RU2322291C1 - Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов - Google Patents

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов Download PDF

Info

Publication number
RU2322291C1
RU2322291C1 RU2007108989/04A RU2007108989A RU2322291C1 RU 2322291 C1 RU2322291 C1 RU 2322291C1 RU 2007108989/04 A RU2007108989/04 A RU 2007108989/04A RU 2007108989 A RU2007108989 A RU 2007108989A RU 2322291 C1 RU2322291 C1 RU 2322291C1
Authority
RU
Russia
Prior art keywords
iii
catalyst
chromium
aluminum
fluorination
Prior art date
Application number
RU2007108989/04A
Other languages
English (en)
Inventor
Людмила Григорьевна Симонова (RU)
Людмила Григорьевна Симонова
Сергей Иванович Решетников (RU)
Сергей Иванович Решетников
Александр Анатольевич Зирка (RU)
Александр Анатольевич Зирка
Юни Олеговна Булгакова (RU)
Юния Олеговна Булгакова
Александра Степановна Иванова (RU)
Александра Степановна Иванова
нин Владимир Александрович Соб (RU)
Владимир Александрович Собянин
Валентин Николаевич Пармон (RU)
Валентин Николаевич Пармон
Original Assignee
Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук filed Critical Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority to RU2007108989/04A priority Critical patent/RU2322291C1/ru
Application granted granted Critical
Publication of RU2322291C1 publication Critical patent/RU2322291C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома (III) и содержащий соединение алюминия (III), содержание которого в пересчете на Al2О3 составляет от 2 до 15 мас.%, при этом смешанные оксиды хрома (III) и алюминия (III) имеют удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å. Описан способ приготовления катализатора и способ его активации. Способ фторирования осуществляют в присутствии описанного выше катализатора, исходными галогенированными углеводородами являются хлорсодержащие углеводороды, которые фторируют газообразным фтористым водородом, при этом процесс фторирования галогенированных углеводородов проводят при давлении 0,1-0,5 МПа, температуре 260-380°С, мольном соотношении HF/галогенуглеводород 4/1-40/1. Технический результат - высокая активность и селективность предлагаемого катализатора. 4 н. и 7 з.п. ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов, в частности в следующих процессах:
- фторирование тетрахлорэтилена Cl2С=CCl2 в пентафторэтан CHF2-CF3 (R-125);
- фторирование трихлорэтилена Cl2C=CHCl в 1,1,1,2-тетрафторэтан CH2F-CF3 (R-134а).
Фторированные углеводороды, такие как пентафторэтан, обычно обозначаемый как R-125, и 1,1,1,2-тетрафторэтан, обозначаемый как R-134a, используются в качестве хладагентов, вспенивателей, аэрозольных препаратов, пропеллентов, чистящих средств и т.п. Использование полностью фторированных углеводородов является очень актуальной задачей, поскольку по сравнению с широко применяющимися в настоящее время хлоруглеводородами они оказывают меньшее разрушающее действие на озоновый слой.
Известны способы фторирования галогенированных углеводородов, которые включают пропускание газообразной смеси фтористого водорода и галогенированных углеводородов через слой катализатора, основным каталитическим компонентом которого являются соединения хрома в виде оксидов, оксифторидов или фторидов, иногда в сочетании с промотирующими и стабилизирующими добавками соединений Al, Mg, Ni, Cr, Zn, Co и др.
Разнообразны способы приготовления хромсодержащих катализаторов.
Так, известен способ фторирования галогенированных углеводородов, имеющих 1-4 атома углерода, газообразным HF в присутствии катализатора, приготовленного из веществ, состоящих преимущественно из гидроксида Cr(III), прокаливанием в водороде при 350-500°С или вначале в инертном газе при 100-600°С, затем в водороде, или с частичным фторированием вышеуказанных продуктов прокалки (Пат.US 5494873, B01J 23/26, С07С 17/20, 27.02.1996).
Известен способ приготовления пентафторэтана газофазным фторированием хлорированных углеводородов в присутствии аморфного катализатора, в котором главным компонентом является соединение хрома с добавлением, по крайней мере, одного металлического элемента, выбранного из группы, включающей индий, галлий, кобальт, никель, цинк, алюминий, причем валентность хрома в названном соединении хрома не менее +3.5 и не более +5.0 (Заявка WO 9931032, B01J 23/26, С07В 61/00, 24.06 1999).
Известен способ получения пентафторэтана R-125 фторированием тетрахлорэтилена газообразным фтористым водородом с использованием хромсодержащих катализаторов, включающих хром и магний, полученных смешением водорастворимых солей Cr с заранее полученными гидроксидами или оксидами Mg с добавлением воды и графита, для получения пасты, которая затем сушится, обрабатывается газообразным HF при температурах от 20 до 500°С. Перед фторированием катализатор содержит от 4,5 до 20 мас.% хрома, выраженного как Cr2О3, и не менее 25 мас.% магния, выраженного как MgO (Пат. US 5763701, B01J 23/26, С07В 61/00, 09.06.1998).
Недостатками известных способов являются невысокая активность и недостаточная стабильность в условиях реакции.
Известен катализатор для получения фторуглеводородов, в частности пентафторэтана R-125, содержащий соединения хрома(III) и носитель - фторид магния, и дополнительно содержащий соединения железа(III) и, необязательно, цинка(II) при следующем соотношении компонентов в пересчете на металлы, мас.%: железо(III) 0,1-2,0, цинк(II) 0-2,0, хром(III) 6,5-12,0, MgF - остальное. Катализатор получают смешением заранее полученного MgF с водорастворимыми солями хрома, железа, цинка (Пат.RU 2179885, B01J 23/26, С07С 17/20, 24.04.01).
