RU2329199C2 - Способ очистки воды, полученной в процессе фишера-тропша - Google Patents

Способ очистки воды, полученной в процессе фишера-тропша Download PDF

Info

Publication number
RU2329199C2
RU2329199C2 RU2004138557A RU2004138557A RU2329199C2 RU 2329199 C2 RU2329199 C2 RU 2329199C2 RU 2004138557 A RU2004138557 A RU 2004138557A RU 2004138557 A RU2004138557 A RU 2004138557A RU 2329199 C2 RU2329199 C2 RU 2329199C2
Authority
RU
Russia
Prior art keywords
water
rich stream
treatment
primary
fischer
Prior art date
Application number
RU2004138557A
Other languages
English (en)
Other versions
RU2004138557A (ru
Inventor
КОЛЕР Луи Пабло Фидель ДАНКУАР (ZA)
КОЛЕР Луи Пабло Фидель ДАНКУАР
ПЛЕССИ Герт Хендрик ДЮ (ZA)
ПЛЕССИ Герт Хендрик ДЮ
ТУА Франсуа Якобус ДЮ (ZA)
ТУА Франсуа Якобус ДЮ
Эдвард Людовикус КОПЕР (ZA)
Эдвард Людовикус Копер
Тревор Дейвид ФИЛЛИПС (ZA)
Тревор Дейвид ФИЛЛИПС
ДЕР ВАЛЬТ Жанетт ВАН (ZA)
ДЕР ВАЛЬТ Жанетт ВАН
Original Assignee
Сэйзол Текнолоджи (Пти) Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэйзол Текнолоджи (Пти) Лтд filed Critical Сэйзол Текнолоджи (Пти) Лтд
Publication of RU2004138557A publication Critical patent/RU2004138557A/ru
Application granted granted Critical
Publication of RU2329199C2 publication Critical patent/RU2329199C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/045Treatment of water, waste water, or sewage by heating by distillation or evaporation for obtaining ultra-pure water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/148Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step in combination with at least one evaporator
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • C02F1/385Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к очистке воды, получаемой в ходе синтеза Фишера-Тропша. Способ включает стадию первичной обработки, заключающуюся в перегонке или экстракции, включающую, по меньшей мере, одну стадию удаления, по меньшей мере, части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока; б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами, по меньшей мере, части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока; и в) стадию окончательной обработки, включающую разделение твердого вещества и жидкости для удаления, по меньшей мере, некоторого количества твердых веществ из, по меньшей мере, части вторичного обогащенного водой потока. Технический эффект - получение воды, не содержащей органических соединений, с пониженным содержанием растворенных твердых веществ и низким уровнем остаточных солей. 4 н. и 21 з.п. ф-лы, 1 ил., 3 табл.

