JP2996598B2 - クロム系フッ素化触媒、その製法及びフッ素化方法 - Google Patents

クロム系フッ素化触媒、その製法及びフッ素化方法

Info

Publication number
JP2996598B2
JP2996598B2 JP6212812A JP21281294A JP2996598B2 JP 2996598 B2 JP2996598 B2 JP 2996598B2 JP 6212812 A JP6212812 A JP 6212812A JP 21281294 A JP21281294 A JP 21281294A JP 2996598 B2 JP2996598 B2 JP 2996598B2
Authority
JP
Japan
Prior art keywords
fluorination
catalyst
chromium
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6212812A
Other languages
English (en)
Other versions
JPH0838904A (ja
Inventor
勝行 辻
哲夫 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP6212812A priority Critical patent/JP2996598B2/ja
Publication of JPH0838904A publication Critical patent/JPH0838904A/ja
Application granted granted Critical
Publication of JP2996598B2 publication Critical patent/JP2996598B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はクロム系フッ素化触媒、
その製法及びフッ素化方法に関し、さらに詳しくは炭素
数1〜4のハロゲン化炭化水素の気相フッ素化反応によ
るハロゲン化炭化水素の製造に際して用いることができ
るクロム系フッ素化触媒、その製法及び該触媒を用いた
ハロゲン化炭化水素のフッ素化方法に関する。なかで
も、近年代替フロンとして量産されているハイドロフル
オロカーボン(HFCと略す)、ハイドロクロロフルオ
ロカーボン(HCFCと略す)の製造の際に有効である
活性、選択性が高い触媒の製造方法を提供することを目
的とする。
【0002】
【従来の技術】炭素数1〜4のハロゲン化炭化水素とフ
ッ化水素からフッ素を含むハロゲン化炭化水素を製造す
る方法には、大別して気相法と液相法がある。近年、塩
素原子を分子中に含むクロロフルオロカーボン(CFC
と略す)によるオゾン層破壊の問題がクローズアップさ
れ、それらの代替物質(以下代替フロンと略す)として
分子内に水素を含むHCFCや塩素を分子内に含まない
HFCが提案され、すでに量産されているものもある。
これらの代替フロンの製法としては、特に気相法が有力
である。気相法においては触媒の選択が重要であり、こ
れまでにも種々の触媒が提案されている。
【0003】特許上は、活性炭に担持されたCu,A
g,Na,Cd,Ca,Zn,Hg,V,Sb,Mn,
Fe,Ni,Co,Ptなどのハロゲン化物(米国特許
第2005707号参照)のように各種の金属が有効な
触媒とされている。しかし、一般的にはクロムの酸化
物、フッ化物、オキシフッ化物あるいはアルミニウム、
鉄などのハロゲン化物を主成分とする触媒を用いること
が多い。なかでも、クロム酸化物を触媒にする例は最も
多く、これまでにも数々の調製方法や組成物が提案され
ている。
【0004】特公昭39−10310号公報はアルミナ
にクロム酸(6価)を含浸、乾燥し、水素還元したCr
2 3 触媒を提案している。また、特公昭41−203
号公報では酸素焼成と水素焼成を何度か繰り返し、最後
に酸素焼成をして得られるOとCrの原子比が1.5〜
3の範囲にある黒色の酸化クロムが活性が高いとされて
いる。さらに、特公昭42−3004号公報には3価の
クロム塩溶液から沈澱法により調製した含水酸化第2ク
ロムを水蒸気及び不活性ガスからなる雰囲気中で300
〜400℃で焼成して得られるCr2 3 触媒が開示さ
れている。
【0005】最近でも、特開平5−146680号公報
において特公昭42−3004号公報と同様な方法で得
られる触媒、すなわち、沈澱法による水酸化クロムをN
2 気流下で380〜460℃で焼成した比表面積170
m2/g以上の酸化クロムが高活性であることを主張して
いる。本出願人はCr系フッ素化触媒の賦活再生時に熱
処理条件を選ぶことが重要であることをすでに発見して
いる。すなわち、特開平5−92141号公報記載のよ
うに触媒をまずO2 などの酸化性ガスで、次にH2 など
の還元性ガスで熱処理することによってCrを飛散させ
ることなく、十分に活性を回復させることができる。
【0006】
【発明が解決しようとする課題】しかしながら、代替フ
ロンとして提案されている分子中に水素原子を含有する
HCFCやHFCをハロゲン化炭化水素とフッ化水素と
の反応により製造する際には、従来のCFCの製造に較
べ、反応が進行しにくい場合が多い。このような場合に