Недостатком известного катализатора является низкая активность и селективность, обусловленная низкой поверхностью и неоптимальной пористой структурой катализаторов вследствие использования метода смешения грубодисперсного носителя с грубодисперсными солями активных соединений.
Для обеспечения высокой активности и стабильности катализатора необходимо, чтобы хромсодержащие активные вещества имели высокую дисперсность как в готовом катализаторе, так и на всех стадиях синтеза, т.е. при образовании гидроксидных, оксидных и фторированных форм хромсодержащих веществ. Наиболее подходящим способом достижения этого является получение хромсодержащих соединений методом осаждения основаниями из растворимых солей хрома с последующей сушкой и прокалкой в оптимальных условиях.
Известен катализатор для фторирования газообразным HF низших алифатических галогенированных углеводородов, в том числе тетрахлорэтилена, в пентафторэтан R-125 и 1,1,1-трихлорэтана (R-133a) в 1,1,1,2-тетрафторэтан (R-134a), представляющий собой частично фторированный аморфный оксид хрома с удельной поверхностью не менее 170 м2/г, содержанием фтора не менее 8 мас.% (Пат. RU 2040333, B01J 23/26, С07В 61/00, 25.07.1995). Катализатор получают осаждением из водных растворов солей хрома и аммиака, добавляя раствор аммиака к растворам соли хрома с последующей сушкой, грануляцией, прокалкой в инертном газе при температурах 380-460°С и в газообразном HF при температуре 100-460°С.
Наиболее близким к предлагаемому изобретению является процесс фторирования галогенированных углеводородов и катализатор фторирования, описанные в Пат. US 6300531, B01J 23/26, С07С 17/20, 09.10.01. В известном методе процесс фторирования галогенированных углеводородов включает взаимодействие галогенированных углеводородов (трихлорэтилена, 1,1,1 трифторхлорэтана, перхлорэтилена, дихлорметана) с фтористым водородом в присутствии катализатора фторирования, включающего оксид хрома, имеющий величину удельной поверхности от 170 до 300 м2/г, подвергнутый фторирующей предобработке до содержания фтора не менее 8 мас.%.
Приготовление катализатора включает следующие стадии:
- смешение водных растворов солей хрома с водным раствором аммиака для получения осадка гидроксида хрома;
- сушка и грануляция осажденного гидроксида хрома при температуре 70-200°С;
- прокалка гранулированного гидроксида хрома при 380-460°С для получения хром-оксидного катализатора;
- фторирование оксидного катализатора обработкой фтористым водородом при температурах 100-460°С до достижения содержания фтора в катализаторе не менее 8 мас.% и не более 48 мас.%.
Недостатками известных способов являются недостаточные активность и селективность катализатора и его низкая устойчивость к повышению температуры, что, по-видимому, обусловлено неоптимальными физико-химическими свойствами.
Оптимизация состава катализатора и способа его приготовления на таких стадиях синтеза как осаждение, прокалка являются простыми и эффективными методами улучшения физико-химических, а следовательно, и каталитических свойств.
Задачей предлагаемого изобретения является увеличение активности и селективности хромсодержащего катализатора для газофазного фторирования галогенированных углеводородов, в частности в процессах фторирования перхлорэтилена Cl2C=CCl2 в пентафторэтан CHF2-CF3 (R-125) и 1,1,1-трифторхлорэтана (R-133a) в 1,1,1,2-тетрафторэтан CH2F-CF3 (R-134a).
Поставленная задача решается тем, что в способе фторирования галогенированных углеводородов газообразным фтористым водородом используют катализатор, включающий оксид хрома(III), а также соединение алюминия(III), содержание которого в пересчете на Al2O3 составляет от 2 до 15 мас.%, при этом смешанные оксиды хрома(III) и алюминия(III) имеют удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å.
Заявляемые свойства катализатора достигаются благодаря предлагаемому способу получения, который включает две последовательные стадии:
1. приготовление смешанных гидроксидов хрома(III) и алюминия(III) методом совместного осаждения из растворов хлористых, или азотнокислых, или сернокислых солей хрома(III) и алюминия(III) и раствора аммиака, причем осаждение ведут при постоянной величине рН, выбранной в интервале рН 6.5-8.0, постоянной температуре, выбранной в интервале 40-80°С, и постоянной скорости приливания раствора смешанных солей алюминия и хрома;
2. приготовление смешанных оксидов хрома(III) алюминия (III) методом прокалки смешанных гидроксидов алюминия(III) и хрома(III) в инертном газе, азоте или аргоне, при постепенном повышении температуры от комнатной до 350±20°С со скоростью не более 100°С/ч. Повышение температуры проводят с изотермическими выдержками в течение 2-8 ч при температурах 250±20°С, 300±20°С, 350±20°С.
При этом получают катализатор, включающий оксид хрома(III) и соединение алюминия (III), содержание которого в пересчете на Al2О3 составляет от 2 до 15 мас.%, имеющий удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å.
Кроме того, поставленная задача решается тем, что катализатор активируют в газовых смесях, содержащих 15-25 об.% фтористого водорода и 85-75 об.% инертного газа при температуре 330-350°С и давлении от 0,1±0,02 МПа, при этом активированный катализатор имеет величину удельной поверхности не менее 60 м2/г.
Задача, поставленная в предлагаемом изобретении, решается также за счет способа фторирования галогенированных углеводородов, например тетрахлорэтилена в пентафторэтан R-125 или трихлорэтилена в 1,1,1,2 тетрафторэтан R-134a. Процесс фторирования галогенированных углеводородов проводят фтористым водородом при давлении 0,1-0,5 МПа, температуре 260-380°С, мольном соотношении HF/галогенуглеводород 4/1-40/1 в присутствии катализатора, включающего оксид хрома(III), а также соединение алюминия(III), содержание которого в пересчете на Al2O3 составляет от 2 до 15 мас.%, при этом смешанные оксиды хрома(III) и алюминия(III), имеют удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å.