Description

Данное изобретение относится к очистке воды, получаемой в ходе синтеза Фишера-Тропша, в качестве сырья для которого используют ряд углеродсодержащих материалов.
Заявителю известны процессы синтеза из такого углеродсодержащего сырья, как природный газ и уголь, в ходе которых получается вода, а также образуются углеводороды.
Одним из таких процессов является способ Фишера-Тропша, основным продуктом которого является вода и в меньшей степени углеводороды, включая олефины, парафины, воски и кислородсодержащие соединения. Имеются многочисленные ссылки на этот процесс, как, например, на стр.265-278 "Технологии процесса Фишера-Тропша" ("Technology of the Fischer-Tropsch process" by Mark Dry, Catal. Rev. Sci. Eng., Volume 23 (1&2), 1981).
Продукты, полученные в процессе Фишера-Тропша, можно подвергнуть дальнейшей переработке, например путем гидрокрекинга, для получения продуктов, включающих синтетическую сырую нефть, олефины, растворители, смазочные масла, технические или медицинские масла, воскоподобные углеводороды, азот- и кислородсодержащие соединения, бензин для двигателей, дизельное топливо, топливо для реактивных двигателей и керосин. Смазки включают автомобильные, реактивные, турбинные масла и масла для металлообработки. Промышленные масла включают жидкости для бурения скважин, масла для сельского хозяйства и жидкие теплоносители.
В некоторых областях, где имеются источники углеродсодержащего сырья, вода является дефицитной и относительно дорогой. Кроме того, нормативы по охране окружающей среды запрещают сброс загрязненной воды, полученной по способу Фишера-Тропша, в природные водные потоки и в море, тем самым создавая необходимость получения и выделения пригодной для использования воды при источнике углеродсодержащего сырья.
Углеродсодержащее сырье обычно включает уголь и природный газ, которые превращают в углеводороды, воду и диоксид углерода в ходе синтеза Фишера-Тропша. Естественно, можно также использовать другие виды углеродсодержащего сырья, как, например, гидраты метана, находящиеся в морских отложениях.
Перед осуществлением очистки воды, полученной в процессе Фишера-Тропша согласно данному изобретению ее обычно подвергают предварительному разделению с целью отделения обогащенного водой потока от продуктов реакции Фишера-Тропша.
Процесс предварительного разделения включает конденсацию газообразного продукта из реактора Фишера-Тропша и разделение его в обычном трехфазном сепараторе. Из сепаратора выходят три потока: отходящий газ, конденсат углеводородов, включающий в основном углеводороды в диапазоне от С5 до С20, и поток реакционной воды, содержащий растворенные кислородсодержащие углеводороды и эмульгированные углеводороды.
Поток реакционной воды затем разделяют с использованием коагулятора, который разделяет поток реакционной воды на суспензию углеводородов и обогащенный водой поток.
Коагулятор способен удалять углеводороды из реакционного потока воды до концентрации порядка от 10 миллионных частей (млн.ч.) до 1000 млн.ч., обычно до 50 млн.ч.
Полученный таким образом обогащенный водой поток составляет сырье для осуществления способа согласно данному изобретению и обозначается в данном описании термином "реакционная вода Фишера-Тропша".
Состав обогащенного водой потока реакционной воды в значительной степени зависит от металла катализатора, применяемого в реакторе Фишера-Тропша, и от используемых условий реакции (например, температуры, давления). Реакционная вода Фишера-Тропша может содержать кислородсодержащие углеводороды, включая алифатические, ароматические и циклические спирты, альдегиды, кетоны и кислоты, и в меньшей степени алифатические, ароматические и циклические углеводороды, например олефины и парафины.
Реакционная вода Фишера-Тропша может также содержать небольшие количества неорганических соединений, включая металлы из реактора Фишера-Тропша, а также азот- и серосодержащие частицы, которые поступают из исходного сырья.
Влияние используемого типа синтеза Фишера-Тропша на качество реакционной воды Фишера-Тропша проиллюстрировано типичным органическим анализом (табл.1) реакционной воды Фишера-Тропша, полученной при трех различных режимах проведения синтеза, а именно:
Низкотемпературный синтез Фишера-Тропша (НТФТ) - кобальтовый или железный катализатор;
Высокотемпературный синтез Фишера-Тропша (ВТФТ) - железный катализатор.
Таблица 1:
Типичный состав органики реакционной воды Фишера-Тропша, полученной при различных рабочих режимах синтеза Фишера-Тропша.
Компонент (мас.%) НТФТ (кобальтовый катализатор) НТФТ (железный катализатор) ВТФТ (железный катализатор)
Вода 99,89 95,70 94,11
Некислые кислородсодержащие углеводороды 1,00 3,57 4,47
Кислые кислородсодержащие углеводороды 0,09 0,71 1,41
Другие углеводороды 0,02 0,02 0,02
Неорганические компоненты <0,005 <0,005 <0,005
Из типичного анализа реакционных вод Фишера-Тропша различного происхождения (табл.1) видно, что эти воды, особенно реакционная вода высокотемпературного процесса Фишера-Тропша, содержат относительно высокие концентрации органических соединений, и прямое применение или сброс этих вод обычно невозможны без дополнительной обработки с целью удаления нежелательных компонентов. Степень обработки реакционной воды Фишера-Тропша в значительной степени зависит от предполагаемого применения, и можно получить воду в широком диапазоне качества - от воды для питания котлов до частично обработанной воды, которую можно сбрасывать в окружающую среду.
Можно также совместно обрабатывать реакционную воду Фишера-Тропша с другими типами технических сточных вод, а также с дождевой водой.
Способы очистки воды, описанные в данном изобретении, после небольшой адаптации можно использовать также для обработки потоков воды, полученных в процессах конверсии при получении синтез-газа с применением металлических катализаторов, сходных с катализаторами, применяемыми в синтезе Фишера-Тропша.
Согласно первому аспекту данного изобретения предложен способ получения очищенной воды из реакционной воды Фишера-Тропша, включающий по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления по меньшей мере части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша, для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами по меньшей мере части первичного обогащенного водой потока, для снижения таким путем общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока; и
в) стадию окончательной обработки, включающую разделение твердого вещества и жидкости для удаления по меньшей мере некоторого количества твердых веществ из по меньшей мере части вторичного обогащенного водой потока.
Согласно второму аспекту данного изобретения, предложен способ получения очищенной воды из реакционной воды Фишера-Тропша, включающий по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления по меньшей мере части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами по меньшей мере части первичного обогащенного водой потока, для снижения таким образом общей массовой доли органических компонентов в неиспаренной части, с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую биологическую очистку для удаления по меньшей мере части растворенного органического углерода из вторичного обогащенного водой потока с получением третичного обогащенного водой потока; и
г) стадию четвертичной обработки, включающую разделение твердого вещества и жидкости для удаления по меньшей мере некоторого количества твердых веществ из по меньшей мере части третичного обогащенного водой потока.
Термин "очищенная вода" следует интерпретировать как обозначающий поток воды, имеющий ХПК от 20 до 500 мг/л, рН от 6,0 до 9,0, содержание взвешенных твердых веществ менее 250 мг/л и общее содержание растворенных твердых веществ менее 600 мг/л.
Некислотные кислородсодержащие углеводороды обычно включают соединения, выбранные из группы, включающей спирты, кетоны и альдегиды, а более конкретно выбирают из группы, включающей ацетальдегид, пропионовый альдегид, масляный альдегид, ацетон, метилпропилкетон, метанол, этанол, пропанол, бутанол, пентанол, гексанол и гептанол.
Для использования на первичной стадии обработки пригодно большое количество процессов. Они могут включать обычные процессы перегонки, используемые в нефтеперерабатывающей и нефтехимической промышленности, а также экстракцию растворителем с использованием обычных жидких растворителей или сжиженных газов.
