RU2422932C1 - Способ получения магнитной жидкости - Google Patents
Способ получения магнитной жидкости Download PDFInfo
- Publication number
- RU2422932C1 RU2422932C1 RU2010119145/07A RU2010119145A RU2422932C1 RU 2422932 C1 RU2422932 C1 RU 2422932C1 RU 2010119145/07 A RU2010119145/07 A RU 2010119145/07A RU 2010119145 A RU2010119145 A RU 2010119145A RU 2422932 C1 RU2422932 C1 RU 2422932C1
- Authority
- RU
- Russia
- Prior art keywords
- magnetite
- solution
- fatty acids
- particles
- fine particles
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000007788 liquid Substances 0.000 title abstract description 7
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 68
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000002245 particle Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 18
- 239000000194 fatty acid Substances 0.000 claims abstract description 18
- 229930195729 fatty acid Natural products 0.000 claims abstract description 18
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 18
- 239000002612 dispersion medium Substances 0.000 claims abstract description 15
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims abstract description 15
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims abstract description 13
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims abstract description 13
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000005642 Oleic acid Substances 0.000 claims abstract description 13
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims abstract description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010419 fine particle Substances 0.000 claims abstract description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 7
- 230000006641 stabilisation Effects 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims abstract description 6
- 125000005608 naphthenic acid group Chemical group 0.000 claims abstract description 6
- 238000001935 peptisation Methods 0.000 claims abstract description 5
- 150000007513 acids Chemical class 0.000 claims abstract description 4
- 239000011553 magnetic fluid Substances 0.000 claims description 32
- 235000021313 oleic acid Nutrition 0.000 claims description 15
- 239000007858 starting material Substances 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 238000011105 stabilization Methods 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 150000002889 oleic acids Chemical class 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 41
- 235000011007 phosphoric acid Nutrition 0.000 abstract description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract description 2
- 239000012670 alkaline solution Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- CNVZJPUDSLNTQU-SEYXRHQNSA-N petroselinic acid Chemical compound CCCCCCCCCCC\C=C/CCCCC(O)=O CNVZJPUDSLNTQU-SEYXRHQNSA-N 0.000 abstract 2
- OXEDXHIBHVMDST-UHFFFAOYSA-N 12Z-octadecenoic acid Natural products CCCCCC=CCCCCCCCCCCC(O)=O OXEDXHIBHVMDST-UHFFFAOYSA-N 0.000 abstract 1
- CNVZJPUDSLNTQU-UHFFFAOYSA-N Petroselaidic acid Natural products CCCCCCCCCCCC=CCCCCC(O)=O CNVZJPUDSLNTQU-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000002609 medium Substances 0.000 abstract 1
- 239000001117 sulphuric acid Substances 0.000 abstract 1
- 235000011149 sulphuric acid Nutrition 0.000 abstract 1
- AQWHMKSIVLSRNY-UHFFFAOYSA-N trans-Octadec-5-ensaeure Natural products CCCCCCCCCCCCC=CCCCC(O)=O AQWHMKSIVLSRNY-UHFFFAOYSA-N 0.000 abstract 1
- 239000000725 suspension Substances 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 239000003350 kerosene Substances 0.000 description 11
- 239000012452 mother liquor Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 238000010908 decantation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000011866 long-term treatment Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- FCSHMCFRCYZTRQ-UHFFFAOYSA-N N,N'-diphenylthiourea Chemical compound C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- -1 heavy metals Chemical class 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Chemical class O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
Изобретение относится к способу получения магнитной жидкости в виде коллоидных растворов нанодисперсных частиц магнетита в органических средах, стабилизированных поверхностно-активными веществами, и может найти применение в нефтяной промышленности при разделении водонефтяных эмульсий, а также в других отраслях промышленности. Способ получения магнитной жидкости заключается в растворении исходного железосодержащего материала в неорганической кислоте, получении раствора, содержащего соли Fe2+ и Fe3+, в добавлении к полученному раствору раствора щелочи для осаждения высокодисперсных частиц магнетита, последующей стабилизации осажденных высокодисперсных частиц магнетита и пептизации стабилизированных частиц магнетита в дисперсионной среде. В предложенном способе природный магнетит предварительно измельчают в инертной среде до размеров частиц 0,020-0,040 мм, а стабилизацию осажденных высокодисперсных частиц магнетита осуществляют смесью синтетических жирных кислот с олеиновой кислотой или нафтеновыми кислотами или смесью петразелиновой и олеиновой кислот. Кроме того, в качестве кислоты для растворения исходного железосодержащего материала используют серную или орто-фосфорную кислоты, а в качестве жирных кислот используют кислоты с числом углеродных атомов C7-C9, C10-C13 или C14-C16. Повышение устойчивости магнитной жидкости в градиентном магнитном поле является техническим результатом изобретения при простоте и экономичности способа. 2 з.п. ф-лы.
