RU2324534C2 - Способ проведения химических реакций в псевдоизотермических условиях - Google Patents

Способ проведения химических реакций в псевдоизотермических условиях Download PDF

Info

Publication number
RU2324534C2
RU2324534C2 RU2005128968/12A RU2005128968A RU2324534C2 RU 2324534 C2 RU2324534 C2 RU 2324534C2 RU 2005128968/12 A RU2005128968/12 A RU 2005128968/12A RU 2005128968 A RU2005128968 A RU 2005128968A RU 2324534 C2 RU2324534 C2 RU 2324534C2
Authority
RU
Russia
Prior art keywords
heat exchangers
temperature
heat
catalyst
pseudo
Prior art date
Application number
RU2005128968/12A
Other languages
English (en)
Other versions
RU2005128968A (ru
Inventor
Эрманно ФИЛИППИ (CH)
Эрманно Филиппи
Энрико РИЦЦИ (IT)
Энрико РИЦЦИ
Мирко ТАРОЦЦО (CH)
Мирко ТАРОЦЦО
Original Assignee
Метанол Касале С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32668999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2324534(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Метанол Касале С.А. filed Critical Метанол Касале С.А.
Publication of RU2005128968A publication Critical patent/RU2005128968A/ru
Application granted granted Critical
Publication of RU2324534C2 publication Critical patent/RU2324534C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/28Methods of preparing ammonium salts in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/04Formaldehyde
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/0006Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00204Sensing a parameter of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00218Dynamically variable (in-line) parameter values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к способу контроля температуры химической реакции, протекающей в псевдоизотермическом химическом реакторе. Псевдоизотермические условия поддерживаются с помощью погруженных в слой катализатора теплообменников, через которые пропускают текучий теплоноситель. Скорость теплоносителя поддерживают в определенном интервале, в котором коэффициент теплопередачи в теплообменнике меньше коэффициента теплопередачи в слое катализатора. Псевдоизотермический химический реактор со слоем катализатора и погруженными в катализатор теплообменниками снабжен системой регулирования температуры в расположенной между теплообменниками зоне реакции в слое катализатора. Система содержит датчик для непрерывного измерения разности ΔТ между температурой в центральной части зоны реакции и температурой этой зоны у теплообменников, соединенный с датчиком блок управления и соединенный с блоком управления регулятор расхода, регулирующий расход текучего теплоносителя через теплообменники. Обеспечивается повышение эффективности реакции и увеличение общего конверсионного выхода реакции. 2 н. и 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к способу проведения химических реакций в контролируемых псевдоизотермических условиях или, иными словами, в условиях, в которых температуру реакции поддерживают в узком интервале значений с небольшими отклонениями от заданной температуры реакции Т. Настоящее изобретение относится, в частности, к способу регулирования температуры реакции в слое катализатора реактора, в котором реакцию проводят в псевдоизотермических условиях с помощью по меньшей мере одного погруженного в слой катализатора теплообменника, через который пропускают соответствующий текучий теплоноситель.
Уровень техники
Известно, что в настоящее время температуру псевдоизотермических реакций в каталитических реакторах контролируют путем теплообмена пропускаемого через соответствующие теплообменники текучего теплоносителя со слоем катализатора, в который погружены теплообменники и в котором протекает реакция.
Известно также, что для повышения выхода реакции постоянно ведутся различного рода исследования, направленные на оптимизацию такого теплообмена. В процессе теплообмена необходимо обеспечить максимальную теплопередачу между текучим теплоносителем и слоем катализатора, т.е. максимально повысить коэффициент теплопередачи и в теплообменниках, через которые пропускают текучий теплоноситель, и в слое катализатора.
Было установлено, однако, что при такой оптимизации процесса теплообмена в слое катализатора возникает значительный перепад температуры. При этом, в частности, температура в слое катализатора меняется от температуры теплообменников, а точнее, от температуры наружной стенки теплообменников, до второй температуры в тех точках слоя катализатора, которые максимально удалены от теплообменников.