Технический результат заключается в том, что при проведении фторирования газообразным HF тетрахлорэтилена в пентафторэтан R-125 и трихлорэтилена R-133a в 1,1,1,2-тетрафторэтан R-134a на заявляемом катализаторе достигается высокая активность катализатора (константа скорости реакции), высокая селективность по целевым продуктам и низкая селективность по нежелательным побочным продуктам, например, пентафторхлорэтан R115.
Это происходит благодаря использованию катализатора с заявляемым набором свойств, т.е. катализатора, включающего оксид хрома(III) и соединение алюминия(III), содержание которого в пересчете на Al2О3 составляет от 2 до 15 мас.%, при этом смешанные оксиды хрома(III) и алюминия(III) имеют удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å, а после фторирующей активации катализатор имеет величину удельной поверхности не менее 60 м2/г.
Процессы фторирования углеводородов газообразным фтористым водородом достаточно сложны, многостадийны, включают образование ряда промежуточных и побочных продуктов.
Так, фторирование тетрахлорэтилена в пентафторэтан R-125 на хромсодержащих катализаторах при температурах 260-380°С протекает по последовательной схеме, где в качестве промежуточных продуктов образуются фтортрихлорэтилен R-1111, дифтордихлорэтилен R-1112, дифтортрихлорэтан R-122, трифтордихлорэтан R-123, тетрафторхлорэтан R-124. Поскольку перечисленные промежуточные продукты являются предшественниками R-125, они могут быть возвращены в реакционный цикл с последующим превращением в целевой продукт. Кроме того, образуется ряд побочных продуктов, самым нежелательным из которых является пентафторхлорэтан R-115, образующий азеотропную смесь с целевым продуктом R-125, в результате чего при очистке R-125 от R-115 теряется значительное количество целевого продукта. Селективность по различным продуктам зависит от свойств катализатора, температуры реакции и от величины общей конверсии исходного вещества - тетрахлорэтилена. Так, с увеличением конверсии тетрахлорэтилена возрастает селективность как по целевому продукту R-125, так и по нежелательному продукту R-115. Напротив, селективность по сумме (R-125 + предшественники) с увеличением общей конверсии тетрахлорэтилена падает. Поэтому критерием оценки селективности катализатора в данном процессе можно считать высокую селективность по сумме (R-125 + предшественники) при достаточно высокой общей конверсии тетрахлорэтилена (70-100%), при этом селективность по R-115 должна быть как можно ниже.
Процесс фторирования трихлорэтилена в R-134a обычно проводят в две стадии, которые осуществляют при различных условиях: сначала из трихлорэтилена образуется R-133a, затем последний превращают в целевой продукт R-134a. Первая стадия в присутствии различных хромсодержащих катализаторов осуществляется достаточно легко и с высокой селективностью вплоть до конверсий, близких к 100%. Вторая стадия, а именно превращение R-133a в целевой продукт R-134a, протекает более трудно и для достижения высокой конверсии требуются сравнительно высокие температуры реакции. Но при повышенных температурах снижается селективность. Так, для обеспечения высокой (≥95%) селективности предпочтительно вести процесс при сравнительно низкой температуре, при этом конверсия R-133a должна быть 15-30%.
Для решения указанных задач необходимо иметь катализатор, обеспечивающий высокую конверсию даже при сравнительно низкой температуре, не дающий нежелательных побочных продуктов или углеродных отложений, устойчивый к перегревам и зауглероживанию. Эти свойства существенно зависят от химического состава, величины удельной поверхности и пористой структуры катализатора.
В предлагаемом способе добавление к оксиду хрома(III) заявляемых количеств такого термостабильного компонента, как оксид алюминия(III), увеличивает дисперсность и термостабильность оксидных форм, т.к. предотвращает кристаллизацию оксида хрома(III), которая протекает с высоким экзотермическим эффектом и существенным снижением удельной поверхности оксида хрома(III). Добавление соединения алюминия предлагается проводить на начальной стадии синтеза - осаждении, и это существенно влияет на формирование физико-химических свойств катализатора на последующих стадиях формирования катализаторов, обеспечивая высокую удельную поверхность и однородную пористую структуру оксидных и фторированных катализаторов. Это благоприятно влияет на каталитические свойства: активность, селективность, стабильность катализатора.
Заявляемый набор физико-химических свойств катализатора в оксидной форме (высокая удельная поверхность (130-300 м2/г), объем пор не менее 0,3 см3/г при мономодальном распределении пор по размерам в интервале 70-30 Å) свидетельствует о высокой дисперсности и однородности размера частиц в получаемой системе.
Можно предполагать высокую однородность заявляемого катализатора по химическому и фазовому составу. Этому способствуют безградиентность заявляемых условий приготовления - постоянные рН, скорости и температуры осаждения, а также осторожный подъем температуры от комнатной до 350±20°С с длительной изотермической выдержкой в течение 2-8 ч при температурах 250±20°С, 300±20°С, 350±20°С, что предотвращает перегревы и нежелательную кристаллизацию хромсодержащих фаз.