Description
Изобретение относится к способам получения коллоидных растворов нанодисперсных частиц магнетита в углеводородных или других органических средах, стабилизированных различными поверхностно-активными веществами, например магнитных жидкостей (МЖ), нашедших широкое применение в различных отраслях промышленности, например в нефтяной промышленности: при разделении водонефтяных эмульсий, при очистке нефтеналивных судов, при удалении нефтяной пленки с водной поверхности; в контрольно-измерительных приборах для замера уровня в нефтяных резервуарах, при определении расхода при заполнении резервуаров, при оценке качества сварных швов магистральных нефте- и газопроводов.
Известен способ получения магнитной жидкости (патент США №3215572 от 02.11.1965, МПК H01F 1/44), в котором крупные частицы магнетита размалывают в шаровых мельницах в присутствии дисперсионной среды, например керосина и стабилизатора - олеиновой кислоты.
Общими признаками известного и предлагаемого способов являются: измельчение крупных частиц магнетита, стабилизация частиц магнетита и пептизация их в дисперсионной среде.
Недостатками известного способа получения МЖ являются длительность размола (от нескольких дней до нескольких недель), низкая производительность оборудования, широкое распределение частиц по размерам, что требует удаления "крупных" частиц с помощью сильных градиентных магнитных полей для повышения устойчивости полученного образца.
Наиболее близким к предлагаемому является способ получения МЖ (патент РФ №2276420, опубл. 10.05.2006, МПК H01F 1/28), в котором исходный раствор для осаждения магнетита готовят при смешении осадка гальваношлама (отхода гальванического производства) с концентрированной соляной кислотой для растворения основного вещества (Fe2O3) с последующей фильтрацией раствора и добавлением к нему отработанного травильного раствора, полученного при удалении на металлургических заводах окалины (оксида двухвалентного железа) с поверхности металлических болванок в растворе неорганической кислоты. Соотношение Fe3+/Fe2+ в полученном растворе после смешения должно быть 3:2.
К полученному таким образом раствору добавляют раствор гидроксида аммония и на полученную суспензию воздействуют переменным магнитным полем с частотой 50 Гц, нагревают ее до 95°С, добавляют керосин и олеиновую кислоту при интенсивном перемешивании и продолжают нагрев до расслоения реакционной смеси на органическую и водную фазы, которую удаляют с помощью пипетки, а остатки воды удаляют при нагревании образца до 130°С. После охлаждения объем образца доводят до стандартного добавлением керосина и замеряют намагниченность насыщения полученного образца.
Общими признаками известного и предлагаемого способов являются: растворение исходного железосодержащего материала в неорганической кислоте, получение раствора, содержащего соли Fe2+ и Fe3+, осаждение высокодисперсных частиц магнетита путем добавления к полученному раствору раствора щелочи, последующая стабилизация полученных частиц магнетита и пептизация стабилизированных частиц в дисперсионной среде.
Недостатками известного способа являются: сложность оборудования, большие временные и энергетические затраты на проведение отдельных операций процесса.