В приведенном ниже описании и в формуле изобретения вторая температура называется "предельной температурой" T1.
При проведении в реакторе экзотермических реакций предельная температура T1 должна соответствовать заданному максимальному значению температуры Tmax, выше которой эффективность реакции резко падает из-за возникновения побочных реакций, уменьшающих выход реакции, и снижения эффективности катализатора.
При проведении в реакторе эндотермических реакций предельная температура T1 должна соответствовать температуре, ниже которой реакция прекращается.
При неравномерном распределении температуры условия в слое катализатора уже не являются псевдоизотермическими, и общий выход реакции соответственно падает.
Краткое изложение сущности изобретения
В основу настоящего изобретения была положена задача разработать простой в осуществлении способ контроля псевдоизотермичности химической реакции в слое катализатора за счет уменьшения разности (ΔТ) температур между температурой слоя катализатора у стенок теплообменников и предельной температурой T1 или, иными словами, уменьшения перепада температур между температурой наружной стенки теплообменника и предельной температурой T1.
Предлагаемое в изобретение решение устраняет недостатки известных в настоящее время способов проведения химических реакций в контролируемых псевдоизотермических условиях.
Указанная выше задача решается с помощью предлагаемого в изобретении способа контроля температуры химической реакции, протекающей в имеющемся в реакторе слое катализатора в псевдоизотермических условиях, поддерживаемых с помощью по меньшей мере одного погруженного в слой катализатора теплообменника, через который пропускают соответствующий текучий теплоноситель, отличающегося тем, что скорость текучего теплоносителя в соответствующем теплообменнике поддерживают в определенном интервале, в котором коэффициент теплопередачи в теплообменнике меньше коэффициента теплопередачи в слое катализатора.
Уменьшение коэффициента теплопередачи в теплообменнике до величины, меньшей коэффициента теплопередачи в слое катализатора, позволяет увеличить перепад температур внутри теплообменника и соответственно повысить температуру его стенки. В результате этого происходит снижение упомянутой выше разности температур ΔТ между температурой слоя катализатора у стенки теплообменника и предельной температурой T1.
При этом неожиданно было установлено, что в отличие от известных рекомендаций соответствующее снижение коэффициента теплопередачи в теплообменниках существенно увеличивает равномерность температуры (снижает перепад температур ΔТ) проходящей через слой катализатора смеси исходных реагентов и продукта реакции, позволяет повысить эффективность реакции и увеличить общий конверсионный выход реакции.
В предпочтительном, но не ограничивающем объем изобретения варианте скорость текучего теплоносителя в соответствующем теплообменнике регулируют в определенных пределах таким образом, чтобы коэффициент теплообмена в теплообменниках не превышал 2/3 от коэффициента теплообмена в слое катализатора.
Предлагаемый в изобретении способ позволяет решить указанную выше задачу и устранить указанные выше недостатки известных способов проведения химических реакций в псевдоизотермических условиях.
В одном из наиболее предпочтительных вариантов осуществления настоящего изобретения предлагается использовать по меньшей мере два погруженных в слой катализатора теплообменника, при этом описанный выше способ отличается тем, что в процессе проведения реакции в слое катализатора непрерывно измеряют разность температур ΔТ между температурой слоя катализатора у теплообменников и предельной температурой T1 в средней точке между теплообменниками и на основе измеренной разности температур ΔТ регулируют скорость пропускаемого через теплообменники текучего теплоносителя, соответствующим образом изменяя коэффициент теплопередачи в теплообменниках.
Другие отличительные особенности и преимущества настоящего изобретения более подробно рассмотрены ниже на примере одного из не ограничивающих объем изобретения вариантов осуществления предлагаемого в нем способа со ссылкой на прилагаемые чертежи.
Краткое описание чертежей
На прилагаемых к описанию чертежах показаны:
на фиг.1 - схематичное изображение в продольном разрезе псевдоизотермического реактора, предназначенного для проведения химических реакций предлагаемым в изобретении способом,
на фиг.2 - схематичное изображение реактора, предназначенного для проведения псевдоизотермических реакций известным способом и кривая относительных значений его температурного поля,