В условиях реакции оксидные фазы катализатора в большей или меньшей степени фторируются, превращаясь в оксифториды или фториды хрома и алюминия. Литературные данные свидетельствуют о том, что активной фазой в реакции гидрофторирования являются частично фторированные оксиды активных элементов: хрома, алюминия, магния и т.д. Полностью фторированные соединения CrF3, AlF3 неактивны, в том числе из-за низкой дисперсности этой фазы (Catalytic fluorination of 1,1,1-trifluoro-2-chloroethane (HCFC-133a) over chromiume catalysts. D.H.Cho, Y.G.Kim, J.S. Chung. Catal. Lett. 53 (1998) 199-203). Процесс формирования и свойства активных фторированных форм катализатора должны зависеть от текстурных и морфологических свойств оксидных фаз катализатора и условий проведения фторирования. Во время фторирования образование оксифторидов начинается с поверхности частиц оксидов и постепенно продвигается в объем частиц. При небольших и средних степенях фторирования оксифторид образуется в приповерхностном слое оксидной частицы без существенной перестройки и спекания ее ядра. При полном фторировании частицы происходит резкое снижение удельной поверхности. В полидисперсных системах при одинаковой общей степени фторирования возможно полное фторирование и сокращение удельной поверхности мелких частиц, при недостаточном фторировании более крупных. Наиболее благоприятным является заявляемый набор свойств смешанных оксидов хрома(III) и алюминия(III) - удельная поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å - и способ фторирующей активации в газовых смесях, содержащих 15-25 об.% фтористого водорода и 85-75 об.% инертного газа, при температуре 330-350°С и давлении от 0,10±0,02 МПа, что обеспечивает величину удельной поверхности активированного катализатора не менее 60 м2/г.
Таким образом, существенными отличительными признаками заявляемого катализатора фторирования галогенированных углеводородов газообразным фтористым водородом, включающего оксид хрома(III), являются
- наличие соединения алюминия(III), содержание которого в пересчете на Al2О3 составляет от 2 до 15 мас.%,
- величина удельной поверхности смешанных оксидов хрома(III) и алюминия(III) составляет 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å;
- величина удельной поверхности активированного катализатора не менее 60 м2/г. Заявляемый способ получения катализатора фторирования галогенированных углеводородов включает две последовательные стадии:
- приготовление смешанных гидроксидов хрома(III) и алюминия(III) методом совместного осаждения из солей неорганических кислот хрома(III) и алюминия(III) и оснований с последующей фильтрацией, промывкой водой, сушкой на воздухе;
- приготовление смешанных оксидов хрома(III) и алюминия методом прокалки смешанных гидроксидов хрома(III) и алюминия(III) в инертном газе: азоте, аргоне при температуре не более 350±20°С
Существенными отличительными признаками заявляемого способа приготовления катализатора являются:
- осаждение смешанных гидроксидов хрома(III) и алюминия(III) из растворов хлористых или азотнокислых или сернокислых солей хрома(III) и алюминия(III) и раствора аммиака при постоянной величине рН, выбранной в интервале рН 6.5-8.0, постоянной температуре, выбранной в интервале 40-80°С, и постоянной скорости приливания растворов смешанных солей хрома(III) и алюминия(III);
- прокалка смешанных гидроксидов хрома(III) и алюминия(III) в инертном газе, азоте, при постепенном повышении температуры от комнатной до температуры 350±20°С со скоростью не более 100°С/ч с изотермическими выдержками в течение 2-8 ч при температурах 250±20°С, 300±20°С, 350±20°С.
При этом получают катализатор с заявляемым набором свойств.
Отличительным признаком изобретения также является способ активации катализатора в газовых смесях, содержащих 15-25 об.% фтористого водорода и 85-75 об.% инертного газа, при температуре 330-350°С и давлении от 0,10±0,02 МПа, который обеспечивает величину удельной поверхности активированного катализатора не менее 60 м2/г.
Исходными галогенированными углеводородами являются хлорсодержащие углеводороды, например, тетрахлорэтилен или R125 и 1,1,1,2 тетрафторэтан R134a, соответственно.
Фторирование галогенированных углеводородов на заявляемом катализаторе проводят при давлении 0,1-0,5 МПа, температуре 260-380°С, мольном соотношении HF/галогенуглеводород 4/1-40/1.
Заявляемый набор свойств прокаленного и активированного катализатора обеспечивает высокую активность и селективность катализатора в реакции газофазного фторирования галогенированных углеводородов.
Способ поясняется фигурами 1-3, где приведены интегральные и дифференциальные порограммы, показывающие распределение пор по размерам в катализаторах по примерам 1,4,6, таблицами 1 и 2, где приведены физико-химические свойства образцов по примерам 1-8, и результаты каталитических испытаний в реакции гидрофторирования тетрахлорэтилена в R-125.
Величину удельной поверхности определяют методом БЭТ по тепловой десорбции аргона.
Содержание хрома и алюминия в образцах определяют методом ICP.
Объем и распределение пор по радиусам определяют методом ртутной порометрии.
Каталитическую активность образцов катализаторов определяют на проточной установке с неподвижным слоем катализатора в кинетической области. Измерение каталитической активности в реакции фторирования тетрахлорэтилена в R-125 проводят в кинетической области (размер зерна 0,25-0,5 мм) при следующих условиях: температура 280-370°С, давление 0,4 МПа, мольное соотношение HF/тетрахлорэтилен 10/1÷20/1, время контакта 0,2÷2 с. Об активности катализатора в реакции фторирования тертахлорэтилена судят по константе скорости превращения первого порядка. К=-ln(1-Х)/τ, где Х - степень превращения тетрахлорэтилена (мольные доли) при времени контакта τ.
Селективность по каждому продукту реакции рассчитывают как соотношение мольной доли этого продукта к сумме мольных долей всех продуктов реакции в реакционной смеси.
Селективность по сумме (R-125 + предшественники) рассчитывают как сумму селективности по R-125 и промежуточным продуктам R-1111, R-1112, R-122, R-123, R-124.
Сущность изобретения иллюстрируется следующими примерами и диаграммами.