Если в качестве первичной стадии обработки используют перегонку, то удаляется основная масса некислотных кислородсодержащих углеводородов, содержащихся в реакционной воде Фишера-Тропша, и остаются главным образом монокарбоновые кислоты (например, уксусная кислота, пропионовая кислота) и, возможно, следовые количества некислых соединений. Вследствие присутствия органических кислот первичный обогащенный водой поток известен, как кислая вода Фишера-Тропша.
Верхние погоны от перегонки можно отделить и переработать с получением продуктов, либо их можно использовать в качестве топлива или источника энергии.
Стадия первичной обработки может включать дегазацию реакционной воды перед дальнейшей обработкой.
Обычно реакционная вода Фишера-Тропша, поступающая из ВТФТ процессов с железным катализатором и подвергнутая первичной обработке, имеет ограниченное применение вследствие относительно высоких концентраций (>1 мас.%) органических кислот, остающихся в кислой воде Фишера-Тропша, и необходима дальнейшая обработка этой воды. В противоположность этому, реакционная вода Фишера-Тропша, поступающая из НТФТ процессов с катализатором на основе кобальта и прошедшая первичную обработку, содержит значительно более низкие концентрации органических кислот (<0,1 мас.%), и, следовательно, ее можно после нейтрализации сбрасывать в окружающую среду, если возможно осуществить достаточное разбавление и нормативы по выбросам это позволяют. Этот первичный обогащенный водой поток может также иметь ограниченное применение в качестве технической воды.
Процесс стадии б) может происходить при температуре и давлении окружающей среды.
При испарении в градирне количество по меньшей мере некоторых из растворенных органических компонентов, содержащихся в первичном обогащенном водой потоке, снижается посредством воздействия микроорганизмов. Компоненты, которые удаляются полностью или частично, включают кислотные кислородсодержащие углеводороды и метанол.
При использовании в качестве охлаждающей воды первичного обогащенного водой потока избыток кислорода, вызванный аэрацией в градирне, активирует рост микроорганизмов, которые используют растворенные органические компоненты в первичном обогащенном водой потоке в качестве источника пищи.
Процесс стадии б) может включать использование первичного обогащенного водой потока в качестве воды для подпитки испарительной градирни. Испарительная градирня может быть выбрана из группы, включающей градирни с вентилятором, градирни с естественной тягой и градирни с нагнетательным вентилятором.
При использовании в качестве охлаждающей воды первичного обогащенного водой потока линейная скорость потока этой воды через оборудование, которое используют при охлаждении, должна быть достаточно высокой, чтобы препятствовать осаждению взвешенных твердых веществ в указанном оборудовании.
Величину рН первичного обогащенного водой потока следует регулировать путем добавления щелочи, например каустической соды, для предотвращения кислотной коррозии поверхностей металла и/или бетона, которые могут контактировать с этой водой.
Перед использованием первичного обогащенного водой потока в качестве охлаждающей воды, к нему можно добавить одну или более подходящих добавок для ингибирования нежелательных эффектов, таких как, например, засорение, коррозия или образование накипи.
Биологическая обработка вторичного обогащенного водой потока может включать аэробную обработку.
Способ аэробной обработки может быть таким же, как обычно применяемый для обработки бытовых и промышленных стоков.
Аэробная обработка может включать добавление питательных веществ в виде азотсодержащих соединений (например, мочевины, аммиака или аммонийных солей) и фосфорсодержащих соединений (например, фосфатных солей) для ускорения микробиологического разложения органических углеродсодержащих компонентов. Кроме того, для оптимизации поведения микроорганизмов может потребоваться регулирование рН с использованием щелочных соединений, таких как известь, каустическая или кальцинированная сода.
При аэробной обработке вторичного обогащенного водой потока можно использовать широкий диапазон способов. Такие способы можно выбрать из группы, включающей процессы с активированным илом, с использованием высокоскоростных компактных реакторов, биологических аэрированных фильтров, фильтров с орошением, вращающихся биологических контакторов, мембранных биореакторов и реакторов с псевдоожиженным слоем. Также успешно разработано аэробное получение одноклеточного протеина (ОКП).
Кроме обогащенного водой потока или третичного обогащенного водой потока, аэробная обработка обычно дает в качестве побочных продуктов диоксид углерода и осадок (ил). Диоксид углерода можно выпустить в окружающую среду. Осадок можно сжечь, использовать для заполнения пустот в земле, в качестве удобрения, кондиционера для почвы или как источник ОКП.
Стадия четвертичной обработки может иметь целью удаление взвешенных твердых веществ из третичного обогащенного водой потока, полученного при биологической обработке.
Удаление взвешенных твердых веществ можно осуществить способами, выбранными из группы, включающей фильтрацию через песок, мембранное разделение (например, микро- или ультрафильтрация), седиментацию с использованием флокулянтов, флотацию растворенным воздухом (с использованием или без использования флокулянтов) и центрифугирование.
Необходимый уровень и тип четвертичной обработки определяют местные нормативы по выбросам или предполагаемое применение.
Области применения очищенной воды, полученной описанными выше способами, могут включать ее использование в качестве охлаждающей воды, воды для орошения или общетехнической воды.
Очищенная вода обычно имеет следующие характеристики.
Свойство
Химическая потребность в кислороде (ХПК) мг/л 20-500
рН 6,0-9,0
Общее содержание растворенных твердых веществ (ОРТ) мг/л <600
Взвешенные твердые вещества (ВТ) мг/л <250
В соответствии с третьим аспектом данного изобретения предложен способ получения воды высокой степени очистки из реакционной воды Фишера-Тропша, включающий по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления по меньшей мере части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша, для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами по меньшей мере части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части, с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую разделение твердого вещества и жидкости для удаления по меньшей мере некоторого количества твердых веществ из по меньшей мере части вторичного обогащенного водой потока для получения третичного обогащенного водой потока; и
г) стадию четвертичной обработки, включающую стадию удаления растворенных солей и органики, для удаления по меньшей мере некоторого количества растворенных солей и органических компонентов из по меньшей мере части третичного обогащенного водой потока.
В соответствии с четвертым аспектом данного изобретения предложен способ получения воды высокой степени очистки из реакционной воды Фишера-Тропша, который включает по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления по меньшей мере части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша, для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами по меньшей мере части первичного обогащенного водой потока, для снижения таким образом общей массовой доли органических компонентов в неиспаренной части, с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую биологическую обработку для удаления по меньшей мере части растворенного органического углерода из вторичного обогащенного водой потока с получением третичного обогащенного водой потока;
г) стадию четвертичной обработки, включающую разделение твердого вещества и жидкости для удаления по меньшей мере некоторого количества твердых веществ из по меньшей мере части третичного обогащенного водой потока для получения четвертичного обогащенного водой потока; и
д) стадию окончательной обработки, включающую стадию удаления растворенных солей и органики для удаления по меньшей мере некоторого количества растворенных солей и органических компонентов из по меньшей мере части четвертичного обогащенного водой потока.
