RU2363064C1 - Способ получения магнитной жидкости - Google Patents
Способ получения магнитной жидкости Download PDFInfo
- Publication number
- RU2363064C1 RU2363064C1 RU2008102680/02A RU2008102680A RU2363064C1 RU 2363064 C1 RU2363064 C1 RU 2363064C1 RU 2008102680/02 A RU2008102680/02 A RU 2008102680/02A RU 2008102680 A RU2008102680 A RU 2008102680A RU 2363064 C1 RU2363064 C1 RU 2363064C1
- Authority
- RU
- Russia
- Prior art keywords
- magnetic
- magnetite
- particles
- phase
- magnetic fluid
- Prior art date
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Lubricants (AREA)
Abstract
Изобретение относится к получению магнитных жидкостей, а также к синтезу основного компонента магнитной жидкости феррофазы - высокодисперсного магнетита. Магнитную фазу магнитной жидкости получают электрохимическим растворением электродов из стали Ст 3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе поваренной соли с концентрацией NaCl 50-100 г/м3 при напряжении 24-36 В и плотности тока 15,6 А/мм2. Поверхность частиц магнетита покрывают в водной среде адсорбированным слоем стабилизирующего вещества и подогревают полученную суспензию. Частицы магнетита отделяют от водной фазы и смешивают с неводной жидкостью-носителем. Обеспечивается простота аппаратурного оформления и возможность управления интенсивностью процесса образования магнетита путем изменения параметров электролиза. 1 табл.
Description
Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита). Магнитная жидкость - устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость.
Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и могли бы найти применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. Но их широкое применение ограничивается высокой стоимостью.
Получение магнитных жидкостей состоит из двух основных операций.
1. Получение высокодисперсных частиц магнетика.
2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости.
Известен способ получения магнитной жидкости. Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами - высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, - с.21-28]. Однако при использовании чистых металлов возникает ряд технологических трудностей, связанных как с получением высокодисперсных частиц и их защитой от окисления, так и с их стабилизацией с последующим диспергированием в жидкости-носителе. Поэтому наряду с металлами в качестве феррофазы все чаще используется магнетит (окид-закись железа), который хотя и уступает металлам по магнитным характеристикам, но благодаря простоте получения высокодисперсных частиц, хорошей адсорбционной способности и химической устойчивости позволяет получать магнитные жидкости, которые превосходят по магнитным параметрам магнитные жидкости на металлах.
Известен также способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ - избытком щелочи (NaOH и NH4OH). Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов - Mg2+, Cr3+, Ni2+, Cu2+ - не является вредным, если их содержание невелико.
Осадок магнетита промывают декантацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор - ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора - олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, - с.21-28].
Известен также [Ахалая М.Г., Кокиашвили М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. - В кн.: Физические свойства магнитных жидкостей: - Сб. статей. - Свердловск, УНУ АН СССР, 1983. - С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в книге: Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, - с.21-28, затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступку, добавляют к нему стабилизатор - олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием до 90-110°С при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице, на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч.
Известен способ получения магнитной жидкости, включающий образование суспензии магнетита путем соосаждения из растворов ионов двух- и трехвалентного железа, покрытие поверхности частиц магнетита адсорбированным слоем стабилизирующего вещества, отделение от суспензии фракции, содержащей стабилизированные магнитные частицы в жидкости-носителе, а в качестве источника трехвалентного железа для получения магнитной феррофазы используется солянокислый раствор осадка-отхода очистки сточных вод гальванических цехов [Патент РФ №2182382, Бюл. №13, 2002, МПК Н01F 1/36].
Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов с получением дорогостоящего продукта.
Наиболее близким к предлагаемому изобретению является способ получения магнитной жидкости, выбранный нами за прототип [патент РФ №2193251, Бюл. №32, 2002, МПК H01F 1/28].
Он состоит из следующих стадий: смешение в требуемом
соотношении (Fe3+/Fe2+=3:2) солянокислого раствора осадка - гальваношлама и отработанного травильного раствора; получение суспензии магнитных частиц оксидов Fe2+ и Fe3+ коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного; покрытие осажденных частиц оксидов Fe2+ и Fe3+ в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде; подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы; образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу.
Задачей настоящего изобретения является усовершенствование способа получения магнитной жидкости. Для этого магнитная фаза магнитной жидкости - магнетит - получается электрохимическим способом путем растворения электродов из Ст 3 в электропроводящем растворе поваренной соли. Электрохимический способ отличается простотой, дешевизной аппаратурного оформления и возможностью управления интенсивностью процесса образования магнетита путем изменения параметров электролиза.
Поставленная задача решается следующим образом: получение суспензии магнетита; покрытие поверхности частиц магнетита в водной среде адсорбированным слоем стабилизирующего вещества; подогрев суспензии частиц магнетита с адсорбированным на них слоем стабилизирующего вещества, отделение их от водной фазы и смешение с неводной жидкостью-носителем нагрев суспензии и доведение до кипения при постоянном перемешивании; центрифугирование смеси после ее остывания для отделения крупнодисперсных частиц.
Способ получения магнитной жидкости иллюстрируется следующим примером.