а) Сушка исходного образца-отхода при 105°С.
б) Фильтрация раствора после растворения образца-отхода в концентрированной соляной кислоте.
в) Длительная обработка суспензии магнетита магнитным полем, причем без указания параметров магнитного поля и оборудования для его создания.
г) Нагрев суспензии до 95°С перед введением керосина и стабилизатора и образца до 130°С для удаления остатков воды.
д) Затраты времени на проведение анализов смешиваемых растворов на содержание Fe2+ и Fe3+ и расчет смешиваемых объемов для получения в растворе после смешения заданного соотношения Fe3+/Fe2+=3:2.
В стехиометрическом магнетите соотношение Fe3+/Fe2+=2:1. Следовательно, либо в процессе синтеза идет окисление двухвалентного железа, и тогда этот процесс надо контролировать, либо если такое соотношение Fe3+/Fe2+=3:2 сохранится в осажденных частицах магнетита, то магнитные характеристики (намагниченность насыщения) у таких частиц будут меньше, чем у стехиометрического магнетита.
е) Высокая коррозионность исходных материалов (гальваношлам, отработанный травильный раствор), что требует использования специального оборудования для их хранения.
Для приготовления раствора, содержащего соли двух- и трехвалентного железа, в прототипе используют солянокислый раствор гальваношлама и отработанного травильного раствора. Непостоянство их состава требует регулярного контроля за содержанием в них Fe2+ и Fe3+ для подержания заданного соотношения Fe3+/Fe2+ в исходном растворе. Исходные материалы (гальваношлам и травильный раствор) содержат заметное количество других элементов. Так, в качестве источника Fe3+ в прототипе использовались железосодержащие отходы «Северсталь» (г.Череповецк), содержащие (см. сб.научных трудов 13-й Международной Плесской конференции по нанодисперсным магнитным жидкостям, Плес, 2008, с.58), %:
Fe2O3 - 48
FeO - 14
CaO - 9
SiO2 - 6
MgO - 5
MnO - 5
Аl2O3 - 2 и др.
Состав источника двухвалентного железа не приводится. Но и этого достаточно, чтобы оценить состав раствора после растворения осадка в концентрированной соляной кислоте. Последующая фильтрация раствора заметно осложняет процесс приготовления исходного раствора для осаждения магнетита. Добавление щелочи приводит к образованию суспензии, которую обрабатывают переменным магнитным полем. Необходимость в длительной обработке суспензии магнетита в прототипе свидетельствует о том, что процесс образования магнетита завершается только через час и требует для своего завершения дополнительного оборудования и энергетических затрат.
Последующий нагрев суспензии до температуры 95°С, поддержание ее после добавления дисперсионной среды (керосина) и стабилизатора (олеиновой кислоты) до расслоения образовавшейся эмульсии, а после удаления водной фазы нагрев МЖ до 130°С для удаления остатков воды требуют значительных энергетических затрат.
В известном способе не предусмотрена утилизация маточного раствора, в котором будет присутствовать, кроме солей аммония и избытка щелочи, целый набор металлов, включая тяжелые, имеющие высокую токсичность, и необходимость полной очистки сточных вод может стать камнем преткновения при организации промышленного производства МЖ.
Техническая задача заключается в создании упрощенного и экономичного способа получения магнитной жидкости, устойчивой в градиентном магнитном поле.
Поставленная задача достигается тем, что в способе получения магнитной жидкости, заключающемся в растворении исходного железосодержащего материала в неорганической кислоте, получении раствора, содержащего соли Fe2+ и Fe3+, добавлении к полученному раствору раствора щелочи для осаждения высокодисперсных частиц магнетита, последующей стабилизации осажденных высокодисперсных частиц магнетита и пептизации стабилизированных частиц магнетита в дисперсионной среде, новым является то, что в качестве исходного железосодержащего материала используют природный магнетит, который предварительно измельчают в инертной среде до размеров частиц 0,020-0,040 мм, а стабилизацию осажденных высокодисперсных частиц магнетита осуществляют смесью синтетических жирных кислот с олеиновой кислотой или нафтеновыми кислотами или смесью петразелиновой и олеиновой кислот.