Термин "вода высокой степени очистки" следует интерпретировать как обозначающий водный поток, имеющий ХПК менее 50 мг/л, рН в диапазоне от 6,0 до 9,0, содержание взвешенных твердых веществ менее 50 мг/л и общее содержание растворенных твердых веществ менее 100 мг/л.
Некислотные кислородсодержащие углеводороды обычно выбраны из группы, включающей альдегиды, кетоны и спирты, а более конкретно выбраны из группы, включающей уксусный альдегид, пропионовый альдегид, масляный альдегид, ацетон, метилпропилкетон, метанол, этанол, пропанол, бутанол, пентанол, гексанол и гептанол.
Для использования на первичной стадии обработки пригодно большое количество процессов. Они могут включать обычные процессы перегонки, обычно используемые в нефтеперерабатывающей и нефтехимической промышленности, а также экстракцию растворителем с использованием обычных жидких растворителей или сжиженных газов.
Если в качестве первичной стадии обработки используют перегонку, то удаляют основную массу некислотных кислородсодержащих углеводородов, содержащихся в реакционной воде Фишера-Тропша; остаются главным образом монокарбоновые кислоты (например, уксусная кислота, пропионовая кислота) и, возможно, следовые количества некислотных соединений. Вследствие присутствия органических кислот первичный обогащенный водой поток известен как кислая вода Фишера-Тропша.
Верхние погоны от перегонки можно отделить и переработать в конечные продукты, или же их можно использовать в качестве топлива или источника энергии.
Стадия первичной обработки может включать дегазацию реакционной воды перед дальнейшей обработкой.
Обычно реакционная вода Фишера-Тропша, получаемая в результате ВТФТ процессов с железным катализатором и прошедшая первичную обработку, имеет ограниченное применение вследствие относительно высоких концентраций (>1 мас.%) органических кислот, остающихся в кислой воде Фишера-Тропша, и необходима дальнейшая обработка этой воды. В противоположность этому, реакционная вода Фишера-Тропша, образующаяся в результате НТФТ процессов с катализатором на основе кобальта и прошедшая первичную обработку, содержит значительно более низкие концентрации органических кислот (<0,1 мас.%), и, следовательно, ее можно после нейтрализации сбрасывать в окружающую среду, если возможно осуществить достаточное разбавление, и нормативы по выбросам это позволяют. Этот первичный обогащенный водой поток может также иметь ограниченное применение в качестве технической воды.
Процесс стадии б) может происходить при температуре и давлении окружающей среды.
При испарении в градирне количество по меньшей мере некоторых из растворенных органических компонентов, содержащихся в первичном обогащенном водой потоке, снижается посредством воздействия микроорганизмов. Компоненты, которые удаляются полностью или частично, включают кислотные кислородсодержащие углеводороды и метанол.
При использовании первичного обогащенного водой потока в качестве охлаждающей воды избыток кислорода, вызванный аэрацией в градирне, активирует рост микроорганизмов, которые используют растворенные органические компоненты в первичном обогащенном водой потоке в качестве источника пищи.
Процесс стадии б) может включать использование первичного обогащенного водой потока в качестве воды для подпитки испарительной градирни. Испарительную градирню можно выбрать из группы, включающей градирни с вентилятором, градирни с естественной тягой и градирни с нагнетательным вентилятором.
При использовании первичного обогащенного водой потока в качестве охлаждающей воды линейная скорость потока этой воды через оборудование, которое используют при охлаждении, должна быть достаточно высокой, чтобы препятствовать осаждению взвешенных твердых веществ в указанном оборудовании.
Величину рН первичного обогащенного водой потока следует регулировать путем добавления щелочи, например каустической соды, чтобы предотвратить кислотную коррозию поверхностей металла и/или бетона, которые могут контактировать с этой водой.
Перед использованием первичного обогащенного водой потока в качестве охлаждающей воды к нему можно добавить одну или более подходящих добавок для ингибирования нежелательных эффектов, такие как, например, засорение, коррозия или образование накипи.
Биологическая обработка вторичного обогащенного водой потока может включать аэробную обработку.
Способ аэробной обработки может быть таким же, как обычно применяемый для обработки бытовых и промышленных стоков.
Аэробная обработка может включать добавление питательных веществ в виде соединений, содержащих азот (например, мочевины, аммиака или аммонийных солей) и фосфор (например, фосфатных солей), для ускорения микробиологического разложения органических углеродсодержащих компонентов. Кроме того, для оптимизации поведения микроорганизмов может потребоваться регулирование рН с использованием щелочных соединений, таких как известь, каустическая или кальцинированная сода.
При аэробной обработке вторичного обогащенного водой потока можно использовать широкий диапазон способов. Такие способы можно выбрать из группы, включающей процессы с активированным илом, с использованием высокоскоростных компактных реакторов, биологических аэрированных фильтров, фильтров с орошением, вращающихся биологических контакторов, мембранных биореакторов и реакторов с псевдоожиженным слоем. Также успешно разработано аэробное получение одноклеточного протеина (ОКП).
Кроме обогащенного водой потока, или третичного обогащенного водой потока, аэробная обработка обычно дает в качестве побочных продуктов диоксид углерода и осадок (ил). Диоксид углерода можно выпустить в окружающую среду. Осадок можно сжечь, использовать для заполнения пустот в земле, в качестве удобрения, кондиционера для почвы или как источник ОКП.
Стадия четвертичной обработки может иметь целью удаление взвешенных твердых веществ из обогащенного водой потока, полученного при биологической обработке.
Удаление взвешенных твердых веществ можно осуществить способами, выбранными из группы, включающей фильтрацию через песок, мембранное разделение (например, микро- или ультрафильтрация), седиментацию с использованием флокулянтов, флотацию растворенным воздухом (с использованием или без использования флокулянтов) и центрифугирование.
Оставшиеся органические частицы, не удаленные при биологической обработке и удалении твердых веществ, можно удалить способами, выбранными из группы, включающей химическое окисление с использованием таких агентов, как озон и пероксид водорода; воздействие свободных радикалов, образованных при ультрафиолетовом облучении; и процессы адсорбции/абсорбции, включающие обработку активированным углем и органическими очищающими смолами.
Содержание растворенных солей, введенных в ходе вторичной обработки (то есть химикатов для регулирования рН и добавленных питательных веществ), и/или при совместной обработке с другими сточными водами, можно далее снизить способами, выбранными из группы, включающей ионный обмен, обратный осмос, нанофильтрацию и способы химического осаждения, включая горячее и холодное умягчение известью.
Области применения для воды высокой степени очистки, полученной описанным выше способом, может включать ее использование в качестве воды для питания котлов и питьевой воды.
Вода высокой степени очистки обычно имеет следующие характеристики.
Свойство
Химическая потребность в кислороде (ХПК) мг/л <50
pH 6,0-9,0
Общее содержание растворенных твердых веществ (ОРТ) мг/л <100
Взвешенные твердые вещества мг/л <50
Преимуществами, присущими очищенной воде и воде высокой степени очистки, полученным согласно данному изобретению, является то, что эта вода будет содержать только небольшое количество растворенных твердых веществ, поскольку реакционная вода Фишера-Тропша является потоком, в существенной степени свободным от растворенных твердых веществ. Низкий уровень остаточных солей в очищенной воде является результатом контролируемого добавления химикатов, используемых в процессе очистки и/или при совместной обработке других стоков, содержащих растворенные твердые вещества. Эти остаточные соли могут включать сочетания Са, Mg, Na, K, Cl, SO4, НСО3 и СО3. Низкие концентрации растворенных твердых веществ в реакционной воде Фишера-Тропша могут упростить процесс очистки и снизить его стоимость.
Далее данное изобретение будет описано с помощью следующих неограничивающих примеров со ссылкой на сопутствующий чертеж.
