а сам реактив требуемого качества приобретается, как правило, за рубежом;
- высокие энергетические затраты на нагрев суспензии магнетита до 90°С перед введением раствора стабилизатора в дисперсионной среде.
Наиболее близким к предлагаемому является способ получения магнитной жидкости (а.с. СССР №649657, МКИ C01G 49/08, опубл. 28.02.1979 г.), включающий использование для осаждения частиц магнетита водный раствор солей двух- и трехвалентного железа и раствор аммиака, стабилизацию и диспергирование полученных частиц магнетита в дисперсионной среде.
Общими признаками известного и предлагаемого способов являются смешение водного раствора, содержащего ионы железа с щелочным раствором, последующая стабилизация и диспергирование полученных частиц магнетита в дисперсионной среде.
Недостатками известного способа являются:
- широкое распределение частиц магнетита по размерам, что приводит к наличию крупных частиц, требующих своего удаления из жидкости перед использованием образцов в процессах разделения немагнитных материалов по плотности;
- использование в процессе получения магнитной жидкости высококоррозионных растворов хлорного железа;
- высокие энергетические затраты на нагрев реакционной смеси после введения стабилизатора и дисперсионной среды.
Техническая задача заключается в создании способа, обеспечивающего получение магнитной жидкости (МЖ), устойчивой в градиентном магнитном поле и пригодной для использования в процессах разделения немагнитных материалов по плотности.
Поставленная цель достигается тем, что в способе получения магнитной жидкости, включающем осаждение частиц магнетита путем смешения водного раствора, содержащего ионы железа, с щелочным раствором, стабилизацию и пептизацию полученных частиц магнетита в дисперсионной среде, для получения частиц магнетита используют раствор двухвалентного железа, который окисляют перекисью водорода в количестве 0,3-0,4 моль Н2O2/моль FeSO4 с одновременным смешением окисленного раствора с 5-10% раствором аммиака, причем осаждение частиц магнетита проводят в процессе распыления раствора соли двухвалентного железа в щелочном растворе перекиси водорода.
Кроме того, стабилизацию частиц магнетита и пептизацию его в дисперсионной среде проводят при комнатной температуре, причем сначала проводят стабилизацию частиц магнетита, затем диспергирование стабилизированных частиц в углеводородном растворителе, после чего осуществляют нагрев реакционной смеси, оставшейся после декантации маточного раствора.
Заявляемая совокупность признаков позволяет получать жидкости, устойчивые в градиентном магнитном поле, т.е. пригодные для процессов разделения немагнитных материалов по плотности.
Предлагаемый способ может быть использован при синтезе МЖ, включающих различные способы осаждения частиц дисперсной фазы, в которых частицы дисперсной фазы стабилизируют различными стабилизаторами и пептизируют в различных дисперсионных средах, обеспечивая получения образцов МЖ, пригодных для процессов разделения немагнитных материалов по плотности.
Предлагаемый способ не требует для своего осуществления сложного или дорогостоящего импортного оборудования и реагентов (например, хлорного железа) для обеспечения высокого качества получаемой МЖ.
Распыление раствора сернокислого железа не только интенсифицирует процесс смешения, но и многократно увеличивает поверхность контакта одной из смешиваемых фаз. Поэтому образование кристаллогидратов при смешении растворов происходит в каждой капле раствора сернокислого железа, что приводит к получению мелких кристаллогидратов, которые более активны и выделение из них кристаллизационной воды начинается уже при комнатной температуре. Это позволяет проводить процесс стабилизации и диспергирования стабилизированных частиц в дисперсионной среде при пониженных температурах, отделять маточный раствор уже при комнатной температуре и снизить энергетические затраты при последующем нагреве реакционной смеси.
Как показали эксперименты, наилучшее смешение двух жидкостей наблюдается, когда они смешиваются в примерно равных объемах. Это привело к необходимости снизить концентрацию щелочи (раствора аммиака до 5-10%).
Что касается перекиси водорода, то механизм окисления двухвалентного железа перекисью не является до конца изученным. На этот процесс может влиять множество трудно учитываемых факторов, что не позволяет заранее предсказать результат - требуемое соотношение H2O2/FeSO4. Экспериментально найдено, что выбранное соотношение 0,3-0,4 моля Н2O2/моль FeSO4 приводит к максимальному выходу магнетита.
Предлагаемый способ осуществляют следующим образом.