Кроме того, в качестве кислоты для растворения исходного железосодержащего материала используют серную или орто-фосфорную кислоты.
Кроме того, в качестве синтетических жирных кислот используют кислоты с числом углеродных атомов С7-С9 или жирные кислоты изо-строения с числом углеродных атомов С10-С13 или C14-C16.
В предлагаемом способе исходным материалом является природный магнетит, который обладает высокой намагниченностью насыщения, а также точкой Кюри, совпадающими с магнитными характеристиками стехиометрического магнетита, что дополнительно подчеркивает его чистоту. Он инертен, а потому может храниться даже под открытым небом.
Измельчение частиц природного магнетита в инертной атмосфере до размеров 0,020-0,040 мм позволяет в несколько раз повысить скорость растворения магнетита, что приводит к возможности использовать, кроме соляной, серную или орто-фосфорную кислоты. Использование серной или фосфорной кислот, с одной стороны, снижает коррозионность исходного раствора, а с другой стороны, облегчает утилизацию маточного раствора с получением дополнительного продукта: гипса или фосфорного удобрения и щелочного раствора, который можно повторно использовать для осаждения высокодисперсных частиц магнетита. Соотношение Fe3+/Fe2+ в полученном растворе по предлагаемому способу всегда равно 2:1, как в стехиометрическом магнетите, и никаких анализов раствора не потребуется.
После добавления к полученному раствору солей железа раствора аммиака в предлагаемом способе полученный осадок уже через несколько минут представляет собой кристаллогидраты магнетита. Дополнительной обработки суспензии магнетита магнитным полем не требуется. В предлагаемом способе после осаждения кристаллогидратов магнетита большую часть маточного раствора удаляют декантацией, а затем (при комнатной температуре) к суспензии добавляют стабилизатор и дисперсионную среду. Расслоение образовавшейся суспензии происходит уже при слабом нагревании, когда температура реакционной смеси не превышает 60°С. Уменьшение объема суспензии после осаждения магнетита путем удаления маточного раствора и невысокая температура нагрева суспензии после введения стабилизатора и дисперсионной среды приводит к сокращению энергетических затрат. После промывки МЖ дистиллированной водой для удаления солей маточного раствора остатки воды удаляют в МГ-сепараторе за считанные секунды.
Упрощение процесса также достигается за счет отсутствия стадии фильтрации солянокислого раствора, исключения анализов смешиваемых растворов на содержание Fe2+ и Fe3+ и расчета объемов смешиваемых растворов, исключения длительной обработки суспензии магнетита магнитным полем.
Упрощение процесса также достигается за счет отсутствия предварительной сушки исходного материала (гальваношлама) при 105°С, исключения нагрева суспензии магнетита до 95°С перед введением стабилизатора, при этом значительно снижаются энергетические затраты.
Уменьшение затрат на оборудование достигается за счет отсутствия емкостей для хранения исходных материалов (в прототипе - гальваношлама и травильного раствора), а также оборудования для длительной обработки суспензии магнетита магнитным полем.
Предлагаемый способ получения магнитной жидкости не требует для своего осуществления импортного оборудования и реактивов при синтезе образцов, отвечающих высоким требованиям по устойчивости полученной МЖ в градиентном магнитном поле.
Использование полученной МЖ в процессах ФГС- или МГ-сепарации исключает транспортные расходы на доставку МЖ к местам потребления. По сравнению с прототипом исходный материал - природный магнетит не содержит никаких примесей, которые могут повлиять на состав и магнитные свойства осадка магнетита, а маточный раствор после выделения стабилизированных частиц магнетита содержит только соль аммония и небольшой избыток щелочи и, следовательно, может быть утилизирован одним из известных способов.