Примеры 1,2,3 иллюстрируют катализаторы, приготовленные в заявляемом интервале содержания Al2О3 и условий приготовления.
Пример 1.
Описывает получение катализатора, в котором содержание алюминия(III) в пересчете на оксид составляет 5 мас.% Al2О3, а содержание хрома(III) в пересчете на оксид составляет 95 мас.% Cr2О3.
Готовят 1 л раствора смешанных хлоридов Al(III) и Cr(III) с концентрацией 3,0 г Al2O3/л и 57 г Cr2O3/л и 1,3 л раствора аммиака с концентрацией 6,5%.
В реактор емкостью 2,5-3 л наливают 200 мл воды, нагревают до 70±5°С и при перемешивании одновременно добавляют раствор смешанных хлоридов Al(III) и Cr(III) со скоростью W=20 мл/мин и раствор аммиака со скоростью, обеспечивающей постоянную величину рН=7,0±0,2. По окончании осаждения осадок оставляют стареть при температуре и рН осаждения в течение 1 ч, затем фильтруют и отмывают водой до отсутствия ионов Cl- в промывной жидкости (качественная реакция с AgCl), сушат при 110-200°С в воздухе.
Высушенный осадок размалывают в порошок с размером зерен <0,1 мм.
К порошку добавляют 0,5% раствор полиэтиленоксида (ПЭО) в количестве, обеспечивающем влажность пасты 45%, смешивают до образования пластичной пасты, формуют экструзионным методом в цилиндрические гранулы диаметром 5 мм, сушат на воздухе при 110-150°С 12 ч.
Высушенные гранулы прокаливают в потоке азота при следующих условиях.
Непрерывный подъем температуры от комнатной до 250°С в течение 2,5 ч.
Выдержка при 250°С 2 ч.
Подъем температуры до 290°С в течение 0.5 ч и выдержка при этой температуре в течение 2 ч.
Подъем температуры до 330°С в течение 20 мин и выдержка при этой температуре в течение 8 ч.
Полученный образец рентгеноаморфен, содержит в пересчете на оксиды, мас.%: 5% Al2O3, 95% Cr2О3, имеет величину удельной поверхности 250 м2/г, однородно-пористую структуру с общим объемом пор 0,85 см3/г и преимущественным радиусом 200 Å. На Фиг.1 представлены интегральная (а) и дифференциальная (b) порограммы катализатора.
Прокаленный в азоте образец активируют в газовой смеси, содержащей 20 об.% HF и 80 об.% N2 при температуре 340°С. Удельная поверхность катализатора после активирующего фторирования составила 67 м2/г (таблица 1).
Катализатор испытывают в реакции фторирования тетрахлорэтилена при мольном соотношении HF/тетрахлорэтилен 11/1, давлении Р=0,4 МПа, Т=280-370°С, времени контакта 0,58-2,51 с. Результаты испытания активности приведены в таблице 2. Активность катализатора, выраженная как константа скорости расходования тетрахлорэтилена первого порядка, составляет от 0,58 с-1 при температуре 280°С до 4,4 с-1 при 370°С. Селективность по сумме (R-125 + промежуточные продукты) в условиях испытания активности составляет 96,9-100 мол.%. Образования R-115 не было обнаружено даже при 100% конверсии тетрахлорэтилена.
Пример 2.
Описывает получение катализатора, в котором содержание алюминия(III) в пересчете на оксид составляет 15 мас.% Al2О3, а содержание хрома(III) в пересчете на оксид составляет 85 мас.% Cr2O3.
Готовят 1 л раствора смешанных хлоридов Al(III) и Cr(III) с концентрацией 11,25 г Al2О3/л и 63,75 г Cr2О3/л и 1,5 л раствора аммиака с концентрацией 8%.
В реактор емкостью 2,5-3 л наливают 200 мл воды, нагревают до 45±5°С и при перемешивании одновременно добавляют раствор смешанных хлоридов Al(III) и Cr(III) со скоростью 15 мл/мин и раствор аммиака со скоростью, обеспечивающей постоянную величину рН=8,0±0,2. По окончании осаждения осадок оставляют стареть при температуре и рН осаждения в течение 1 ч, затем фильтруют и отмывают водой до отсутствия ионов Cl- в промывной жидкости, сушат в распылительной сушилке при 150-180°С с получением порошка 20-90 мкм.
К порошку добавляют 5% коллоидного графита, таблетируют в таблетки диаметром 5 мм и прокаливают в потоке азота при следующих условиях.
Непрерывный подъем температуры от комнатной до 240°С в течение 2,5 ч.
Выдержка при 240°С в течение 3 ч.
Подъем температуры от 240°С до 290°С в течение 0,5 ч, прогрев при этой температуре 2 ч.
Подъем температуры от 290°С до 350°С в течение 0,5 ч, прогрев при этой температуре 3 ч.
Полученный образец рентгеноаморфен, содержит в пересчете на оксиды, мас.%: 5% Al2О3, 95% Cr2О3, имеет удельную поверхность 180 м2/г, однородно-пористую структуру с преимущественным средним радиусом пор 220 Å и общим объемом пор 0,7 см3/г.
Образец обрабатывают фтористым водородом аналогично примеру 1, и испытывают в реакции фторирования тетрахлорэтилена. Удельная поверхность катализатора после фторирования составляет 71 м2/г. Результаты испытания активности приведены в таблице 2. Активность катализатора, подсчитанная аналогично примеру 1, составляет 0,88 с-1 при 330°С и 1,5 с-1 при 350°С. При высокой селективности по R-125 + промежуточные продукты (96,5-99,1 мол.%) образования нежелательного R-115 не наблюдается вплоть до 100% конверсии тетрахлорэтилена.
Пример 3.