В емкость, содержащую раствор поваренной соли (концентрация NaCI - 50-100 г/м3), погружались электроды из Ст 3, расстояние между которыми составляет 5-15 мм, подается напряжение 24-36 В, обеспечивающая плотность тока 15,6 А/мм2. В результате электролизов в данных условиях образуется черный осадок магнетита, идентифицированного рентгенографическим анализом и Мёссбауэровской спектроскопией. Выход по току составляет 95-97% магнетита. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. После наработки необходимого количества магнетита смесь подогревают до 95°С и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты (при интенсивном перемешивании). Затем продолжают подогрев, и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева. Подогрев продолжают до тех пор, пока не истощится вода и температура органической фазы на возрастет до 130°С.
Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице - МЖ1.
Для сравнения в таблице представлены показатели магнитной жидкости из патента №2193251, Бюл. №32, 2002, МПК: Н01F 1/28 - МЖ2.
Таблица | ||
Показатели магнитных жидкостей | ||
Показатели | Магнитная жидкость | |
МЖ1 | МЖ2 | |
Объемная доля магнетита, % | 5,76 | 3,08 |
Плотность, кг/м3 | 975 | 925 |
Вязкость, Па·с·103 | 3,112 | 2,909 |
Намагниченность насыщения, кА/м | 7,44 | 4,35 |
Claims (1)
- Способ получения магнитной жидкости, включающий получение магнитной фазы магнитной жидкости в виде суспензии магнетита, покрытие поверхности частиц магнетита в водной среде адсорбированным слоем стабилизирующего вещества, подогрев полученной суспензии, отделение частиц магнетита от водной фазы и их смешение с неводной жидкостью-носителем, отличающийся тем, что магнитную фазу магнитной жидкости получают электрохимическим растворением электродов из стали Ст 3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе поваренной соли с концентрацией NaCl 50-100 г/м3 при напряжении 24-36 В и плотности тока 15,6 А/мм2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008102680/02A RU2363064C1 (ru) | 2008-01-23 | 2008-01-23 | Способ получения магнитной жидкости |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008102680/02A RU2363064C1 (ru) | 2008-01-23 | 2008-01-23 | Способ получения магнитной жидкости |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2363064C1 true RU2363064C1 (ru) | 2009-07-27 |
Family
ID=41048540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008102680/02A RU2363064C1 (ru) | 2008-01-23 | 2008-01-23 | Способ получения магнитной жидкости |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2363064C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2524609C1 (ru) * | 2013-03-14 | 2014-07-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" | Способ получения магнетита |
RU2556012C1 (ru) * | 2014-07-22 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (ФГБОУВПО "ЯГТУ") | Состав для изоляции пластин магнитопроводов трансформаторов |
-
2008
- 2008-01-23 RU RU2008102680/02A patent/RU2363064C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
ТАКЕТОМИ С. и др. Магнитные жидкости: Пер. с японск. - М.: Мир, 1993, с.134-135. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2524609C1 (ru) * | 2013-03-14 | 2014-07-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" | Способ получения магнетита |
RU2556012C1 (ru) * | 2014-07-22 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" (ФГБОУВПО "ЯГТУ") | Состав для изоляции пластин магнитопроводов трансформаторов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Synthesis of Fe3O4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb (V) removal from water | |
Ansari et al. | NiTiO3/NiFe2O4 nanocomposites: Simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent | |
US8636906B2 (en) | Liquid purification using magnetic nanoparticles | |
Zhang et al. | Comparison of novel magnetic polyaluminum chlorides involved coagulation with traditional magnetic seeding coagulation: coagulant characteristics, treating effects, magnetic sedimentation efficiency and floc properties | |
Khayat Sarkar et al. | Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent | |
Kazeminezhad et al. | Elimination of copper and nickel from wastewater by electrooxidation method | |
Zhu et al. | Fluorescent LaVO 4: Eu 3+ micro/nanocrystals: pH-tuned shape and phase evolution and investigation of the mechanism of detection of Fe 3+ ions | |
US20190193088A1 (en) | Liquid purification using magnetic nanoparticles | |
Manrique-Julio et al. | Production of magnetite by electrolytic reduction of ferric oxyhydroxide | |
RU2363064C1 (ru) | Способ получения магнитной жидкости | |
Bobik et al. | The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions | |
Horvath et al. | Recycling of a wastewater to iron oxide micro structures | |
Khayyat Sarkar et al. | Removal of mercury (II) from wastewater by magnetic solid phase extraction with polyethylene glycol (PEG)-coated Fe3O4 nanoparticles | |
Montoya et al. | Elucidation of the mechanism of electrochemical formation of magnetite nanoparticles by in situ raman spectroscopy | |
Rahimdad et al. | Electrochemical device for the synthesis of Fe3O4 magnetic nanoparticles | |
Dojčinović et al. | Differently shaped nanocrystalline (Fe, Y) 3O4 and its adsorption efficiency toward inorganic arsenic species | |
RU2441294C1 (ru) | Способ получения магнитной жидкости | |
RU2618069C1 (ru) | Способ получения магнитной жидкости | |
RU2276420C1 (ru) | Способ получения магнитной жидкости | |
RU2391729C1 (ru) | Способ получения магнитной жидкости | |
RU2423745C1 (ru) | Способ получения магнитной жидкости | |
Jovanovićc et al. | Cobalt ferrite nanospheres as a potential magnetic adsorbent for chromium (VI) ions | |
RU2372292C1 (ru) | Способ получения магнитной жидкости на основе воды | |
Ratnasari et al. | One-step electrochemical synthesis of silica-coated magnetite nanofluids | |
RU2307856C1 (ru) | Способ получения магнитной жидкости |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120124 |