В предлагаемом способе удается заметно расширить ассортимент используемых стабилизаторов, некоторые из которых позволяют получать образцы с более высокой намагниченностью насыщения (например, смесь синтетических жирных кислот с олеиновой кислотой или нафтеновыми кислотами или смесью петразелиновой и олеиновой кислот) при равной вязкости МЖ по сравнению с образцами, стабилизированными олеиновой кислотой.
Но наиболее важным показателем МЖ по предлагаемому способу является получение образцов, устойчивых в градиентном магнитном поле. Однако не представляется возможным сравнить предлагаемый способ и прототип по этому показателю из-за отсутствия в прототипе соответствующих данных по устойчивости МЖ в градиентном магнитном поле.
Предлагаемый способ осуществляют следующим образом.
Образец природного магнетита размалывают до частиц размером 0,02-0,04 мм в инертной атмосфере, в качестве которой используют азот или углекислый газ. Затем магнетит растворяют в неорганической кислоте, в качестве которой можно использовать серную, или ортофосфорную, или соляную кислоту. Процесс растворения проводят при температуре не выше 45°С. После этого в полученный раствор после охлаждения его до комнатной температуры быстро добавляют при интенсивном перемешивании NH4OH, или NaOH, или KOH. Количество щелочи добавляют в 1,2-1,5 избытке по сравнению со стехиометрически необходимым, как это рекомендуют делать при организации промышленного производства МЖ. Через 3-5 минут перемешивание прекращают и дают осесть образовавшимся частицам магнетита. После осаждения образовавшихся частиц магнетита маточный раствор удаляют декантацией, а к суспензии магнетита добавляют стабилизатор в количестве 18-25% от веса магнетита. В качестве стабилизатора используют смесь синтетических жирных кислот С7-С9 или жирных кислот изо-строения с числом углеродных атомов C10-C13 или C14-C16 с олеиновой кислотой, или нафтеновыми кислотами, или смесью петразелиновой и олеиновой кислот.
Процесс стабилизации проводят при комнатной температуре, а затем стабилизированные частицы в виде суспензии смешивают с дисперсионной средой, в качестве которой обычно используют керосин. Количество дисперсионной среды выбирается в зависимости от требований, предъявляемых к получаемой МЖ.
После добавления дисперсионной среды к суспензии стабилизированных частиц магнетита реакционная смесь начинает расслаиваться. Процесс заканчивается при слабом перемешивании и нагревании смеси до 50-60°С. Верхний (водный) слой удаляют, а нижний (МЖ) промывают дистиллированной водой. Промытую жидкость пропускают через МГ-сепаратор, где остатки воды удаляются за считанные секунды. Намагниченность насыщения полученной жидкости может колебаться в зависимости от количества введенной дисперсионной среды в пределах 30-60 кА/м. Затем определяют устойчивость полученного образца МЖ в градиентном магнитном поле по стандартной методике.
Экспериментальную проверку предлагаемого способа проводили в лабораторных условиях. Ниже приведены примеры конкретного выполнения заявленного технического решения.
Пример 1. В коническую колбу емкостью 1000 см3 загружают 65,0 г магнетита, предварительно размолотого в атмосфере СO2 до частиц размером 0,02-0,04 мм, и приливают 280 см3 серной кислоты 50% концентрации. Растворение проводят при 45°С и перемешивании. После завершения процесса растворения раствор охлаждают до комнатной температуры и к нему при интенсивном перемешивании добавляют 400 см3 водного раствора аммиака 25% концентрации. Через 3 минуты перемешивание прекращают и дают осесть образовавшимся частицам магнетита. Маточный раствор удаляют декантацией, после чего суспензию магнетита постепенно нагревают до 60°С при слабом перемешивании. Стабилизатор - смесь синтетических жирных кислот изо-строения C10-C13 и нафтеновых кислот, взятых в соотношении 1:1 - вводят сразу после начала перемешивания (25-30°С), а керосин при температуре 35-40°С, причем дисперсионную среду (керосин) вводят маленькими порциями в самую нижнюю часть реакционной смеси. Количество вводимого стабилизатора составляет 16,0 см3, а керосина - 100 мл. После расслоения реакционной смеси верхний слой удаляют, а МЖ промывают дистиллированной водой, после чего пропускают через магнитный сепаратор для удаления остатков воды. Получено 125 мл МЖ плотностью 1,24 г/см3 и намагниченностью насыщения Is=42,1 кА/м.