на фиг.3 - схематичное изображение в продольном разрезе участка псевдоизотермического реактора, показанного на фиг.1, и кривая относительных значений его температурного поля,
на фиг.4 - схематичное увеличенное изображение в поперечном разрезе отдельных деталей псевдоизотермического реактора, показанного на фиг.1.
Предпочтительный вариант осуществления изобретения
На фиг.1 показан обозначенный позицией 1 псевдоизотермический химический реактор, предназначенный для синтеза различных химических веществ, таких как аммиак, метанол, формальдегид и азотная кислота, предлагаемым в изобретении способом.
Реактор 1 имеет цилиндрический корпус 2, крышку 3 и днище 4, патрубок 5 для подачи исходных реагентов, патрубок 6 для отбора продуктов реакции, патрубок 7 для подачи текучего теплоносителя в теплообменники и патрубок 8 для выхода текучего теплоносителя из реактора.
Реактор 1 имеет также ограниченный пунктирными линиями 24а и 24b слой 24 удерживаемого в нем известным образом катализатора, внутри которого расположен блок 9 теплообменников, состоящий из нескольких теплообменников 12. Снизу теплообменники 12 через распределитель 10 соединены с патрубком 7, через который в них подается текучий теплоноситель, а сверху через коллектор 11 соединены с патрубком 8, через который из реактора выходит прошедший через теплообменники текучий теплоноситель. Теплообменники 12 можно выполнить, например, по типу обычных трубчатых или пластинчатых теплообменников.
На фиг.2 и 3 более детально показан один из участков псевдоизотермического реактора, предназначенного для проведения различных химических реакций известным способом и, соответственно, такой же участок реактора 1, предназначенного для проведения различных химических реакций предлагаемым в изобретении способом.
Изображенные на этих чертежах детали реакторов, аналогичные друг другу и/или аналогичные таким же деталям реактора, показанного на фиг.1, обозначены одними и теми же позициями.
Позицией 13 на чертежах обозначены стенки расположенных в слое 24 катализатора теплообменников 12. При этом позицией 13а обозначена наружная или примыкающая к катализатору поверхность стенки 13 теплообменника 12.
Во время работы реактора текучий теплоноситель проходит через зону 14 внутри теплообменников 12, а смесь исходных реагентов и продуктов реакции проходит между соседними теплообменниками 12 через расположенную в слое 24 катализатора зону 15 реакции.
Температурное поле реакторов показано на фиг.2 и 3 в виде кривых 17 и 19. Кривой 17 изображено распределение температуры в зоне 14 внутри теплообменников 12, а кривой 19 изображено распределение температур в зоне 15 внутри слоя 24 катализатора. Общее поле температур внутри соответствующего псевдоизотермического реактора определяется обеими линиями 17 и 19.
В известных реакторах (фиг.2) кривые 17 имеют небольшую кривизну и практически представляют собой прямые линии, перпендикулярные стенкам 13 теплообменников 12. Обусловлено это высоким коэффициентом передачи тепла (максимально возможным) внутри теплообменников 12.
И наоборот, кривые 19, отражающие распределение температур в зоне 15 слоя 24 катализатора, в известных реакторах (фиг.2) имеют значительную кривизну и по существу форму дуги. Связано это с существенно меньшим коэффициентом передачи тепла в слое 24 катализатора относительно коэффициента передачи тепла в теплообменниках 12 и, как следствие этого, с большой разницей (неоднородностью температурного поля) между температурой стенки (поверхность 13а) теплообменников 12 и температурой протекающей через зону 15 реакции смеси исходных реагентов и продуктов реакции.
Иными словами, температура в двух зонах 14 и 15 меняется от минимального значения Tmin, равного температуре внутри теплообменников 12 в центре зоны 14, до максимального значения Tmax (эквивалентного указанной выше предельной температуре T1) в центре зоны 15 слоя 24 катализатора (т.е. до температуры в средней точке между двумя соседними теплообменниками 12).
Между двумя зонами 14 и 15 существует значительный перепад температур ΔТtot, который, как показано на фиг.2, возникает главным образом в зоне 15 и создает большую неравномерность температуры в слое 24 катализатора, которая снижает эффективность реактора и приводит по указанным выше причинам к снижению конверсионного выхода.
Расположенная в зоне 15 часть перепада температур ΔТtot обозначена символом ΔT и равна описанной выше разнице между предельной температурой T1 (соответствующей максимальной температуре Tmax) и температурой наружной поверхности 13а теплообменников 12.