Готовят при комнатной температуре исходные растворы: раствор перекиси водорода в аммиачной воде и водный раствор соли двухвалентного железа, который заливают в специальное разбрызгивающее устройство. Затем при интенсивном перемешивании щелочного раствора перекиси водорода в него распыляют раствор FeSO4. Перемешивание продолжают еще 5 минут, а затем дают возможность осесть образовавшимся частицам магнетита. При приготовлении щелочного раствора перекиси водорода используют 5-10% раствор NH4ОН, который берут в полуторном избытке по сравнению со стехиометрически необходимым для осаждения сернокислого железа, а перекись водорода в мольном соотношении к FeSO4, равному 0,3-0,4, оптимальное соотношение 0,33 моль Н2O2/моль FeSO4.
После осаждения частиц магнетита маточный раствор удаляют декантацией, а к оставшейся суспензии при слабом перемешивании добавляют при комнатной температуре стабилизатор, обычно олеиновую кислоту, а затем дисперсионную среду, например керосин. Через некоторое время смесь расслаивается, и водную часть, содержащую, преимущественно, соли, сливают. Оставшуюся смесь постепенно нагревают до 75°С. К этому времени она окончательно расслаивается, что позволяет практически полностью отделить полученный образец МЖ от воды. После чего его дважды промывают дистиллированной водой. Полученный образец МЖ помещают, предварительно измерив плотность, в градиентное поле ФГС- или МГ-сепаратора и выдерживают в нем 0,3-2,0 час. Затем производят выделение шприцом части образца МЖ, находившейся в рабочей зоне сепаратора с минимальными значениями индукции магнитного поля, оставляя в сепараторе другую часть МЖ с осевшими в ней (если они есть) крупными частицами магнетита. Часть образца, освобожденную от крупных частиц, сливают и вновь замеряют ее плотность. Неизменность плотности образца до и после выдерживания его в градиентном магнитном поле свидетельствует о его высокой устойчивости.
Снижение плотности свидетельствует об удалении из него крупных частиц и повторное выдерживание в градиентном магнитном поле образца МЖ после выделения из нее крупных частиц должно подтвердить это.
Пример 1. В 8 л воды растворяют 1376 г FeSO4×7Н2О. Одновременно готовят щелочной раствор, добавляя к 6,5 л 10% раствора NH4OH 1,2 л перекиси водорода (~30%). Приготовленные растворы быстро смешивают, распыляя раствор FeSO4 в интенсивно перемешиваемый щелочной (аммиачный) раствор перекиси водорода. Перемешивание продолжают еще 5 минут, а затем дают осесть образовавшимся частицам магнетита. Через час маточный раствор удаляют декантацией, а к оставшейся суспензии добавляют при комнатной температуре 100 мл олеиновой кислоты и после перемешивания в течение 10 минут добавляют 350 мл керосина. Стабилизированные частицы почти полностью переходят в керосин, что позволяет отделить водную фазу.
Еще через 10 минут начинают постепенный нагрев оставшейся смеси до 75°С. К этому моменту эмульсия окончательно расслаивается. Маточный раствор сливают, а полученную магнитную жидкость объемом 510 мл и плотностью 1,53 г/см3 промывают два раза дистиллированной водой, а затем образец помещают в МГ-сепаратор и выдерживают там в течение одного часа. После отделения части образца, находившегося в зоне с минимальными значениями индукции магнитного поля, получено 470 мл МЖ плотностью 1,53 г/см3, что свидетельствует об отсутствии крупных частиц в образце МЖ, т.е. об устойчивости МЖ в градиентном магнитном поле.
Пример 2. Из аналогичных количеств исходных веществ проведен синтез образца МЖ по способу-прототипу. В 10 л дистиллированной воды растворяют 910 г хлорного железа и в таком же количестве воды растворяют 460 г сернокислого железа. После смешения этих растворов полученную смесь быстро вливают при интенсивном перемешивании в 2,5 л аммиачной воды (25%). Смесь продолжают перемешивать еще 5 минут, после чего образовавшиеся частицы магнетита постепенно оседают на дно. Через 1,5 часа маточный раствор удаляют декантацией, а к суспензии магнетита добавляют 120 мл олеиновой кислоты и 350 мл керосина. Полученную реакционную массу перемешивают, нагревают до 80°С и выдерживают при этой температуре 35 мин. Расслоившуюся эмульсию разделяют, удаляя водную фазу, а полученную жидкость объемом 530 мл и плотностью 1,48 г/см3 промывают дважды дистиллированной водой, после чего помещают образец в МГ-сепаратор для поверки устойчивости полученного образца. Выделено 480 мл МЖ плотностью 1,42 г/см3, что свидетельствует о наличии небольшого количества крупных частиц в образце.
Таким образом, предлагаемый способ получения магнитной жидкости в отличие от прототипа позволяет получить МЖ, устойчивую в градиентном магнитном поле, а следовательно, пригодную для использования в процессах разделения немагнитных материалов по плотности. При этом снижаются энергетические затраты при нагреве реакционной смеси после осаждения частиц магнетита. В предлагаемом способе не используются растворы, вызывающие сильную коррозию оборудования.