Пример 2. К образцу природного магнетита весом 65,0 г, предварительно размолотого в атмосфере азота до частиц размером 0,02-0,04 мм, приливают при перемешивании 350 мл 28% соляной кислоты. Процесс растворения проводят при 40°С. К полученному раствору быстро приливают при интенсивном перемешивании 30 мл 40% раствора NaOH, которое заканчивают через 5 минут, и дают осесть образовавшимся частицам магнетита. Затем маточный раствор удаляют, а к оставшейся суспензии при слабом перемешивании добавляют 16,0 мл стабилизатора, в качестве которого используют смесь синтетических жирных кислот С7-С9 и олеиновой кислоты в соотношении 0,3:1,0. Затем реакционную смесь постепенно нагревают до 60°С.
При температуре 35-40°С в суспензию добавляют дисперсионную среду (керосин) в количестве 100 мл. По мере нагрева реакционной смеси она расслаивается на две фазы. Водную фазу удаляют, а углеводородную (МЖ) промывают дистиллированной водой и пропускают через МГ-сепаратор. Получен образец в количестве 120 мл, плотностью 1,28 г/см3. Намагниченность насыщения - 39,6 кА/м.
Пример 3. Исходные материалы и условия проведения опыта такие же, как и в примере 1, за исключением того, что магнетит растворяют в ортофосфорной кислоте, добавляя 50% кислоту в количестве 150 мл, а в качестве стабилизатора используют смесь синтетических жирных кислот изо-строения С14-С16 с олеиновой кислотой в соотношении 0,3:1,0. При этом стабилизированные частицы магнетита пептизировали в керосине, который вводили в количестве 80 мл. Получен образец в количестве 103 мл, плотностью 1,32 г/см3 и намагниченностью насыщения 53,2 кА/м.
Пример 4. Условия проведения и исходные материалы такие же, как в примере 1, за исключением того, что для осаждения высокодисперсных частиц магнетита используют KOH, а для стабилизации их - смесь кислот петразелиновой, олеиновой и синтетических жирных кислот (с числом углеродных атомов С7-С9) в соотношении 1,6:1,0:0,3. Получен образец в количестве 128 мл, плотностью 1,23 г/см3 и намагниченностью насыщения 38,9 кА/м.
Пример 5. Практически полностью повторены условия проведения опыта в примере 1, за исключением того, что для стабилизации осажденных частиц магнетита используют смесь кислот петразелиновой, олеиновой и синтетических жирных кислот изо-строения (с числом углеродных атомов С10-С13) в соотношении 1,6:1,0:0,5. Полученный образец совпадает по характеристикам с образцом, полученным в примере 4.
Все образцы проверены на устойчивость в градиентном магнитном поле и показали свою пригодность для использования в процессах МГ-сепарации.
Таким образом, предлагаемый способ получения МЖ имеет заметные преимущества перед прототипом, так как предлагаемый способ предполагается использовать в местах потребления МЖ и нет необходимости транспортировать полученную продукцию в другие регионы.
Исходный материал - природный магнетит может храниться длительное время без изменения магнитных и других характеристик.
Приготовление исходного раствора в предлагаемом способе не требует его фильтрации и проведения анализов полученного раствора на содержание Fe2+ и Fe3+. После осаждения частиц магнетита не требуются длительная обработка суспензии магнетита магнитным полем и нагрев ее до 95°С. Энергетические затраты на проведение стадии сушки, фильтрации исходного раствора, обработки магнитным полем и нагрев суспензии магнетита, используемые в способе-прототипе, достаточно велики. При этом намагниченность насыщения полученной МЖ даже при длительной обработке суспензии магнетита магнитным полем невелика, а содержание "крупных" частиц магнетита, определяющих устойчивость полученных образцов МЖ, не определялось.