На фиг.1 представлена упрощенная блок-схема способа 10 согласно данному изобретению, включающего различные возможности обработки.
Реакционную воду Фишера-Тропша 12 подают в перегонную колонну 14 для первичной обработки.
Из перегонной колонны 14 выходят два потока: 16 и 18. Поток 16 содержит преимущественно органические компоненты, в то время поток 18 представляет собой первичный обогащенный водой поток.
Затем поток 18 направляют в градирню 20 с нагнетательным вентилятором, где поток 18 используют как воду для подпитки градирни с нагнетательным вентилятором. При использовании потока 18 в качестве охлаждающей воды его объем уменьшается при испарении, и количество по меньшей мере некоторых из растворенных органических компонентов в потоке 18 снижается вследствие избытка кислорода, вызванного аэрацией в градирне 20, что активирует рост микроорганизмов, которые используют растворенные органические компоненты в первичном обогащенном водой потоке 18 в качестве источника пищи.
Поток 22 представляет собой откачанную или неиспаренную часть воды (или вторичный обогащенный водой поток) из градирни 20, и его подвергают биологической обработке в форме аэробного сбраживания 24, которое дает осадок 26, диоксид углерода 28 и третичный обогащенный водой поток 30.
Следующая стадия обработки включает обработку третичного обогащенного водой потока 30 посредством разделения 32 твердого вещества и жидкости, в ходе которого получают твердые вещества 34 в форме осадка, а также поток очищенной воды 36.
Некоторое количество очищенной воды 36 со стадии разделения 32 твердого вещества и жидкости направляют на конечную стадию обработки в форме мембранного разделения 38 для получения воды высокой степени очистки 40 и концентрата 42. Поток 42 содержит бионеразлагаемые органические частицы, концентрированные неорганические соли, например сульфаты и хлориды натрия и кальция, а также повышенные концентрации взвешенных твердых веществ.
В зависимости от конечного предполагаемого использования очищенной воды 36 или воды высокой степени очистки 40, минимальные требования к качеству воды приведены ниже в таблице 2, а рабочие условия оборудования, применяемого в этом способе, а также возможные условия обработки можно выбрать соответственно.
Таблица 2.
Типичные требования к качеству воды
Техническая вода Вода для орошения Охлаждающая вода Вода для питания котлов Питьевая вода
ХПК, мг/л 0-75 - 0-30 0-10 -
pH 5-10 6,5-8,4 6,5-8 7-8 6-9
ОРТ, мг/л 0-1600 <40 0-450 0-100 0-450
ВТ, мг/л 0-25 0-50 0-5 0-3 <20
После описания основных аспектов данного изобретения приведен следующий пример для дальнейшей иллюстрации конкретного варианта выполнения данного изобретения.
Пример: Обработка реакционной воды Фишера-Тропша, полученной при НТФТ процессе с кобальтовым катализатором.
После отделения побочных продуктов обогащенный водой поток, полученный в НТФТ процессе, дегазировали при атмосферном давлении. Содержание свободных углеводородов в обогащенном водой потоке снизили до 0,01 мас.% с использованием коагулятора.
Первичную обработку полученной таким образом реакционной воды Фишера-Тропша проводили с использованием перегонки. Анализ кубового остатка из перегонной колонны - кислой воды ФТ - приведен ниже в таблице 3. Очевидно, что за исключением следовых количеств метанола, большинство остальных некислотных кислородсодержащих углеводородов были удалены в ходе первичной перегонки, с получением обогащенного органическими кислотами, или первичного обогащенного водой потока (то есть с 0,072 мас.% органических кислот) со значением рН 3,5. Измеренное значение химической потребности в кислороде (ХПК) этого потока составляло порядка 800 мг O2/л.
Таблица 3
Типичный состав питающей реакционной воды НТФТ и кислой кубовой воды в ходе первичной обработки (перегонки)
Компонент Реакционная вода, поступающая в колонну первичной перегонки (мас.%) Кислая вода - кубовый остаток колонны первичной перегонки (мас.%)
Вода 97,629 99,840
Ацетальдегид 0,019 0,000
Пропионовый альдегид 0,002 0,000
Масляный альдегид 0,001 0,000
Ацетон 0,007 0,000
МПК 0,001 0,000
Метанол 0,434 0,001
Этанол 0,369 0,000
Пропанол 0,140 0,000
Изопропанол 0,002 0,000
Бутанол 0,056 0,000
Пентанол 0,047 0,000
Изопентанол 0,001 0,000
Гексанол 0,019 0,000
Изогексанол 0,001 0,000
Гептанол 0,007 0,000
Другие некислотные соединения 0,004 0,000
Общее содержание некислотных соединений 1,106 0,001
Муравьиная кислота 0,025 0,025
Уксусная кислота 0,039 0,040
Пропионовая кислота 0,002 0,002
Масляная кислота 0,002 0,002
Другие кислоты 0,006 0,006
Общее содержание кислот 0,070 0,072
Другие углеводороды 0,011 0,011
Первичный обогащенный водой поток был направлен в открытую сборную емкость приблизительно при 70°С.
Для того чтобы поддерживать микробиологическую популяцию в первичном обогащенном водой потоке, к указанному потоку были добавлены азот в форме мочевины и фосфор в форме фосфорной кислоты. После этого рН первичного обогащенного водой потока откорректировали до 5 с использованием гидроксида натрия.
Затем первичный обогащенный водой поток направили в качестве подпитывающей воды в градирню с нагнетательным вентилятором. Градирня работала на четырех циклах концентрации и с перепадом температур 10°С.
Удаление органики (измеренное как ХПК) из первичного обогащенного водой потока в градирне составляло порядка 45% при удалении летучих кислот около 55%. ХПК рециркулирующей воды в градирне составляло приблизительно 1800 мг/л, а концентрация взвешенных твердых веществ составляла примерно 200 мг/л, в то время как величина рН воды изменялась в диапазоне от 6,5 до 7,5.
Коррозию, засорение и образование накипи в градирне и прилегающих теплообменниках поддерживали в приемлемых пределах путем использования соответствующей программы химической обработки, которая включала биологический диспергирующий агент и ингибитор образования накипи.
Откачанную или неиспарившуюся часть воды из градирни (вторичный обогащенный водой поток) затем обрабатывали в системе полного смешивания с активированным илом (аэробная обработка) при следующих условиях:
рН: 7,2-7,5
Концентрация растворенного кислорода: >2 мг/л
Температура: 35°С
Гидравлическое время пребывания: 30 ч
Соотношение F/M: 0,2-0,4 кг ХПК/кг суспендированных твердых веществ смешанного раствора (СТВСР, MLSS). сутки
Время пребывания клеток (возраст ила) - 13 суток
Соотношение питающего потока к рециклу: 1:2
Была достигнута эффективность удаления ХПК 91%, и полученный таким образом третичный обогащенный водой поток имел ХПК 160 мг/л.
Концентрация взвешенных твердых веществ в третичном обогащенном водой потоке составляла в среднем около 120 мг/л.
Затем третичный обогащенный водой поток подвергли фильтрации через песок для снижения концентрации в нем твердых веществ до 25 мг/л. Полученную таким образом очищенную воду можно было применять как для орошения, так и в качестве технической воды для охлаждения. Полученный в процессе ил был сожжен.
В качестве альтернативы обработке в системе с активированным илом, отобранный из градирни поток или его часть направляли в мембранную установку с перекрестным током, снабженную 0,2 мкм полипропиленовой микрофильтрационной мембраной. При стабильной работе блока была получена скорость потока пермеата 70-80 л/м2·ч. Отделение воды в этой установке изменялось в пределах 75-85%. Полученные концентрации ХПК и ТВ в пермеате после блока микрофильтрации составляли 1750 мг O2/л и <5 мг/л соответственно.
Величину рН очищенной воды после установки микрофильтрации откорректировали до 8,5 с использованием гидроксида натрия, и очищенную воду перекачивали в установку обратного осмоса, снабженную полиамидной мембраной высокой степени разделения для опреснения морской воды. При стабильной работе установки была получена скорость потока пермеата 20-25 л/м2·ч. Отделение воды в установке обратного осмоса изменялось в пределах 80-90%. Установка давала поток воды высокой степени очистки с концентрациями ХПК и ОРТ 45-50 мг O2/л и 20-30 мг/л соответственно.
Следует понимать, что данное изобретение не ограничено каким-либо конкретным вариантом выполнения или конфигурацией, как это в общем было выше описано или проиллюстрировано; например, согласно описанному выше способу можно очистить дождевую воду или обогащенные водой потоки, полученные в процессах, отличных от синтеза Фишера-Тропша.