Аналогичен примеру 1, отличается тем, что в качестве исходных солей алюминия и хрома используют нитраты алюминия(III) и хрома(III).
Примеры 4-6 описывают образцы сравнения, в которых содержание алюминия(III), а также условия осаждения, прокалки и активации находятся за пределами заявляемых интервалов.
Пример 4.
Описывает получение катализатора, в котором содержание алюминия(III) в пересчете на оксид составляет 30 мас.% Al2О3.
Готовят 1 л раствора смешанных хлоридов Al и Cr с концентрацией 18 г Al2О3/л и 42 г Cr2О3/л и 1,2 л раствора аммиака с концентрацией 7,0%.
В реактор емкостью 2,5-3 л наливают 200 мл воды, нагревают до 80±5°С и при перемешивании одновременно добавляют раствор смешанных хлоридов со скоростью 30 мл/мин и раствор аммиака со скоростью, обеспечивающей постоянную величину рН=6,0±0,2. По окончании осаждения осадок оставляют стареть при температуре и рН осаждения в течение 1 ч, затем фильтруют и отмывают водой, сушат при 130°С. Высушенный осадок размалывают в порошок с размером зерен <0,1 мм. К порошку добавляют 0,3% раствор полиэтиленоксида (ПЭО) в количестве, обеспечивающем влажность 40%, смешивают до образования пластичной пасты, формуют экструзионным методом в цилиндрические гранулы диаметром 5 мм, сушат на воздухе при 110°С 12 ч.
Высушенные гранулы прокаливают в потоке азота при следующих условиях.
Непрерывный подъем температуры от комнатной до 380°С и прогрев при этой температуре в течение 4 ч.
Полученный образец рентгеноаморфен, имеет удельную поверхность 400 м2/г, маленький объем <0,1 см3/г и маленький радиус пор <30 Å. Интегральная (а) и дифференциальная (b) диаграммы распределения пор по размерам для катализатора представлены на Фиг.2.
Образец активируют аналогично примеру 1. Удельная поверхность катализатора после фторирования составляет 38 м2/г. Приведенные характеристики прокаленного катализатора и активированного катализатора находятся за пределами заявляемого набора свойств. Активность в реакции гидрофторирования тетрахлоэтилена в интервале температур 350-370°С составляет 0,11-0,28 с-1, что значительно ниже активности катализаторов по примерам 1 и 2.
Пример 5.
Описывает катализатор, не содержащий Al(III) и приготовленный за пределами заявленного интервала условий приготовления.
Готовят 1 л раствора хлорида Cr(III) с концентрацией 60 г Cr2O3/л и 1,2 л раствора аммиака с концентрацией 6,6%.
В реактор емкостью 2,5-3 л наливают 200 мл воды, нагревают до 30±5°С и при перемешивании одновременно добавляют раствор хлорида Cr со скоростью 40 мл/мин и раствор 6,6% аммиака со скоростью, обеспечивающей постоянную величину рН=7,0±0,2. По окончании осаждения осадок оставляют стареть при температуре и рН осаждения в течение 1 ч, затем фильтруют и отмывают водой, сушат при 110°С в воздухе.
Высушенный осадок размалывают в порошок с размером зерен <0,1 мм.
К порошку добавляют 0,3% раствор полиэтиленоксида (ПЭО) в количестве, обеспечивающем влажность пасты 40%, смешивают до образования пластичной пасты, формуют экструзионным методом в цилиндрические гранулы диаметром 5 мм, сушат на воздухе при 110°С 12 ч.
Высушенные гранулы прокаливают в потоке азота при 350°С 8 ч.
Полученный образец имеет низкую удельную поверхность 52 м2/г.
Фторирование катализатора осуществляют 100% фтористым водородом при Р=0,4 МПа. В интервале температур 300-370°С ступенчато поднимают температуру с шагом 20-30°С в течение 1 ч с последующей выдержкой образца при 370°С в течение 1 ч. Масса пропущенного через катализатор фтористого водорода равняется удвоенной массе катализатора. Удельная поверхность после фторирования составляет 31 м2/г.
Активность катализатора, измеренная в условиях, аналогичных примерам 1-3, составляет 0,14 с-1 при 370°С, что в 30 раз меньше активности катализатора по примеру 1.
Пример 6
Аналогичен примеру 1 по составу, условиям прокалки и условиям фторирующей активации, отличается неоптимальными условиями осаждения: переменным рН, меньшей температурой осаждения.
Готовят 1 л раствора смешанных хлоридов Al и Cr с концентрацией 3,0 г Al2О3/л и 57 г Cr2O3/л и 1,2 л раствора аммиака с концентрацией 6,6%.
1 л раствора смешанных хлоридов помещают в реактор-осадитель и при комнатной температуре при перемешивании добавляют 1,2 литра раствора 6,6% аммиака со скоростью 10 мл/мин. По мере добавления аммиака величина рН меняется от 3 до 8,0. По окончании осаждения осадок оставляют стареть при комнатной температуре и рН 8,0 в течение 1 ч, затем фильтруют, отмывают водой, сушат, гранулируют, прокаливают аналогично примеру 1.
Прокаленный образец рентгеноаморфен, имеет удельную поверхность 100 м2/г и разнородно-пористую структуру с радиусом пор от 30 Å до нескольких микрон при очень маленьком общем объеме пор <0,10 см3/г, что свидетельствует о большой неоднородности частиц по размерам. Интегральная (а) и дифференциальная (b) диаграммы распределения пор по размерам для катализатора представлены на Фиг.3.
Образец фторируют аналогично примеру 1. Удельная поверхность катализатора после фторирования состаляет 2,2 м2/г. Константа скорости в реакции фторирования тетрахлорэтилена составляет 0,014 и 0,062 с-1 при 370 и 450°С соответственно, что значительно меньше активности катализаторов по примерам 1 и 2.