В предлагаемом же способе процесс образования магнетита заканчивается в считанные минуты, а намагниченность насыщения МЖ может достигать 80 кА/м и выше.
Наконец, если маточный раствор в предлагаемом способе может быть утилизирован одним из известных методов, то утилизация маточного раствора в прототипе потребует значительных затрат, которые отразятся на себестоимости получаемой жидкости.
Предлагаемый способ, кроме того, позволяет расширить ассортимент жирных кислот, используемых при синтезе магнитных жидкостей, что в ряде случаев приводит к получению образцов, обладающих более высокой намагниченностью насыщения, чем образцы, стабилизированные олеиновой кислотой, при равной вязкости образцов.
Claims (3)
1. Способ получения магнитной жидкости, заключающийся в растворении исходного железосодержащего материала в неорганической кислоте, получении раствора, содержащего соли Fe2+ и Fe3+, добавлении к полученному раствору раствора щелочи для осаждения высокодисперсных частиц магнетита, последующей стабилизации осажденных высокодисперсных частиц магнетита и пептизации стабилизированных частиц магнетита в дисперсионной среде, отличающийся тем, что в качестве исходного материала используют природный магнетит, который предварительно измельчают в инертной среде до размеров частиц 0,020-0,040 мм, а стабилизацию осажденных высокодисперсных частиц магнетита осуществляют смесью синтетических жирных кислот с олеиновой кислотой или нафтеновыми кислотами или смесью петразелиновой и олеиновой кислот.
2. Способ получения магнитной жидкости по п.1, отличающийся тем, что в качестве неорганической кислоты для растворения исходного материала используют серную или ортофосфорную кислоту.
3. Способ получения магнитной жидкости по п.1, отличающийся тем, что в качестве синтетических жирных кислот используют кислоты с числом углеродных атомов C7-C9 или жирные кислоты изостроения с числом углеродных атомов С10-С13 или C14-C16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010119145/07A RU2422932C1 (ru) | 2010-05-12 | 2010-05-12 | Способ получения магнитной жидкости |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010119145/07A RU2422932C1 (ru) | 2010-05-12 | 2010-05-12 | Способ получения магнитной жидкости |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2422932C1 true RU2422932C1 (ru) | 2011-06-27 |
Family
ID=44739414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010119145/07A RU2422932C1 (ru) | 2010-05-12 | 2010-05-12 | Способ получения магнитной жидкости |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2422932C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2585803C1 (ru) * | 2015-04-09 | 2016-06-10 | Дмитрий Игнатьевич Дорофеев | Способ приготовления раствора для подкормки плодовых деревьев |
RU2618069C1 (ru) * | 2016-03-21 | 2017-05-02 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (ФГБОУВПО "ЯГТУ") | Способ получения магнитной жидкости |
RU2655391C1 (ru) * | 2018-03-12 | 2018-05-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Способ получения наноразмерного катализатора на основе смешанного оксида железа для интенсификации добычи тяжелого углеводородного сырья и катализатор, полученный этим способом |
RU2762433C1 (ru) * | 2021-06-16 | 2021-12-21 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения микросфер оксида железа Fe3O4 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215572A (en) * | 1963-10-09 | 1965-11-02 | Papell Solomon Stephen | Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles |
RU2111572C1 (ru) * | 1992-10-30 | 1998-05-20 | Лорд Корпорейшн | Магнитореологический материал |
RU2276420C1 (ru) * | 2004-12-06 | 2006-05-10 | Ярославский государственный технический университет | Способ получения магнитной жидкости |
RU2332356C1 (ru) * | 2007-03-07 | 2008-08-27 | Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка" | Способ получения магнитной жидкости |