Claims (25)

1. Способ получения очищенной воды из реакционной воды Фишера-Тропша, причем очищенная вода представляет собой водный поток, имеющий ХПК от 20 до 500 мг/л, рН от 6,0 до 9,0, содержание взвешенных твердых веществ менее 250 мг/л и общее содержание растворенных солей менее 600 мг/л, при этом способ включает по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления, по меньшей мере, части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами, по меньшей мере, части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока; и
в) стадию окончательной обработки, включающую разделение твердого вещества и жидкости для удаления, по меньшей мере, некоторого количества твердых веществ из, по меньшей мере, части вторичного обогащенного водой потока.
2. Способ получения очищенной воды из реакционной воды Фишера-Тропша, причем очищенная вода представляет собой водный поток, имеющий ХПК от 20 до 500 мг/л, рН от 6,0 до 9,0, содержание взвешенных твердых веществ менее 250 мг/л и общее содержание растворенных солей менее 600 мг/л, при этом способ включает по меньшей мере следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления, по меньшей мере, части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами, по меньшей мере, части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую биологическую обработку для удаления, по меньшей мере, части растворенного органического углерода из вторичного обогащенного водой потока с получением третичного обогащенного водой потока; и
г) стадию четвертичной обработки, включающую разделение твердого вещества и жидкости для удаления, по меньшей мере, некоторого количества твердых веществ из, по меньшей мере, части третичного обогащенного водой потока.
3. Способ по п.1 или 2, в котором некислотные кислородсодержащие углеводороды выбраны из группы, включающей ацетальдегид, пропионовый альдегид, масляный альдегид, ацетон, метилпропилкетон, метанол, этанол, пропанол, бутанол, пентанол, гексанол и гептанол.
4. Способ по п.1 или 2, в котором растворенный органический углерод выбран из группы, включающей альдегиды, кетоны, спирты и органические кислоты.
5. Способ по п.1 или 2, в котором процесс для использования на стадии первичной обработки выбирают из группы, включающей перегонку, экстракцию растворителем с использованием жидких растворителей и экстракцию растворителем с использованием сжиженных газов.
6. Способ по п.1 или 2, в котором стадия первичной обработки включает дегазацию реакционной воды Фишера-Тропша перед дальнейшей обработкой на стадии первичной обработки.
7. Способ по п.1 или 2, в котором процесс стадии б) происходит при температуре и давлении окружающей среды.
8. Способ по п.1 или 2, в котором процесс стадии б) происходит при использовании первичного обогащенного водой потока в качестве воды для подпитки испарительной градирни.
9. Способ по п.8, в котором испарительную градирню выбирают из группы, включающей градирни с вентилятором, градирни с естественной тягой и градирни с нагнетательным вентилятором.
10. Способ по п.2, в котором биологическая обработка на стадии в) представляет собой способ аэробной обработки.
11. Способ по п.10, в котором способ аэробной обработки выбирают из группы, включающей процессы с активированным илом с использованием биологических аэрируемых фильтров, фильтров с орошением, вращающихся биологических контакторов, высокоскоростных компактных реакторов, мембранных биореакторов и реакторов с псевдоожиженным слоем.
12. Способ по п.2, в котором на стадии четвертичной обработки взвешенные твердые вещества удаляют из третичного обогащенного водой потока, полученного в ходе биологической обработки.
13. Способ получения воды высокой степени очистки из реакционной воды Фишера-Тропша, причем вода высокой степени очистки представляет собой водный поток, имеющий ХПК менее 50 мг/л, рН от 6,0 до 9,0, содержание взвешенных твердых веществ менее 50 мг/л и общее содержание растворенных солей менее 100 мг/л, при этом способ включает, по меньшей мере, следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления, по меньшей мере, части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами, по меньшей мере, части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую разделение твердого вещества и жидкости для удаления, по меньшей мере, некоторого количества твердых веществ из, по меньшей мере, части вторичного обогащенного водой потока с получением третичного обогащенного водой потока; и
г) стадию окончательной обработки, включающую стадию удаления растворенных солей и органики для удаления, по меньшей мере, некоторого количества растворенных солей и органических компонентов из, по меньшей мере, части третичного обогащенного водой потока.
14. Способ получения воды высокой степени очистки из реакционной воды Фишера-Тропша, причем очищенная вода представляет собой водный поток, имеющий ХПК менее 50 мг/л, рН от 6,0 до 9,0, содержание взвешенных твердых веществ менее 50 мг/л и общее содержание растворенных солей менее 100 мг/л, при этом способ включает, по меньшей мере, следующие стадии:
а) стадию первичной обработки, включающую перегонку или экстракцию, включающую, по меньшей мере, одну стадию удаления, по меньшей мере, части некислотных кислородсодержащих углеводородов из реакционной воды Фишера-Тропша для получения первичного обогащенного водой потока;
б) стадию вторичной обработки, включающую аэрацию в испарительной градирне и обработку микроорганизмами, по меньшей мере, части первичного обогащенного водой потока для снижения таким образом общей массовой доли органических компонентов в неиспаренной части с получением вторичного обогащенного водой потока;
в) стадию третичной обработки, включающую биологическую обработку для удаления, по меньшей мере, части растворенного органического углерода из вторичного обогащенного водой потока с получением третичного обогащенного водой потока;
г) стадию четвертичной обработки, включающую разделение твердого вещества и жидкости для удаления, по меньшей мере, некоторого количества твердых веществ из, по меньшей мере, части третичного обогащенного водой потока с получением четвертичного обогащенного водой потока; и
д) стадию окончательной обработки, включающую стадию удаления растворенных солей и органики для удаления, по меньшей мере, некоторого количества растворенных солей и органических компонентов из, по меньшей мере, части четвертичного обогащенного водой потока.
15. Способ по п.13 или 14, в котором некислотные кислородсодержащие углеводороды выбраны из группы, включающей альдегиды, кетоны, спирты и органические кислоты.
16. Способ по п.13 или 14, в котором процесс для использования на стадии первичной обработки выбирают из группы, включающей перегонку, экстракцию растворителем с использованием жидких растворителей и экстракцию растворителем с использованием сжиженных газов.
17. Способ по п.13 или 14, в котором стадия первичной обработки включает дегазацию реакционной воды перед дальнейшей обработкой на стадии первичной обработки.
18. Способ по п.13 или 14, в котором процесс стадии б) происходит при температуре и давлении окружающей среды.
19. Способ по п.18, в котором испарительную градирню выбирают из группы, включающей градирни с вентилятором, градирни с естественной тягой и градирни с нагнетательным вентилятором.
20. Способ по п.13 или 14, в котором биологическая обработка на стадии в) представляет собой способ аэробной обработки.
21. Способ по п.20, в котором способ аэробной обработки выбирают из группы, включающей процессы с активированным илом с использованием биологических аэрируемых фильтров, фильтров с орошением, вращающихся биологических контакторов, высокоскоростных компактных реакторов, мембранных биореакторов и реакторов с псевдоожиженным слоем.
22. Способ по п.14, в котором на стадии четвертичной обработки взвешенные твердые вещества удаляют из третичного обогащенного водой потока, полученного в ходе биологической обработки.
23. Способ по п.14, в котором остаточные органические частицы удаляют на стадии окончательной обработки одним или более из способов, выбранных из группы, включающей химическое окисление, действие свободных радикалов, образованных при ультрафиолетовом излучении, процессы адсорбции и/или абсорбции.
24. Способ по п.23, в котором процессы адсорбции и/или абсорбции включают один из способов: обработку активированным углем или использование органических очищающих смол, или оба эти способа.
25. Способ по п.14, в котором содержание растворенных солей, полученных при третичной обработке и/или при совместной обработке других промышленных сточных вод, снижают на стадии окончательной обработки одним или более способом из группы, включающей ионный обмен, обратный осмос, нанофильтрацию и способ химического осаждения.
RU2004138557A 2002-06-18 2003-06-18 Способ очистки воды, полученной в процессе фишера-тропша RU2329199C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39068902P 2002-06-18 2002-06-18
US60/390,689 2002-06-18
ZA2002/4849 2002-06-18
ZA200204849 2002-06-18