В зоне 15 на определенном участке интервала (или при определенном перепаде) температур ΔТ реакция протекает в нормальных условиях и обеспечивает оптимальный выход реакции (в псевдоизотермических условиях). Этот участок расположен между температурой Tmax (равной температуре T1) и температурой Т0, ниже которой реакция либо вообще прекращается, либо протекает в неоптимальных условиях.
Как показано на фиг.2, в значительной части зоны 15 слоя 24 катализатора, обозначенной позицией 18, температура реакции ниже оптимальных значений, результатом чего является снижение общей эффективности реактора и падение конверсионного выхода реакции.
Предлагаемый в изобретении способ позволяет уменьшить коэффициент теплопередачи в теплообменниках 12 до значений, меньших коэффициента теплопередачи в слое 24 катализатора, путем соответствующего регулирования скорости проходящего через теплообменники 12 текучего теплоносителя (в частности, как показано на фиг.3, ее уменьшением по сравнению с обычным реактором, показанным на фиг.2).
При этом, как показано на фиг.3, происходит увеличение перепада температур в теплообменниках 12 (кривая 17 на фиг.3 имеет большую кривизну, чем на фиг.2) и увеличение температуры их наружной поверхности 13а.
Предлагаемый в изобретении способ позволяет при таком же, что и в известном реакторе (фиг.2), перепаде температур ΔТtot между зонами 14 и 15 уменьшить перепад температур в зоне 15 слоя 24 катализатора, т.е. уменьшить разницу ΔТ между предельной температурой T1 (соответствующей максимальной температуре Tmax) и температурой наружной поверхности 13а теплообменников 12.
При этом существенно снижается кривизна кривой изменения температуры (линия 19) в зоне 15 и, как показано на фиг.3, температура в слое катализатора меняется в интервале температур (Tmax0), при которых реакция протекает в оптимальных (псевдоизотермических) условиях с высокой эффективностью и высоким выходом.
Такое выравнивание температуры обеспечивает возможность эффективного протекания реакции практически во всей зоне 15 слоя 24 катализатора и соответствующее увеличение общего выхода реакции.
Согласно наиболее предпочтительному варианту предлагается непрерывно измерять разность ΔТ между предельной температурой T1 (соответствующей максимальной температуре Tmax) и температурой наружной поверхности 13а теплообменников 12 и в зависимости от этой разности температур ΔТ регулировать скорость текучего теплоносителя в теплообменниках 12, соответствующим образом изменяя коэффициент теплопередачи внутри теплообменников 12 и разность (перепад) температур ΔТ в зоне 15 слоя 24 катализатора.
Для этого показанный на фиг.1 псевдоизотермический реактор оборудуют схематично показанной на фиг.4 системой 20, предназначенной для непрерывного измерения температуры в зоне 15 слоя 24 катализатора и также непрерывного изменения в зависимости от измеренного перепада температур скорости текучего теплоносителя в теплообменниках 12.
Изображенные на фиг.4 детали реактора, аналогичные показанным на других чертежах, обозначены теми же позициями.
В состав системы 20 (фиг.4) входит по меньшей мере один датчик 23 (например, термопара), расположенный в зоне 15 реакции и предназначенный для непрерывного измерения разности ΔТ между температурой в центральной части зоны 15 и температурой наружной поверхности 13а теплообменников 12.
В состав системы 20 входит также блок 21 управления, соединенный линией 25 с датчиком 23 температуры и предназначенный для обработки измеренных датчиком данных, и соединенный с блоком 21 управления (линией 26) регулятор 22 расхода Fo текучего теплоносителя в теплообменниках 12. В качестве такого регулятора расхода можно использовать, например, обычный клапан или насос, предназначенный для подачи в теплообменники текучего теплоносителя.
Буквой P на фиг.4 обозначена граница внутренней части показанного на фиг.1 реактора 1 с изображением в более крупном масштабе отдельных элементов предлагаемой в изобретении системы 20 регулирования температурного поля реактора.
Предлагаемая в изобретении система позволяет непрерывно контролировать перепад температур ΔТ в зоне 15 реакции и в динамическом режиме с высокой точностью в соответствии с данными калибровки регулировать расход Fo текучего теплоносителя через теплообменники 12.
Изобретение не исключает возможности других очевидных для специалистов вариантов его осуществления и внесения в рассмотренные выше варианты изменений и усовершенствований, не выходящих за объем изобретения, определяемый его формулой.