は従来のクロム系フッ素化触媒では有為な収量を得るた
めに350℃以上の高温で反応を行う必要がある。さら
に、分子中に水素を含有するハロゲン化炭化水素の製造
においては触媒への炭素の付着が激しく、活性劣化が速
い傾向がある(特開平1−262946号公報参照)。
【0007】劣化の速度は反応温度が高いほど大きくな
ることから、活性の高い触媒を用いて低温で反応を行う
ことは熱エネルギーの節約になるばかりか触媒寿命の点
でも大きなメリットを有している。従って、HCFCや
HFCを効率よく製造するために、従来のフッ素化触媒
より高い活性を有し、寿命の長い触媒が求められてい
る。
【0008】本発明の主たる目的は、HCFC,HFC
の製造の際に有効であるクロム系フッ素化触媒の製造方
法及び該触媒を用いて炭素数1〜4のハロゲン化炭化水
素を気相フッ素化して分子中水素原子及びフッ素原子
を含有するハロゲン化炭化水素を効率よく製造する方法
を提供することである。
【0009】
【課題を解決するための手段】本発明者らは上記の問題
を解決すべく鋭意検討した結果、触媒を賦活再生する際
に経験したのと同様に、調製時の熱処理条件が触媒性能
を大きく左右することを明らかにし、例えば、3価の水
酸化クロムを主成分とする化合物を水素の存在下、35
0℃以上500℃以下の温度で焼成して得られる触媒前
駆体をフッ化水素を含む気流下などで部分的にフッ素化
して得られるクロム系フッ素化触媒が活性、さらには選
択性においても従来のフッ素化触媒より優れていること
を見いだし、本発明を成すに到った。
【0010】本発明は、(1)3価の水酸化クロムを主
成分とする原料を水素の存在下、350℃以上500℃
以下の温度で焼成することを特徴とするクロム系フッ素
化触媒の製法であり、下記の如き好ましい態様を含む。 (2)3価の水酸化クロムを主成分とする原料をまず不
活性ガス気流中で100℃以上600℃以下の温度で熱
処理し、その後、水素の存在下、350℃以上500℃
以下の温度で焼成することを特徴とするクロム系フッ素
化触媒の製法。
【0011】(3)水素の存在下、焼成した後に部分的
にフッ素化することを特徴とする上記(1)もしくは
(2)記載のクロム系フッ素化触媒の製法。 (4)水素の存在下、焼成した後に、フッ化水素を含む
気流中で300℃以上500℃以下の温度で部分的にフ
ッ素化することを特徴とする上記(3)記載のクロム系
フッ素化触媒の製法。
【0012】(5)3価の水酸化クロムを主成分とする
原料がコバルト、ニッケル、銅、銀、亜鉛、カドミウ
ム、水銀、アルミニウム、ガリウム、錫、鉛からなる群
から選ばれる少なくとも1種の元素を含有することを特
徴とする上記(1)〜(4)のいずれかに記載のクロム
系フッ素化触媒の製法。また、本発明は、別の側面にお
いて、(6)上記(1)の製法で製造したフッ素化触媒
又は前駆体(添加物に応じてCr23 類似物が多いが
異なる結晶構造のものもある)であって、X線回折図の
回折ピークの半値幅が、前記と同じ原料を大気圧下1体
積%以上の酸素を含む雰囲気下で400℃で2時間以上
焼成して得られた材料の相当する回ピークの半値幅の
1.2倍以上であることを特徴とするフッ素化触媒又は
前駆体、及び (7)X線回図に結晶性Cr23 の回ピークを有
し、かつ、格子面間隔dが2.65〜2.69の範囲に
位置するピークの半値幅が0.8°以上であることを特
徴とするフッ素化触媒をも提供する。
【0013】本発明は、さらに別の側面において、
(8)上記(1)〜(7)のいずれかのフッ素化触媒の
存在下、気相で炭素数1〜4のハロゲン化炭化水素とフ
ッ化水素を接触させることを特徴とするハロゲン化炭化
水素のフッ素化方法、及び (9)該ハロゲン化炭化水素が含水素ハロゲン化炭化水
素であることを特徴とする上記(8)記載のフッ素化方
法を提供する。
【0014】本発明でいう3価の水酸化クロムとは化学
式で例えばCr2 3 ・nH2 Oと書き表すことができ
る化合物のことであり、3価のCr塩から沈澱法などに
より調製することができる。nの値としては通常2〜4
の範囲にある。3価のCr塩としては硝酸塩、塩化物、
硫酸塩が好適に用いられる。なかでも硝酸塩が特に好ま
しい。沈澱法による水酸化クロムは3価のCr塩水溶液
にアルカリ水溶液を混合して生じる沈澱を濾過、洗浄、
乾燥することによって得ることができる。
【0015】触媒形状として成型品が望ましい場合には
乾燥後に打錠成型を行ったり、乾燥前に押し出し成型を
実施することにより成型物とすることができる。乾燥温
度としては80〜130℃、特には90〜120℃が好
ましい。この時nの値は2.5〜3.5の範囲にある。
不活性ガス中であればさらに高温で乾燥することも可能
であるが、打錠成型を行う際には乾燥温度は150℃以
下にとどめる方が望ましい。
【0016】アルカリとしては工業規模で入手できるも
のなら如何なるものを用いてもよいがアンモニア、水酸
化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、
水酸化カリウム、炭酸カリウム、炭酸水素カリウム、炭
酸アンモニウム、炭酸水素アンモニウムが好ましく、な
かでもアンモニアが特に好ましい。混合方法としてはC
r塩水溶液とアルカリ水溶液の両者を反応液のpHが6.