Claims (2)

1. Способ получения магнитной жидкости, включающий осаждение частиц магнетита путем смешения водного раствора, содержащего ионы железа, с щелочным раствором, стабилизацию и пептизацию полученных частиц магнетита в дисперсионной среде, отличающийся тем, что для получения частиц магнетита используют раствор двухвалентного железа, который окисляют перекисью водорода в количестве 0,3-0,4 моль Н2О2/моль FeSO4 с одновременным смешением окисленного раствора с 5-10%-ным раствором аммиака, причем осаждение частиц магнетита проводят в процессе распыления раствора соли двухвалентного железа в щелочном растворе перекиси водорода.
2. Способ по п.1, отличающийся тем, что стабилизацию частиц магнетита и пептизацию его в дисперсионной среде проводят при комнатной температуре, причем сначала проводят стабилизацию частиц магнетита, затем диспергирование стабилизированных частиц в углеводородном растворителе, после чего осуществляют нагрев оставшейся после декантации маточного раствора реакционной смеси.
RU2007108641/15A 2007-03-07 2007-03-07 Способ получения магнитной жидкости RU2332356C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007108641/15A RU2332356C1 (ru) 2007-03-07 2007-03-07 Способ получения магнитной жидкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007108641/15A RU2332356C1 (ru) 2007-03-07 2007-03-07 Способ получения магнитной жидкости

Publications (1)

Publication Number Publication Date
RU2332356C1 true RU2332356C1 (ru) 2008-08-27

Family

ID=46274465

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007108641/15A RU2332356C1 (ru) 2007-03-07 2007-03-07 Способ получения магнитной жидкости

Country Status (1)

Country Link
RU (1) RU2332356C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453500C1 (ru) * 2011-01-12 2012-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) Способ получения магнитоактивного соединения
RU2489359C1 (ru) * 2012-04-10 2013-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) Способ получения магнитоактивного соединения
RU2593392C1 (ru) * 2015-06-03 2016-08-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-петербургский политехнический университет Петра Великого" ФГАОУ ВО "СПбПУ" Способ получения ферромагнитной жидкости
RU2643974C2 (ru) * 2016-07-12 2018-02-06 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения магнитной жидкости на органической основе

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453500C1 (ru) * 2011-01-12 2012-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) Способ получения магнитоактивного соединения
RU2489359C1 (ru) * 2012-04-10 2013-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) Способ получения магнитоактивного соединения
RU2593392C1 (ru) * 2015-06-03 2016-08-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-петербургский политехнический университет Петра Великого" ФГАОУ ВО "СПбПУ" Способ получения ферромагнитной жидкости
RU2643974C2 (ru) * 2016-07-12 2018-02-06 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения магнитной жидкости на органической основе

Similar Documents

Publication Publication Date Title
RU2332356C1 (ru) Способ получения магнитной жидкости
US4089779A (en) Clarification process
US5064550A (en) Superparamagnetic fluids and methods of making superparamagnetic fluids
RU2384909C1 (ru) Способ получения магнитной жидкости
CN106000325B (zh) 一种磁性脱色材料及其制备方法
CN111039441B (zh) 一种通过生成胶体处理化学镀废水的方法
RU2422932C1 (ru) Способ получения магнитной жидкости
Ratnasari et al. One-step electrochemical synthesis of silica-coated magnetite nanofluids
CN103588685B (zh) 三酮类铵盐化合物及其制备方法及应用
TWI564252B (zh) A water treatment device and a water treatment method
RU2390497C2 (ru) Способ получения магнетита
US20160109067A1 (en) A method of transporting oil
RU2339106C2 (ru) Способ получения магнитной жидкости
RU2057380C1 (ru) Концентрат магнитной жидкости и способ его получения
RU2709870C1 (ru) Способ получения магнитной жидкости
RU2398298C2 (ru) Способ получения магнитной жидкости
RU2363064C1 (ru) Способ получения магнитной жидкости
RU2618069C1 (ru) Способ получения магнитной жидкости
RU2585803C1 (ru) Способ приготовления раствора для подкормки плодовых деревьев
SU861321A1 (ru) Способ получени феррожидкости
RU2739739C1 (ru) Способ получения соединений магния
Sronsri et al. Effect of the magnetic field produced by a Halbach array magnetizer on water UV absorption, removal of scale and change in calcium carbonate polymorphs
RU2399978C2 (ru) Способ получения магнитной жидкости
RU2593392C1 (ru) Способ получения ферромагнитной жидкости
RU2372292C1 (ru) Способ получения магнитной жидкости на основе воды

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110308