Примеры 7 и 8 описывают образцы сравнения с неоптимальными условиями фторирования катализаторов.
Пример 7.
Образец в оксидной форме, полученный по примеру 2, фторируют аналогично примеру 1, но при температуре активации 320°С. Удельная поверхность катализатора после фторирования составляет 50 м2/г. При испытании активности катализатор первые 15 ч работает нестабильно, что может свидетельствовать о продолжающихся процессах формирования поверхности. Затем активность катализатора стабилизируется, но на более низком уровне, чем активность аналогичного катализатора по примеру 2 (см. таблицы 1, 2).
Пример 8.
Образец в оксидной форме, полученный по примеру 2, фторируют аналогично примеру 1, но при температуре активации 360°С. Удельная поверхность катализатора после фторирования составляет 30 м2/г. Активность полученного катализатора даже при более высокой температуре реакции ниже, чем активность аналогичного катализатора по примеру 2 (см. таблицы 1, 2), что свидетельствует о неоптимальных условиях фторирования образца.
Figure 00000001
Таблица 2.
Результаты испытания активности катализаторов по примерам 1-8 в реакции фторирования тетрахлорэтилена. Р=0,4 МПа, мольное соотношение HF/тетрахлорэтилен 11/1.
Т, °С Время контакта, с Конверсия ТХЭ Селективность Активность, с-1
Промежуточные продукты и R-125 R-115
R-1111 R-122 R-123 R-124 R-125 Сумма
Катализатор по примеру 1
280 2,09 70 2,1 31,4 64,0 2,5 0,0 100,0 0,0 0,58
330 2,51 100 0,0 0,0 31,8 38,1 28,5 98,4 0,0 -
350 2,02 100 0,0 0,0 20,8 23,7 52,4 96,9 0,0 -
370 0,58 92 0,0 2,6 27,9 30,7 36,1 97,3 0,0 4,4
Катализатор по примеру 2
330 2,02 83 1,8 3,0 54,3 33,7 6,3 99,1 0,0 0,88
350 2,12 96 0,0 0,5 27,8 34,1 35,2 97,6 0,0 1,5
370 2,11 100 0,0 0,0 16,7 19,0 60,8 96,5 0,0 -
Катализатор по примеру 3
350 1,99 96 0,0 0,1 37,5 43,8 17,2 98,6 0,0 1,6
Катализатор по примеру 4
300 1,20 0,0 - - - - - - - -
350 1,76 17 42,7 32,7 24,6 0,0 0,0 100,0 0,0 0,11
370 1,69 38 33,0 0,0 53,9 13,1 0,0 100,0 0,0 0,28
Катализатор по примеру 5
370 2,65 31 53,9*) 4,0 27,7 10,4 0,0 95,9 0,0 0,14
Катализатор по примеру 6
370 2,30 3,1 77,8 0,0 22,2 0,0 0,0 100,0 0,0 0,014
410 4,40 9,8 51,1*) 0,0 36,7 5,5 4,2 97,5 0,0 0,023
450 2,22 13 54,4*) 0,0 14,6 14,8 7,4 91,2 0,0 0,063
Катализатор по примеру 7**)
330 2,28 60 8,2 4,8 53,6 27,7 3,5 97,8 0,0 0,40
350 2,49 75 0,8 2,0 29,4 40,2 25,2 97,6 0,0 0,56
Катализатор по примеру 8
340 2,12 76 2,6 6,0 52,9 30,4 3,4 96,3 0,0 0,67
360 2,34 93 0,5 2,2 27,5 35,6 31,8 97,6 0,0 1,1
*)R-1111+R1112
**)Данные, полученные при стабильной работе катализатора

Claims (11)

1. Катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома (III), отличающийся тем, что катализатор содержит соединение алюминия (III), содержание которого в пересчете на Al2O3 составляет от 2 до 15 мас.%, при этом смешанные оксиды хрома (III) и алюминия (III) имеют удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å.
2. Способ приготовления катализатора фторирования галогенированных углеводородов газообразным фтористым водородом, включающий две последовательные стадии:
приготовление смешанных гидроксидов хрома (III) и алюминия (III) методом совместного осаждения из солей неорганических кислот хрома (III) и алюминия (III) и оснований с последующей фильтрацией, промывкой водой, сушкой на воздухе при 110-200°С;
приготовление смешанных оксидов хрома (III) и алюминия методом прокалки смешанных гидроксидов хрома (III) и алюминия (III) в инертном газе: азоте, аргоне при температуре не более 350±20°С, отличающийся тем, что указанные смешанные гидроксиды хрома (III) и алюминия (III) получают методом совместного осаждения из растворов хлористых или азотнокислых или сернокислых солей хрома (III) и алюминия (III) и раствора аммиака при постоянных величинах рН, температуре и скоростях приливания растворов смешанных солей хрома (III) и алюминия (III), при этом получают катализатор, включающий оксид хрома (III) и соединение алюминия (III), содержание которого в пересчете на Al2O3 составляет от 2 до 15 мас.%, имеющий удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å.
3. Способ по п.2, отличающийся тем, что осаждение проводят при постоянной величине рН, выбранной в интервале рН 6,5-8,0.
4. Способ по п.2, отличающийся тем, что осаждение проводят при постоянной температуре, выбранной в интервале 40-80°С.
5. Способ по п.2, отличающийся тем, что осаждение проводят при постоянной скорости приливания раствора смешанных солей алюминия и хрома.
6. Способ по п.2, отличающийся тем, что прокалку смешанных гидроксидов алюминия и хрома проводят в инертном газе азоте или аргоне при постепенном повышении температуры от комнатной до температуры 350±20°С со скоростью не более 100°С/ч.