5〜9の範囲になるように同時にあるいは交互に滴下す
る方法が特に好ましい。
【0017】3価の水酸化クロムを主成分とする化合物
をH2 存在下で焼成する前に不活性ガス中であれば、あ
らかじめ600℃以下の温度で熱処理を施こしてもよ
い。このような熱処理により、脱水反応や残留塩の分解
反応が起こり、水酸化クロムはCr2 3 という組成式
で表せる化合物に近づくことが期待される。ただしO2
を含む雰囲気では300℃以上の温度で熱処理を行って
はならない(ここでO2 を含む雰囲気とはO2 を絶対圧
力で1000Pa以上含む雰囲気を表し、代表的には、空
気中のことである)。なぜなら水酸化クロムをO2 を含
む雰囲気に350℃以上の高温で曝すと比表面積の小さ
いCr2 3 に転化し、一旦低下した比表面積は容易に
回復しないためである。
【0018】活性の高い触媒の要件として、比表面積が
大きいことがあげられ、後の工程で行うフッ素化処理に
より、比表面積はさらに低下することから、上記のよう
な比表面積の小さい前駆体を用いることは不利である。
フッ素化前の触媒前駆体は150m2/g以上より好まし
くは180m2/g以上の比表面積を有することが望まれ
る。よって、200℃以下、さらには150℃以下の温
度でしかO2 を含む雰囲気に曝されていない水酸化クロ
ムを用いることが好ましい。
【0019】一旦、H2 焼成を行った前駆体でも再度O
2 を含む雰囲気で焼成すると比表面積が低下し、さら
に、部分的に6価のCrが生成しフッ素化処理時に飛散
するなどの問題を生じることから、特公昭41−203
号公報のように、最終的にO2を含む雰囲気で焼成する
ことは避けなければならない。従って、好ましい焼成方
法としては、乾燥後の水酸化クロムを主成分とする原
料を水素を含む気流中で350℃以上500℃以下の温
度まで昇温し、そのまま所定の時間焼成する方法、もし
くは乾燥後の3価の水酸化クロムを主成分とする原料
を、まず不活性ガス気流中で100℃以上600℃以下
の温度で熱処理し、その後、水素を含む気流中で350
℃以上500℃以下の温度で所定の時間焼成する方法が
あげられる。
【0020】水酸化クロムを主成分とする原料には、C
r以下の金属元素が含まれていてもよく、特に助触媒と
して効果が期待される長周期型周期率表の8,9,1
0,11,12,13,14族(新IUPAC命名法)
元素からなる群から選ばれる少なくとも1種の元素、な
かでも、Co,Ni,Cu,Ag,Zn,Cd,Hg,
Al,Ga,Sn,PbなどはCrに対する原子比で
0.001〜0.5、好ましくは0.003〜0.3、
特に好ましくは0.003〜0.2の範囲で含まれてい
ると活性促進や延命効果を期待することができる。
【0021】上記の元素を添加するには、沈澱法により
水酸化クロムを調製する際にCr塩水溶液に添加したい
元素の塩を所定量加えるか、あるいは、水酸化クロムに
添加したい元素の塩の水溶液を含浸するなどの方法で容
易に達成できる。従って、Cr以外の金属元素は典型的
には金属水酸化物又は金属として含まれ、従って水酸
化クロムを主成分とする原料はCrと他の金属の混合水
酸化物又はそれと金属との混合物であることができる。
【0022】以上述べてきたような化合物をH2 の存在
下焼成して触媒前駆体とする。従来は、フッ素化触媒の
焼成雰囲気としては特公昭42−3004号公報や特開
平5−146680号公報のようにN2 などの不活性ガ
ス気流中がよいとされてきた。ところが、本発明のごと
くH2 の存在下で焼成を行うとさらに高い活性を有する
触媒が得られる。
【0023】焼成温度は低すぎると効果がなく、また高
すぎても比表面積が低下するなどの問題が生じるため3
50〜500℃が適当であり、好ましくは370〜46
0℃、特に370〜450℃がよい。焼成ガス中のH2
濃度は0.1〜100vol %とすることができる。必要
に応じてガス中に20vol %以下の水を同伴することも
可能であり、0.3〜10vol %の水蒸気をH2 に同伴
させてもよい。ガス中にO2 が含まれると安全上問題で
あるためO2 濃度は0.1vol %以下に抑えるべきであ
る。ガス流量はGHSV(標準状態換算)で10〜10
000h-1が適当であり、圧力は大気圧〜10kg/cm2
Gが操作上便利である。このような条件において少なく
とも30分間、好ましくは1〜10時間焼成して前駆体
とする。
【0024】前駆体をそのまま反応に用いることも可能
であるが反応前にフッ素化処理を行うことが望ましい。
フッ素化は気相で行う方が簡便でよく、前駆体をHFや
2、分子中にFを含有する炭化水素などのフッ素化能
を有するガスの存在下で処理すればよい。温度、圧力、
処理時間などの処理条件は用いるガスのフッ素化能力に
応じて、目的とするフッ素含有量を達成するのに適切な
条件を選ぶ必要がある。
【0025】好ましいフッ素化方法としては、HFを含
む気流下で行う方法があげられる。処理温度は300〜
500℃、特には300〜450℃が好ましい。HF濃
度は1〜100vol %で行い得るが、処理時にあまり発
熱させると比表面積が大幅に低下するなどの悪影響をき
たす。これを防止するため、必要に応じてN2 などの不
活性ガスでHFを稀釈して発熱による温度上昇(以下、
ΔTと略す)が最大でも50℃以下になるようにコント
ロールすることが好ましい。
【0026】ガス流量はGHSVで10〜10000h
-1が適当である。圧力は大気圧〜20kg/cm2 Gで行う
ことができる。用いるHFとしてはできるだけ水分の含
有量が少ないものがよく、好ましくは水分含有量が15