Publications (2)

Publication Number Publication Date
RU2004138557A RU2004138557A (ru) 2005-09-10
RU2329199C2 true RU2329199C2 (ru) 2008-07-20

Family

ID=27669346

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004138557A RU2329199C2 (ru) 2002-06-18 2003-06-18 Способ очистки воды, полученной в процессе фишера-тропша

Country Status (10)

Country Link
US (1) US7153393B2 (ru)
JP (1) JP4977317B2 (ru)
CN (1) CN1321069C (ru)
AU (1) AU2003276163C1 (ru)
BR (1) BR0311900B1 (ru)
GB (1) GB2391227B (ru)
NL (1) NL1023694C2 (ru)
NO (1) NO20050241L (ru)
RU (1) RU2329199C2 (ru)
WO (1) WO2003106346A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451167C2 (ru) * 2010-01-06 2012-05-20 Хэллибертон Энерджи Сервисиз, Инк. Мобильная система обработки уф светом и соответствующие способы
RU2507163C2 (ru) * 2009-01-30 2014-02-20 Эни С.П.А. Способ очистки водного потока, выходящего после реакции фишера-тропша
RU2511362C2 (ru) * 2008-12-19 2014-04-10 Эни С.П.А. Способ очистки водного потока, поступающего после реакции фишера-тропша
RU2550856C2 (ru) * 2009-10-08 2015-05-20 Эни С.П.А. Способ очистки водного потока, поступающего из реакции фишера-тропша
RU2728486C2 (ru) * 2015-09-09 2020-07-29 ЧЭН Сяолин Способы опреснения и получения удобрения