RU2388091C1 (ru) * | 2008-09-17 | 2010-04-27 | Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" | Способ получения магнитной жидкости |
-
2010
- 2010-05-12 RU RU2010119145/07A patent/RU2422932C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215572A (en) * | 1963-10-09 | 1965-11-02 | Papell Solomon Stephen | Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles |
RU2111572C1 (ru) * | 1992-10-30 | 1998-05-20 | Лорд Корпорейшн | Магнитореологический материал |
RU2276420C1 (ru) * | 2004-12-06 | 2006-05-10 | Ярославский государственный технический университет | Способ получения магнитной жидкости |
RU2332356C1 (ru) * | 2007-03-07 | 2008-08-27 | Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка" | Способ получения магнитной жидкости |
RU2388091C1 (ru) * | 2008-09-17 | 2010-04-27 | Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" | Способ получения магнитной жидкости |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2585803C1 (ru) * | 2015-04-09 | 2016-06-10 | Дмитрий Игнатьевич Дорофеев | Способ приготовления раствора для подкормки плодовых деревьев |
RU2618069C1 (ru) * | 2016-03-21 | 2017-05-02 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (ФГБОУВПО "ЯГТУ") | Способ получения магнитной жидкости |
RU2655391C1 (ru) * | 2018-03-12 | 2018-05-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Способ получения наноразмерного катализатора на основе смешанного оксида железа для интенсификации добычи тяжелого углеводородного сырья и катализатор, полученный этим способом |
RU2762433C1 (ru) * | 2021-06-16 | 2021-12-21 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения микросфер оксида железа Fe3O4 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3843540A (en) | Production of magnetic fluids by peptization techniques | |
Encina et al. | Synthesis of goethite α-FeOOH particles by air oxidation of ferrous hydroxide Fe (OH) 2 suspensions: Insight on the formation mechanism | |
Barrett et al. | The influence of magnetic fields on calcium carbonate precipitation | |
RU2422932C1 (ru) | Способ получения магнитной жидкости | |
RU2332356C1 (ru) | Способ получения магнитной жидкости | |
RU2384909C1 (ru) | Способ получения магнитной жидкости | |
Osorio et al. | Oilfield-produced water treatment using bare maghemite nanoparticles | |
Perez-Gonzalez et al. | Inorganic magnetite precipitation at 25 C: A low-cost inorganic coprecipitation method | |
RU2339106C2 (ru) | Способ получения магнитной жидкости | |
Shao et al. | Leaching kinetics of iron from coal-series kaolin by oxalic acid solutions | |
RU2340972C2 (ru) | Способ получения магнитной жидкости | |
CA3092484C (en) | Method for removing fluoride from a zinc-containing solution or suspension, defluoridated zinc sulfate solution and use thereof, and method for producing zinc and hydrogen fluoride or hydrofluoric acid | |
Knyazev et al. | Microbially mediated synthesis of vivianite by Desulfosporosinus on the way to phosphorus recovery | |
US20160109067A1 (en) | A method of transporting oil | |
Colombo et al. | An insight into REEs recovery from spent fluorescent lamps: Evaluation of the affinity of an NH4-13X zeolite towards Ce, La, Eu and Y | |
RU2363064C1 (ru) | Способ получения магнитной жидкости | |
RU2056066C1 (ru) | Сухой концентрат магнитной жидкости | |
RU2276420C1 (ru) | Способ получения магнитной жидкости | |
RU2057380C1 (ru) | Концентрат магнитной жидкости и способ его получения | |
US4295971A (en) | Method for clarifying slimes | |
RU2709870C1 (ru) | Способ получения магнитной жидкости | |
US20170210773A1 (en) | Synthesis of Metal Carboxylate Compounds | |
CN107794373B (zh) | 钕铁硼废磁材的综合处理方法 | |
RU1658752C (ru) | Способ получения магнитной жидкости | |
RU2372292C1 (ru) | Способ получения магнитной жидкости на основе воды |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120513 |