0重量ppm 以下、より好ましくは100重量ppm 以下の
HFを用いるとよい。より好ましい触媒前駆体のフッ素
化方法の一例をあげると、大気圧下300〜350℃で
HF濃度5〜30vol %になるようHFとN2 を供給し
フッ素化を開始する。ホットスポットが前駆体充填層を
通過した後、発熱に注意しながらHF濃度を徐々に90
vol %以上になるまで上げていく。続いて圧力を上げ2
〜10kg/cm2 Gの加圧下で発熱がなくなるまで処理す
る。
【0027】不活性ガス中での熱処理やH2 存在下の焼
成及びフッ素化処理はインコネル、ハステロイ製のもの
であれば同一の反応器で行うことも可能であり、操作上
簡便である。HF処理によって触媒前駆体は部分的にフ
ッ素化され、F原子を取り込んだ化合物になる。ただ
し、触媒はF以外にOを合わせ持つことが必要である。
各成分の好ましい含量の範囲としては、Oは3〜28重
量%、Fは3〜45重量%である。
【0028】H2 存在下の焼成により活性が向上する理
由は明確ではないが、Adv.Catal.20巻、7
ページの記載事項によれば、水酸化クロムをN2 中で焼
成した場合470℃程度までアモルファス状態が保た
れ、結晶性のCr2 3 へ転化は起こらない。一方、H
2 中で焼成した場合には390〜400℃において微結
晶化が起こり、H2 の存在により結晶化が促進されるよ
うである。
【0029】実際、後の実施例で示すように硝酸クロム
とアンモニア水から沈澱法によって調製した水酸化クロ
ムを400℃でN2 焼成しても、結晶性Cr23 は生
成しなかったが、同じ温度でH2 焼成した際には結晶性
Cr23 (Eskolaite(ICDDカード19
88年版38−1479)の粉末X線回図とほぼ一
致)の生成が確認された。また、同じ温度でN2 気流中
もしくはH2 気流中で焼成した触媒前駆体を同一条件で
HF処理するとH2 気流中で焼成した前駆体を用いた方
がF含量が小さい触媒ができる傾向も認められた。この
ように結晶化が進んだ酸化クロムを部分的にフッ素化し
た触媒の方がアモルファス状態の酸化クロムを部分的に
フッ素化した触媒より前駆体のフッ素化が進みにくく、
活性が高いものと推測される。
【0030】O2 を含む雰囲気下で焼成した場合にも結
晶化が促進されるが、グロー現象と呼ばれるように、大
きな発熱を伴って急激に結晶化が進行する。この際、比
表面積が大幅に減少し、得られる触媒前駆体の比表面積
は50m2/g以下である。しかし、H2 存在下の焼成で
は(よほど急激に昇温しない限り)顕著な発熱はなく、
得られる触媒前駆体の比表面積はN2 気流中で焼成した
場合と同程度に大きい。
【0031】以上述べたように、活性の高い触媒(触媒
前駆体)の要件として、ある程度結晶化が進行してい
て、かつ、比表面積が大きいことがあげられる。従っ
て、望ましい触媒(触媒前駆体)構造は微結晶の集合体
ということができる。本発明による望ましい触媒又は触
媒前駆体の微結晶から成る触媒前駆体の特徴はある程度
粉末X線回図(以下XRDパターンと略す)に現れ
る。すなわち、触媒前駆体が酸化クロムの場合は結晶化
しているため結晶性Cr23 の回パターンを有し、
微結晶であるためピークの半値幅(ここでいうピークの
半値幅とは装置光学系等によるピークの広がりを除外し
たサンプルに由来する真の半値幅Δ(2θ)のこと)は
大きくなる。しかし、Cr以外の添加物が%オーダー以
上含まれる場合には添加物の種類によっては結晶性Cr
23 の回パターンを示さなくなることもあり、添加
物を含んだ系についてはXRDパターンのみで特徴を規
定することは難しい。さらに、ピーク半値幅は測定条件
や測定装置に依存するため値を定義することは簡単では
ないが、好ましいピーク半値幅の範囲としては、少なく
とも同じ原料を大気圧下O2 雰囲気(1vol %以上のO
2 を含む雰囲気)下400℃で2時間以上焼成して得ら
れた前駆体の半値幅の1.2倍、望ましくは1.4倍以
上の値を有することが必要である。
【0032】結晶性Cr23 の回パターンを有する
触媒(触媒前駆体)について半値幅の好ましい範囲の一
例を説明すると、格子面間隔dが2.65〜2.69の
範囲に位置する回線(ICDDカード38−1479
の(104)面に対応する)の真の半値幅が0.8°以
上、より好ましくは1.0°以上であることと定義でき
る。半値幅の測定はモノクロメーターを備えた装置で例
えば走査速度1°/min 以下、受光スリット幅0.15
mm以下といった高い角度分解能を得られる条件で行うこ
とが望ましく、また、装置光学系に起因する回線の広
がりを結晶子サイズの充分大きなシリコンなどの単結晶
を同条件で測定するなどして補正する必要がある。
【0033】本発明のフッ素化触媒は炭素数1から4の
ハロゲン化炭化水素をHFによりフッ素化する際に適用
できる。なかでも、従来のフッ素化触媒では反応が進行
しにくく、また、触媒劣化が極めて速い含水素ハロゲン
化炭化水素のフッ素化には特に効果的である。本発明で
いう含水素ハロゲン化炭化水素とは分子中にHを含むハ
ロゲン化炭化水素のことであり、一例をあげると、CH
Cl3 , CH2 Cl2 ,CH2 FCl,CH3 Cl,C
2 HCl3 ,C2 2 Cl2 ,C2 3 Cl,C2 HC
5 ,C2 HFCl4 ,C2 HF2 Cl3 ,C2 HF3
Cl2 ,C2 HF4 Cl,C22 Cl4 ,C2 2
Cl3 ,C2 2 2 Cl2 ,C2 2 3 Cl,C2
3 Cl3 ,C2 3 FCl2 ,C2 3 2 Cl,C
2 4 Cl2 ,C2 4FCl,C2 5 Cl,C3