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106353A1 (en) 2002-06-18 2003-12-24 Sasol Technology (Pty) Ltd Method of purifying fischer-tropsch derived water
WO2003106346A1 (en) 2002-06-18 2003-12-24 Sasol Technology (Pty) Ltd Method of purifying fischer-tropsch derived water
IN2012DN01586A (ru) 2002-06-18 2015-06-05 Sasol Tech Pty Ltd
US7479468B2 (en) 2004-04-15 2009-01-20 Exxonmobil Chemical Patents Inc. Integrating an air separation unit into an oxygenate-to-olefins reaction system
US7488411B2 (en) 2004-09-28 2009-02-10 Chevron U.S.A. Inc. Fischer-tropsch wax composition and method of transport
US7479216B2 (en) 2004-09-28 2009-01-20 Chevron U.S.A. Inc. Fischer-Tropsch wax composition and method of transport
CN101190821B (zh) * 2006-11-30 2012-01-25 中国石油化工股份有限公司 一种费-托合成反应水的处理方法
US8076122B2 (en) 2007-07-25 2011-12-13 Chevron U.S.A. Inc. Process for integrating conversion of hydrocarbonaceous assets and photobiofuels production using an absorption tower
US8076121B2 (en) 2007-07-25 2011-12-13 Chevron U.S.A. Inc. Integrated process for conversion of hydrocarbonaceous assets and photobiofuels production
ITMI20080079A1 (it) * 2008-01-18 2009-07-19 Eni Spa Processo per la purificazione di una corrente acquosa proveniente dalla reazione di fischer-tropsch
ITMI20080078A1 (it) * 2008-01-18 2009-07-19 Eni Spa Processo per il trattamento della corrente acquosa proveniente dalla reazione fischer-tropsch
AU2009230315B2 (en) * 2008-03-24 2013-04-18 Chiyoda Corporation Method for purification treatment of process water
US8361172B2 (en) * 2008-12-23 2013-01-29 Chevron U.S.A. Inc. Low melting point triglycerides for use in fuels
US8324413B2 (en) * 2008-12-23 2012-12-04 Texaco Inc. Low melting point triglycerides for use in fuels
TWI385024B (zh) * 2010-01-28 2013-02-11 私立中原大學 An on - line detection and analysis device for film filtration
KR101809769B1 (ko) * 2010-03-05 2018-01-18 쿠리타 고교 가부시키가이샤 수처리 방법 및 초순수 제조 방법
CN102001794B (zh) * 2010-11-30 2012-07-04 华东理工大学 一种不饱和聚酯树脂生产废水处理方法
CN102079603B (zh) * 2010-12-20 2012-01-04 大连理工大学 一种高浓度的有机和无机混合废水处理回收方法
US9908800B2 (en) * 2011-04-14 2018-03-06 Global Water Group, Incorporated System and method for wastewater treatment
JP5629650B2 (ja) * 2011-06-30 2014-11-26 株式会社日立製作所 水処理プロセス及びその浄水装置
RU2544510C1 (ru) * 2014-02-11 2015-03-20 Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" Способ очистки реакционной воды в процессе производства углеводородов
CN106103355A (zh) * 2014-02-13 2016-11-09 斯坦陵布什大学 结合离心作用的生物过滤
DE102016107612A1 (de) * 2016-04-25 2017-10-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Anlage zur Reinigung von Prozesskondensat aus der katalytischen Dampfreformierung eines kohlenwasserstoffhaltigen Einsatzgases
US10260005B2 (en) 2016-08-05 2019-04-16 Greyrock Technology LLC Catalysts, related methods and reaction products
CN108892304B (zh) * 2018-08-01 2021-08-31 青岛绿谷知识产权有限公司 一种高效家用污水处理装置
CN109516622B (zh) * 2018-11-16 2022-03-04 聊城鲁西氯苄化工有限公司 一种苯甲醇生产系统中高盐废水的处理工艺
CN109607932B (zh) * 2018-12-25 2021-08-17 吉林建筑大学 一种城市污水处理再生水循环过滤装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683158A (en) * 1949-05-21 1954-07-06 Standard Oil Dev Co Hydrocarbon synthesis process
GB672365A (en) * 1950-02-21 1952-05-21 Cities Service Oil Co A distillation process for the treatment of organic mixtures containing alcohols and organic acids
PH20878A (en) 1978-06-12 1987-05-27 Univ Malaya Treatment of palm oil mill processing effluent by solvent extraction
ZA841928B (en) * 1983-03-15 1984-10-31 Ver Edelstahlwerke Ag Process for working up waste waters from the synthesis of hydrocarbons
US4746434A (en) * 1987-06-24 1988-05-24 Amoco Corporation Process for treating sour water in oil refineries
US4948511A (en) * 1989-04-14 1990-08-14 Maxwell Laboratories, Inc. Method for extracting dissolved organic pollutants from aqueous streams
WO1993012242A1 (en) 1991-12-11 1993-06-24 Sasol Chemicals Europe Limited Method to produce single cell oil containing gamma-linolenic acid
JPH08155434A (ja) * 1994-12-09 1996-06-18 Hitachi Zosen Corp 廃水からの純水回収システム
EP0838435A1 (en) 1996-10-25 1998-04-29 Kvaerner Process Technology Limited Process and plant for treating an aqueous waste stream containing alkali metal carboxylates
US6225358B1 (en) * 1999-02-16 2001-05-01 Syntroleum Corporation System and method for converting light hydrocarbons to heavier hydrocarbons with improved water disposal
FR2807027B1 (fr) * 2000-03-31 2002-05-31 Inst Francais Du Petrole Procede de production d'eau purifiee et d'hydrocarbures a partir de ressources fossiles
BRPI0214730B1 (pt) * 2001-12-06 2015-08-11 Sasol Tech Pty Ltd Método para separar pelo menos uma fração de produtos químicos não-ácidos de pelo menos uma fração de um produto bruto gasoso produzido durante uma reação de fischer-tropsch ou de um seu condensado
WO2003106346A1 (en) 2002-06-18 2003-12-24 Sasol Technology (Pty) Ltd Method of purifying fischer-tropsch derived water
WO2003106349A1 (en) 2002-06-18 2003-12-24 Sasol Technology (Pty) Ltd Method of purifying fischer-tropsch derived water
JP4499557B2 (ja) 2002-06-18 2010-07-07 サソール テクノロジー(プロプライエタリー)リミテッド フィッシャー−トロプシュ法由来水の精製方法
IN2012DN01586A (ru) * 2002-06-18 2015-06-05 Sasol Tech Pty Ltd

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2511362C2 (ru) * 2008-12-19 2014-04-10 Эни С.П.А. Способ очистки водного потока, поступающего после реакции фишера-тропша
RU2511362C9 (ru) * 2008-12-19 2014-06-27 Эни С.П.А. Способ очистки водного потока, поступающего после реакции фишера-тропша
RU2507163C2 (ru) * 2009-01-30 2014-02-20 Эни С.П.А. Способ очистки водного потока, выходящего после реакции фишера-тропша
RU2550856C2 (ru) * 2009-10-08 2015-05-20 Эни С.П.А. Способ очистки водного потока, поступающего из реакции фишера-тропша
RU2550856C9 (ru) * 2009-10-08 2015-09-10 Эни С.П.А. Способ очистки водного потока, поступающего из реакции фишера-тропша
RU2451167C2 (ru) * 2010-01-06 2012-05-20 Хэллибертон Энерджи Сервисиз, Инк. Мобильная система обработки уф светом и соответствующие способы
RU2728486C2 (ru) * 2015-09-09 2020-07-29 ЧЭН Сяолин Способы опреснения и получения удобрения

Also Published As

Publication number Publication date
GB0314081D0 (en) 2003-07-23
RU2004138557A (ru) 2005-09-10
JP4977317B2 (ja) 2012-07-18
NL1023694A1 (nl) 2003-12-19
BR0311900B1 (pt) 2012-05-15
AU2003276163A1 (en) 2003-12-31
GB2391227A (en) 2004-02-04
NO20050241L (no) 2005-03-17
GB2391227B (en) 2005-10-26
AU2003276163B2 (en) 2009-01-08
AU2003276163C1 (en) 2009-07-23
US20050131085A1 (en) 2005-06-16
US7153393B2 (en) 2006-12-26
JP2005534468A (ja) 2005-11-17
CN1321069C (zh) 2007-06-13
BR0311900A (pt) 2005-04-05
WO2003106346A1 (en) 2003-12-24
CN1662450A (zh) 2005-08-31
NL1023694C2 (nl) 2004-02-03

Similar Documents

Publication Publication Date Title
RU2329199C2 (ru) Способ очистки воды, полученной в процессе фишера-тропша
RU2324662C2 (ru) Способ очистки воды, полученной в процессе фишера-тропша
RU2328456C2 (ru) Способ очистки воды, полученной в процессе фишера-тропша
RU2331592C2 (ru) Способ очистки воды, полученной в процессе фишера-тропша
RU2328457C2 (ru) Способ очистки воды, полученной в процессе фишера-тропша
CN113943071A (zh) 一种将高浓度有机废水资源化处理的系统和方法