Claims (4)

1. Способ контроля температуры химической реакции, протекающей в имеющемся в реакторе (1) слое (24) катализатора в псевдоизотермических условиях, поддерживаемых с помощью по меньшей мере одного погруженного в слой (24) катализатора теплообменника (12), через который пропускают соответствующий текучий теплоноситель, отличающийся тем, что скорость текучего теплоносителя в соответствующем теплообменнике (12) поддерживают в определенном интервале, в котором коэффициент теплопередачи в теплообменнике (12) меньше коэффициента теплопередачи в слое (24) катализатора.
2. Способ по п.1, отличающийся тем, что скорость текучего теплоносителя в соответствующем теплообменнике регулируют в определенных пределах таким образом, чтобы коэффициент теплообмена в теплообменниках (12) не превышал 2/3 от коэффициента теплообмена в слое (24) катализатора.
3. Способ по п.1, отличающийся тем, что псевдоизотермическую реакцию проводят в реакторе (1) по меньшей мере с двумя погруженными в слой (24) катализатора теплообменниками (12), при этом в ходе реакции в слое катализатора непрерывно измеряют разность ΔТ между температурой слоя катализатора у теплообменников и предельной температурой T1 в средней точке между теплообменниками и на основе измеренной разности температур ΔТ регулируют скорость пропускаемого через теплообменники текучего теплоносителя, соответствующим образом изменяя коэффициент теплопередачи в теплообменниках.
4. Псевдоизотермический химический реактор со слоем (24) катализатора и по меньшей мере двумя погруженными в катализатор теплообменниками (12), отличающийся тем, что он снабжен системой (20) регулирования температуры в расположенной между теплообменниками (12) зоне (15) реакции в слое катализатора, содержащей датчик (23) для непрерывного измерения разности ΔТ между температурой в центральной части зоны (15) и температурой этой зоны (15) у теплообменников (12), соединенный с датчиком (23) блок (21) управления и соединенный с блоком (21) управления регулятор (22) расхода, регулирующий расход (Fo) текучего теплоносителя через теплообменники (12).
RU2005128968/12A 2003-02-17 2004-01-15 Способ проведения химических реакций в псевдоизотермических условиях RU2324534C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03003573A EP1447128A1 (en) 2003-02-17 2003-02-17 Method for carrying out chemical reactions in pseudo-isothermal conditions
EP03003573.7 2003-02-17

Publications (2)

Publication Number Publication Date
RU2005128968A RU2005128968A (ru) 2006-03-27
RU2324534C2 true RU2324534C2 (ru) 2008-05-20

Family

ID=32668999

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005128968/12A RU2324534C2 (ru) 2003-02-17 2004-01-15 Способ проведения химических реакций в псевдоизотермических условиях

Country Status (14)

Country Link
US (1) US7727482B2 (ru)
EP (2) EP1447128A1 (ru)
CN (1) CN100345620C (ru)
AR (1) AR043137A1 (ru)
AT (1) ATE432765T1 (ru)
AU (1) AU2004212031A1 (ru)
BR (1) BRPI0407531A (ru)
CA (1) CA2513057C (ru)
DE (1) DE602004021353D1 (ru)
DK (1) DK1594604T3 (ru)
MX (1) MXPA05008697A (ru)
RU (1) RU2324534C2 (ru)
UA (1) UA85837C2 (ru)
WO (1) WO2004071650A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1788335A1 (en) * 2005-11-18 2007-05-23 Methanol Casale S.A. Method for the production of a plate type heat exchanger and related heat exchanger
CN118491442B (zh) * 2024-07-18 2024-10-25 国镓芯科(成都)半导体科技有限公司 一种反应釜的冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1077192B (de) * 1953-01-21 1960-03-10 Herbert P A Groll Dr Ing Verfahren zur Durchfuehrung exothermer katalytischer chemischer Reaktionen
GB1088009A (en) * 1964-11-03 1967-10-18 Halcon International Inc Process and apparatus for the vapour phase oxidation of organic compounds
FR2256778A1 (en) * 1974-01-03 1975-08-01 Sun Ventures Inc Elimination of tubular hot-spots in heat exchange reactors - by dividing outer casing into individually temp.-controlled compartments
US4488239A (en) * 1982-04-22 1984-12-11 The Babcock & Wilcox Company Temperature control system for olefin oxidation reactor
US4491924A (en) * 1982-04-22 1985-01-01 The Babcock & Wilcox Company Olefin oxidation reactor temperature control
JPS5939342A (ja) * 1982-08-31 1984-03-03 Mitsubishi Heavy Ind Ltd 反応装置
US5525311A (en) * 1994-05-02 1996-06-11 Uop Process and apparatus for controlling reaction temperatures
US6955793B1 (en) * 1997-06-18 2005-10-18 Arencibia Jr Jose P Temperature controlled reaction vessel
EP1060788A1 (en) * 1999-06-15 2000-12-20 Methanol Casale S.A. Isothermal catalytic reactor for exothermic or endothermic heterogeneous reactions
US7033553B2 (en) * 2000-01-25 2006-04-25 Meggitt (Uk) Limited Chemical reactor
EP1153653A1 (en) * 2000-05-11 2001-11-14 Methanol Casale S.A. Reactor for exothermic or endothermic heterogeneous reactions
JP2002193862A (ja) * 2000-12-28 2002-07-10 Idemitsu Petrochem Co Ltd ビスフェノールaの製造方法
US6759562B2 (en) * 2002-07-24 2004-07-06 Abb Lummus Global Inc. Olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps

Also Published As

Publication number Publication date
CN1747781A (zh) 2006-03-15
CA2513057C (en) 2011-08-02
US20060171859A1 (en) 2006-08-03
RU2005128968A (ru) 2006-03-27
DK1594604T3 (da) 2009-09-14
CA2513057A1 (en) 2004-08-26
DE602004021353D1 (de) 2009-07-16
BRPI0407531A (pt) 2006-02-14
EP1594604B1 (en) 2009-06-03
WO2004071650A1 (en) 2004-08-26
AR043137A1 (es) 2005-07-20
AU2004212031A1 (en) 2004-08-26
US7727482B2 (en) 2010-06-01
EP1447128A1 (en) 2004-08-18
MXPA05008697A (es) 2005-10-05
EP1594604A1 (en) 2005-11-16
CN100345620C (zh) 2007-10-31
UA85837C2 (ru) 2009-03-10
ATE432765T1 (de) 2009-06-15

Similar Documents

Publication Publication Date Title
JPH01139137A (ja) 不均一触媒化学プロセスの実施法
GB2303860A (en) Methanol reforming
EP1547994B1 (en) Method of vapor phase catalytic oxidation using multitubular reactor
US7119227B2 (en) Process for catalytic vapor phase oxidation
EP3160634A1 (en) Control of ammonia and/or air feed into an ammoxidation reactor
RU2324534C2 (ru) Способ проведения химических реакций в псевдоизотермических условиях
US5560891A (en) Catalytic reaction apparatus
JP4881540B2 (ja) 偽恒温状態での化学反応の実行方法及び熱交換機
RU2306173C2 (ru) Способ и реактор для проведения химических реакций в псевдоизотермических условиях
JP3552064B2 (ja) 水素製造装置の制御方法及びその装置
RU2321456C2 (ru) Способ проведения высокоэкзотермических окислительных реакций в псевдоизотермических условиях
Caetano et al. Modeling and control of an exothermal reaction
JP3110838B2 (ja) 触媒再生方法
CN115066394A (zh) 用于生产光气的方法和反应器
KR20060109958A (ko) C3 및/또는 c4 전구체 화합물의 불균질하게 촉매되는부분 산화에 의한 (메트)아크롤레인 및/또는(메트)아크릴산의 생산 방법
JP2020044478A (ja) 多管式固定床リアクターおよびそれを用いた気相接触反応方法
RU2380149C2 (ru) Способ регулирования температуры экзотермических каталитических реакций
RU2326424C2 (ru) Система автоматического поддержания температурного профиля в реакторе
CN218654384U (zh) 一种用于热敏性物料的多段式反应器
EP2075057A1 (en) Radial isothermal chemical reactor
CN103025421A (zh) 反应器装置和用于优化反应器管中温度曲线的测量的方法
JP2006212629A (ja) 多管式固定床反応装置
CN115814714A (zh) 一种用于热敏性物料的多段式反应器及其控制方法
CN117695698A (zh) 一种环氧乙烷汽提工艺环节进料温度精控组件
RU2022102127A (ru) Способ предотвращения псевдоожижения каталитического неподвижного слоя в трубчатом реакторе с восходящим потоком установки парового риформинга метана