2 4 Cl2 ,C3 HF4 Cl3 などがある。さらに、
上記の炭化水素中のClの全部もしくは一部をBrやI
に置換した化合物であってもよい。
【0034】水素含有ハロゲン化炭化水素のフッ素化
は、典型的には、水素含有ハロゲン化炭化水素が不飽和
基を含む場合、2種又は段階のフッ素化を伴なう。例え
ば、CCl2 =CHClのフッ素は下記式の如く進行す
る。 (1)CCl2 =CHCl+3HF→CF3 CH2Cl
+2HCl (2)CF3 CH2Cl+HF→CF3 CH2F+HCl すなわち、第1の段階では不飽和基へのHFの付加反応
と塩素からフッ素への置換反応が起こり、第2の段階で
は置換反応だけが起きる。
【0035】最終の塩素をフッ素に置換することは特に
困難である。上記例で述べると、CCl2 =CHCl
(HCC−1120)からCF3 CH2Cl(HCFC
−133a)への第1のフッ素化反応は比較的容易に起
きるが、HCFC−133aからCF3 CH2F(HF
C−134a)への第2又は最終段階のフッ素化反応は
困難である。
【0036】本発明のクロム系フッ素化触媒は、上記の
両方のフッ素化反応に有効であるが、慣用のフッ素化触
媒では第2段階のフッ素化が困難であることから、本発
明のクロム系フッ素化触媒は特に上記第2段階のフッ素
化に有効かつ有用である。これらの含水素ハロゲン化炭
化水素をHFでフッ素化する場合に、従来のフッ素化触
媒に較べて高い収率で目的化合物が得られる。さらに、
低い反応温度で所定の収量が得られて、結果としてより
長い触媒寿命が達成されるなどの効果をもたらす。
【0037】特に、最近オゾン層を破壊する恐れのない
代替フロンとして注目されているCH2 2 (HFC−
32)やCH2 FCF3 (HFC−134a)、CHF
2 CF3 (HFC−125)を製造する際の合成ルート
として考えられるCH2 Cl 2 ,CH2 FCl,CHC
l=CCl2 (トリクロロエチレン)、CF3 CH2
l(HCFC−133a)、CCl2 =CCl2 (パー
クロロエチレン)、CF3 CHCl2 (HCFC−12
3)、CF3 CHFCl(HCFC−124)のフッ素
化反応には特に効果的である。
【0038】フッ素化反応は固定床、流動床、移動床な
どの反応方法をとり得るが、固定床が一般的である。反
応条件は反応によって適切な条件が変化するが、一般的
にはハロゲン化炭化水素に対するHFのモル比:0.5
〜20、温度:200〜400℃、圧力:大気圧〜20
kg/cm2 G(ゲージ圧)、SV:50〜100000h
-1である。
【0039】
【実施例】以下、実施例及び比較例を示して、本発明を
具体的に説明するが、かかる説明によって本発明が限定
されないことは勿論である。尚、説明中触媒の組成は化
学分析から求めた触媒に含まれる各元素の重量%を表
し、反応例中のモル比とはハロゲン化炭化水素に対する
HFのモル比を表す。SVは標準状態に換算した値であ
り、圧力はゲージ圧である。 (触媒調製例1)純水600mlを入れた101の容器
に、Cr(NO3 3 ・9H2 O480gを純水1.2
lに溶かした溶液と28重量%のアンモニア水0.3l
とを撹拌しながら、反応液のpHが7.5〜8.5の範囲
内になるように2種の水溶液の流量をコントロールして
約1時間かけて滴下した。得られた水酸化物のスラリー
を濾別し、純水でよく洗浄した後、110℃で乾燥し
た。乾燥後の固体中に含まれるCrの価数をポーラログ
ラフ法によって測定したところ少なくとも98%以上が
3価であった。
【0040】また、600℃まで強熱した際の重量減少
率は26%であったことから、この水酸化クロムを化学
式で表すとCr2 3 ・3H2 Oに相当する。得られた
固体を粉砕、黒鉛と混合し、打錠成型機によってペレッ
ト化した。このペレット60mlをガラス製焼成管に充填
し、3vol %の水蒸気を含んだH2 気流下400℃で4
時間焼成し触媒前駆体とした。
【0041】図1にこの前駆体のXRDパターンを示
す。結晶性Cr2 3 が成長していることがわかる。な
お、X線の線源としてはCuKα1 線を用いた。2θ=
26.5°,54.7°のピークは成型時に添加した黒
鉛に由来するものである。前駆体40mlをインコネル製
反応管に充填し、大気圧においてN2 稀釈した20vol
%のHF気流下350℃で、続いてN2 稀釈しない10
0%のHF気流下350℃で、さらに100%のHF気
流下で昇圧して3kg/cm2 Gでフッ素化処理を行った。
処理後のペレットの組成を以下に示す。
【0042】Cr:60.1% O:20.8% F:
16.5% (触媒調製例2)触媒調製例1と同様な方法で調製した
乾燥品のペレット60mlをガラス製焼成管に充填し、ま
ずN2 気流下350℃で2時間焼成し、続いてH2 気流
下400℃で4時間焼成し触媒前駆体とした。前駆体の
XRDパターンから結晶性Cr23 の成長が確認され
た。
【0043】さらに、前駆体を調製例1と同様にしてフ
ッ素化処理を行った。処理後のペレットの組成を以下に
示す。 Cr:60.0% O:20.6% F:16.7% (比較触媒調製例1)調製例1と同様な方法で調製した
乾燥品のペレット60mlをガラス製焼成管に充填し、N
2 気流下400℃で4時間焼成し触媒前駆体とした。
【0044】図2にこの前駆体のXRDパターンを示
す。結晶性の化合物は存在しないことがわかる。さら
に、前駆体を調製例1と同様にしてフッ素化処理を行っ
た。処理後のペレットの組成を以下に示す。 Cr:57.8% O:17.3% F:22.2% 調製例1と同一条件でフッ素化処理を行ったが、O含量