7. Способ по п.2, отличающийся тем, что повышение температуры до 350±20°С проводят с изотермическими выдержками в течение 2-8 ч при температурах 250±20°С, 300±20°С, 350±20°С.
8. Способ активации катализатора фторирования галогенированных углеводородов газообразным фтористым водородом, включающего оксид хрома (III), отличающийся тем, что активацию катализатора, содержащего оксид хрома (III) и соединение алюминия (III), содержание которого в пересчете на Al2О3 составляет от 2 до 15 мас.%, имеющего удельную поверхность 130-300 м2/г, объем пор не менее 0,3 см3/г и мономодальное распределение пор по размерам в интервале 70-300 Å ведут в газовых смесях, содержащих 15-25 об.% фтористого водорода и 85-75 об.% инертного газа, при температуре 330-350°С и давлении 0,10±0,02 МПа, при этом активированный катализатор имеет величину удельной поверхности не менее 60 м2/г.
9. Способ фторирования галогенированных углеводородов газообразным фтористым водородом в присутствии катализатора, включающего оксид хрома, отличающийся тем, что используют катализатор по п.1 или приготовленный и активированный по любому из пп.2-7 и активированного по п.8.
10. Способ по п.9, отличающийся тем, что исходными галогенированными углеводородами являются хлорсодержащие углеводороды, например тетрахлорэтилен или трихлорэтилен, которые фторируются газообразным фтористым водородом в пентафторэтан R-125 и 1,1,1,2 тетрафторэтан R-134a соответственно.
11. Способ по п.9, отличающийся тем, что процесс фторирования галогенированных углеводородов проводят при давлении 0,1-0,5 МПа, температуре 260-380°С, мольном соотношении HF/галогенуглеводород 4/1-40/1.
RU2007108989/04A 2007-03-12 2007-03-12 Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов RU2322291C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007108989/04A RU2322291C1 (ru) 2007-03-12 2007-03-12 Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007108989/04A RU2322291C1 (ru) 2007-03-12 2007-03-12 Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Publications (1)

Publication Number Publication Date
RU2322291C1 true RU2322291C1 (ru) 2008-04-20

Family

ID=39453964

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007108989/04A RU2322291C1 (ru) 2007-03-12 2007-03-12 Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Country Status (1)

Country Link
RU (1) RU2322291C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449832C2 (ru) * 2009-10-27 2012-05-10 Федеральное государственное унитарное предприятие "РНЦ "Прикладная химия" Способ активации катализатора для получения фторсодержащих углеводородов
RU2594485C1 (ru) * 2015-06-25 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ активации катализатора для получения фторсодержащих углеводородов
EP3509740B1 (en) 2016-09-07 2020-11-04 Mexichem Fluor S.A. de C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
EP3509741B1 (en) 2016-09-07 2020-11-04 Mexichem Fluor S.A. de C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449832C2 (ru) * 2009-10-27 2012-05-10 Федеральное государственное унитарное предприятие "РНЦ "Прикладная химия" Способ активации катализатора для получения фторсодержащих углеводородов
RU2594485C1 (ru) * 2015-06-25 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ активации катализатора для получения фторсодержащих углеводородов
EP3509740B1 (en) 2016-09-07 2020-11-04 Mexichem Fluor S.A. de C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
EP3509741B1 (en) 2016-09-07 2020-11-04 Mexichem Fluor S.A. de C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
US11406965B2 (en) 2016-09-07 2022-08-09 Mexichem Fluor S.A. De C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
US11452990B2 (en) 2016-09-07 2022-09-27 Mexichem Fluor S.A. De C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
EP3509741B2 (en) 2016-09-07 2024-01-24 Mexichem Fluor S.A. de C.V. Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons

Similar Documents

Publication Publication Date Title
CN100464840C (zh) 钴取代的氧化铬组合物,它们的制备以及它们作为催化剂和催化剂前体的用途
EP0958265B1 (en) The catalytic manufacture of pentafluoropropenes
US10189757B2 (en) Chromia based fluorination catalyst
EP0968161B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
JP2557936B2 (ja) 触媒の存在下でのフッ化水素化による1,1,1−トリフルオロ−2,2−ジクロロエタンの製法
CN1867402B (zh) 含锌的氧化铬组合物、它们的制备以及它们作为催化剂和催化剂前体的用途
JP7132378B2 (ja) 触媒およびこの触媒を用いるフッ素化炭化水素の製造プロセス
US11452990B2 (en) Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons
RU2322291C1 (ru) Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов
RU2402378C1 (ru) Катализатор, способ его приготовления и способ фторирования галогенированных углеводородов
JP5128706B2 (ja) 触媒および該触媒を使用する方法
CN106748626B (zh) 一种合成反式1-氯-3,3,3-三氟丙烯的方法及其催化剂的制备
CN100584457C (zh) 氟化铝基氟化催化剂及制备方法和用途
JP3558385B2 (ja) クロム系フッ素化触媒、及びフッ素化方法
CN101214446B (zh) 氟化催化剂及制备方法
JP2996598B2 (ja) クロム系フッ素化触媒、その製法及びフッ素化方法
CN107552076B (zh) 一种具纳米晶复合载体气相氟化催化剂及其制备方法
RU2431524C1 (ru) Катализатор, способ его приготовления и способ фторирования галогенированных углеводородов
RU2594485C1 (ru) Способ активации катализатора для получения фторсодержащих углеводородов
US5710353A (en) Process for fluorinating halogenated hydrocarbon
CN101214447B (zh) 氟化铝基氟化催化剂及其制备方法
JP2004209431A (ja) フッ素化触媒およびフルオロ化合物の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160313