が少なく、F含量が多いことがわかる。 (触媒調製例3)20lの反応容器に、Cr(NO3
3 ・9H2 O420gと純水5lを入れてCr水溶液を
調製した。ここに10%アンモニア水625gを激しく
撹拌しながら3分かけて滴下した。得られた水酸化物の
スラリーを用いて調製例1の方法に従って前駆体を調製
した。前駆体のXRDパターンから結晶性Cr2 3
成長が確認された。
【0045】この前駆体について2θ=31〜35.5
°の範囲を以下の条件でピーク半値幅を測定した。図3
に結果を示す。半値幅は1.2°であった(シリコン単
結晶の測定から求めた装置の光学系に由来する線の広が
り0.12°で補正した値)。また、この前駆体の比表
面積を求めると210m2/gであった。
【0046】 ピーク半値幅の測定条件 測定装置;理学X線回装置 RAD−B X線出力;50kV−180mA 発散スリット;1.0° 散乱スリット;0.5° 受講スリット;0.15mm スキャンスピード;1°/min ステップ;0.002° 測定モード;θ−2θ 前駆体40mlをインコネル製反応管に充填し、大気圧に
おいてN2 稀釈した20 vol%のHF気流下360℃
で、続いてN2 稀釈しない100%のHF気流下360
℃でフッ素化処理を行った。処理後のペレットの組成を
以下に示す。
【0047】Cr:62.3% O:24.4% F:
10.3% (比較触媒調製例2)触媒調製例3と同様な方法で調製
した乾燥品のペレット60mlをガラス製焼成管に充填
し、大気圧下窒素稀釈した空気(O2 濃度2vol %)気
流下で昇温した。焼成管外部温度が370℃近辺で突然
焼成管の内部温度が急激に上昇し、450℃程度まで上
がった後、数分で再び焼成管外部温度とほぼ同じ温度に
回復した。400℃到達後、4時間同温度で保持した。
【0048】この前駆体について調製例3と同様にピー
ク半値幅を測定した。結果を図4に示す。半値幅は0.
7°であった。また、この前駆体の比表面積は36m2
gであった。調製例3の結果と比較すると空気中で焼成
した前駆体に比較してH2 中で焼成した前駆体の方が回
線の半値幅が大きく、比表面積も大きいことがわか
る。 (触媒調製例4) 触媒調製例1で得られた前駆体40mlをインコネル製反
応管に充填し、大気圧においてN2 稀釈したフロン13
(CF3 Cl)気流下350℃で、続いて100%のフ
ロン13気流下350℃でフッ素化触媒を行った。処理
後のペレットの組成を以下に示す。
【0049】Cr:60.4% O:23.7% F:
8.8% Cl:3.1% (触媒調製例5)Cr(NO3 3 ・9H2 Oを480
gから432gに減らし、Zn(NO32 ・6H2
を36g追加すること以外は調製例1に従って触媒前駆
体を調製した。
【0050】さらに、前駆体を調製例1と同様にしてフ
ッ素化処理を行った。 (触媒調製例6)Cr(NO3 3 ・9H2 Oを480
gから432gに減らし、Cd(NO32 ・4H2
を32g追加すること以外は調製例1に従って触媒前駆
体を調製した。
【0051】さらに、前駆体を調製例1と同様にしてフ
ッ素化処理を行った。 (触媒調製例7)Cr(NO3 3 ・9H2 Oを480
gから432gに減らし、Cu(NO32 ・3H2
を6g追加すること以外は調製例1に従って触媒前駆体
を調製した。
【0052】さらに、前駆体を調製例1と同様にしてフ
ッ素化処理を行った。 (触媒調製例8)Cr(NO3 3 ・9H2 Oを480
gから432gに減らし、AgNO3 を9g追加するこ
と以外は調製例1に従って触媒前駆体を調製した。さら
に、前駆体を調製例1と同様にしてフッ素化処理を行っ
た。 (触媒調製例9)Cr(NO3 3 ・9H2 Oを480
gから432gに減らし、Pb(NO32 を9g追加
すること以外は調製例1に従って触媒前駆体を調製し
た。
【0053】さらに、前駆体を調製例1と同様にしてフ
ッ素化処理を行った。 (フッ素化反応例1)触媒調製例1で調製した触媒30
mlをインコネル製反応管に充填し、以下の反応条件でH
Fによるトリクロロエチレンのフッ素化反応を行った。
【0054】反応管の出口ガスをアルカリ及びトルエン
の2相よりなるトラップに吹き込んで未反応のHF及び
生成したHClを除去し、トルエンに抽出された成分を
ガスクロにより分析した。結果を表1に示す。 温度:210℃、圧力:大気圧、モル比:15、SV:
1000h-1 (フッ素化比較反応例1)比較触媒調製例1で調製した
触媒を用いる以外はフッ素化反応例1と同様にしてトリ
クロロエチレンのフッ素化反応を行った。結果を表1に
合わせて示す。
【0055】 表1 トリクロロエチレンのフッ素化反応結果 TCE転化率 133a選択率 134a選択率 (%) (%) (%) 反応例1 90.2 95.3 1.0 比較反応例1 66.3 70.9 0.3 表中、TCE転化率、133a選択率、134a選択率
はそれぞれ、トリクロロエチレンの転化率、HCFC−
133a,HFC−134aの選択率を表す。 (フッ素化反応例2)触媒調製例1で調製した触媒30
mlをインコネル製反応管に充填し、以下の反応条件でH
FによるHCFC−133aのフッ素化反応を行った。
【0056】反応管の出口ガスをアルカリトラップに吹
き込んで未反応のHF及び生成したHClを除去し、ガ
スクロによりガス組成を分析した。結果を表2に示す。 温度:320℃、圧力:2kg/cm2 G、モル比:8、S
V:1500h-1 (フッ素化反応例3)触媒調製例2で調製した触媒30
mlを用いてフッ素化反応例2と同様にしてHCFC−1
33aのフッ素化反応を行った。結果を表2に合わせて
示す。 (フッ素化比較反応例2)比較触媒調製例1で調製した
触媒を用いる以外はフッ素化反応例2と同様にしてHC
FC−133aのフッ素化反応を行った。結果を表2に
合わせて示す。
【0057】 表2 HCFC−133aのフッ素化反応結果 反応温度 134a収率 134a選択率 (℃) (%) (%) 反応例2 320 19.0 99.4 反応例3 320 19.1 99.3 比較反応例2 320 16.9 99.2 表中、134a収率、134a選択率はそれぞれ、HC
FC−134aの収率、選択率を示す。 (フッ素化反応例4)触媒調製例3で調製した触媒30
mlを用いて反応温度を325℃にする以外はフッ素化反
応例2と同様にしてHCFC−133aのフッ素化反応
を行った。結果を表3に示す。 (フッ素化反応例5)触媒調製例4で調製した触媒30
mlを用いて反応温度を325℃にする以外はフッ素化反
応例2と同様にしてHCFC−133aのフッ素化反応
を行った。結果を表3に合わせて示す。
【0058】 表3 HCFC−133aのフッ素化反応結果 反応温度 134a収率 134a選択率 (℃) (%) (%) 反応例2 320 19.0 99.4 反応例3 320 19.1 99.3 比較反応例2 320 16.9 99.2 反応例4 325 19.8 99.3 反応例5 325 17.0 99.0 表中、134a収率、134a選択率はそれぞれ、HC
FC−134aの収率、選択率を示す。 (フッ素化反応例6)触媒調製例1で調製した触媒前駆
体30mlをインコネル製反応管に充填し、HFによるフ
ッ素化を行わずに、以下の反応条件でHFによるHCF
C−133aのフッ素化反応を開始して、フッ素化反応
例2に従ってガス組成を分析した。
【0059】温度:320℃、圧力:大気圧、モル比:
8、SV:1500h-1 反応開始直後に触媒層に約50℃のΔTを生じ、その後
発熱は徐々に小さくなった。反応開始後、10分の時点
ではHFC−134aはほとんど生成しなかったが、3
時間経過すると収率5%でHFC−134aが得られる
ようになった。 (フッ素化反応例7〜11)触媒調製例5〜9で調製し
た触媒30mlを用いて反応温度を315℃にする以外は
フッ素化反応例2と同様にしてHCFC−133aのフ
ッ素化反応を行った。結果を表4に示す。
【0060】 表4 HCFC−133aのフッ素化反応結果 触媒 134a収率(%) 134a選択率(%) 反応例7 調製例5 17.8 99.4 反応例8 調製例6 16.9 99.4 反応例9 調製例7 14.5 99.2 反応例10 調製例8 16.5 99.2 反応例11 調製例9 15.8 99.2 表中、134a収率、134a選択率はそれぞれ、HF
C−134aの収率、選択率を表す。 (フッ素化反応例12)触媒調製例1で調製した触媒3
0mlをインコネル製反応管に充填し、以下の反応条件で
HFによるジクロロメタンのフッ素化反応を行った。反
応管の出口ガスを加温したアルカリトラップに吹き込ん
で未反応のHF及び生成したHClを除去し、ガスクロ
によりガス組成を分析した。
【0061】温度:200℃、圧力:大気圧、モル比:
6、SV:2000h-1 未反応ジクロロメタンは41%であり、主な生成物の収
率は以下の通りであった。 HFC−32 50%、HCFC−31 8% (フッ素化反応例13)触媒調製例1で調製した触媒3
0mlをインコネル製反応管に充填し、以下の反応条件で
HFによるパークロロエチレンのフッ素化反応を行っ
た。反応管の出口ガスをアルカリおよびトルエンの二相
よりなるトラップに吹き込んで未反応のHF及び生成し
たHClを除去し、トルエンに抽出された成分をガスク
ロにより分析した。
【0062】温度:340℃、圧力:大気圧、モル比:
5、SV:1000h-1 未反応パークロロエチレンは30%であり、主な生成物
の収率は以下の通りであった。 HFC−125 5.6%、 HCFC−124
15.5%、HCFC−123 38.2%
【0063】
【発明の効果】本発明の触媒製造法によるフッ素化触媒
は活性が高く、HFによるハロゲン化炭化水素のフッ素
化反応において高収率で目的化合物が得られる。また、
低温での反応が可能になり結果として触媒寿命が長くな
る。
【図面の簡単な説明】
【図1】触媒調製例1の触媒前駆体のXRDパターンで
ある。
【図2】比較触媒調製例1の触媒前駆体のXRDパター
ンである。
【図3】触媒調製例3の触媒前駆体のXRDパターンで
ある。
【図4】比較触媒調製例2の触媒前駆体のXRDパター
ンである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C07B 61/00 300 C07B 61/00 300

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 3価の水酸化クロムを主成分とする原料
    を水素の存在下、350℃以上500℃以下の温度で焼
    成することを特徴とするクロム系フッ素化触媒の製法。
  2. 【請求項2】 3価の水酸化クロムを主成分とする原料
    をまず不活性ガス気流中で100℃以上600℃以下の
    温度で熱処理し、その後、水素の存在下、350℃以上
    500℃以下の温度で焼成することを特徴とするクロム
    系フッ素化触媒の製法。
  3. 【請求項3】 水素の存在下、焼成した後に部分的にフ
    ッ素化することを特徴とする請求項1もしくは2記載の
    クロム系フッ素化触媒の製法。
  4. 【請求項4】 水素の存在下、焼成した後に、フッ化水
    素を含む気流中で300℃以上500℃以下の温度で部
    分的にフッ素化することを特徴とする請求項3記載のク
    ロム系フッ素化触媒の製法。
  5. 【請求項5】 3価の水酸化クロムを主成分とする原料
    がコバルト、ニッケル、銅、銀、亜鉛、カドミウム、水
    銀、アルミニウム、ガリウム、錫、鉛からなる群から選
    ばれる少なくとも1種の元素を含有することを特徴とす
    る請求項1から4のいずれかに記載のクロム系フッ素化
    触媒の製法。
  6. 【請求項6】 請求項1記載の製法で製造されたフッ素
    化触媒又は前駆体であって、X線回折図の回折ピークの
    半値幅が、前記と同じ原料を大気圧下1体積%以上の酸
    素を含む雰囲気下で400℃で2時間以上焼成して得ら
    れた材料の相当する回ピークの半値幅の1.2倍以上
    であることを特徴とするフッ素化触媒又は前駆体。
  7. 【請求項7】 X線回図に結晶性Cr23 の回
    ークを有し、かつ、格子面間隔dが2.65〜2.69
    の範囲に位置するピークの半値幅が0.8°以上である
    ことを特徴とするフッ素化触媒。
  8. 【請求項8】 請求項1から7記載のいずれかのフッ素
    化触媒の存在下、気相で炭素数1〜4のハロゲン化炭化
    水素とフッ化水素を触媒させることを特徴とするハロゲ
    ン化炭化水素のフッ素化方法。
  9. 【請求項9】 該ハロゲン化炭化水素が含水素ハロゲン
    化炭化水素であることを特徴とする請求項8記載のフッ
    素化方法。
JP6212812A 1993-09-07 1994-09-06 クロム系フッ素化触媒、その製法及びフッ素化方法 Expired - Lifetime JP2996598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6212812A JP2996598B2 (ja) 1993-09-07 1994-09-06 クロム系フッ素化触媒、その製法及びフッ素化方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22263393 1993-09-07
JP13085094 1994-05-23
JP6-130850 1994-05-23
JP5-222633 1994-05-23
JP6212812A JP2996598B2 (ja) 1993-09-07 1994-09-06 クロム系フッ素化触媒、その製法及びフッ素化方法

Publications (2)

Publication Number Publication Date
JPH0838904A JPH0838904A (ja) 1996-02-13
JP2996598B2 true JP2996598B2 (ja) 2000-01-11

Family

ID=27316205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6212812A Expired - Lifetime JP2996598B2 (ja) 1993-09-07 1994-09-06 クロム系フッ素化触媒、その製法及びフッ素化方法

Country Status (1)

Country Link
JP (1) JP2996598B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378779B2 (ja) * 1998-07-17 2009-12-09 ダイキン工業株式会社 含フッ素エタンの製造方法
US7485598B2 (en) * 2006-06-21 2009-02-03 Arkema Inc. High pressure catalyst activation method and catalyst produced thereby
WO2004018095A1 (en) * 2002-08-22 2004-03-04 E.I. Du Pont De Nemours And Company Nickel-substituted and mixed nickel-and-cobalt-substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
EP1539347B1 (en) * 2002-08-22 2012-06-27 E.I. Du Pont De Nemours And Company Cobalt substituted chromium oxide compositions, their preparation and their use as catalysts and catalyst precursors
GB0507139D0 (en) 2005-04-08 2005-05-18 Ineos Fluor Holdings Ltd Catalyst
RU2541541C1 (ru) * 2011-01-21 2015-02-20 Аркема Франс Каталитическое газофазное фторирование
WO2012098422A1 (en) * 2011-01-21 2012-07-26 Akrema France Catalytic gas phase fluorination
CN114054052B (zh) * 2021-12-03 2023-11-03 湖南有色郴州氟化学有限公司 一种氟氧化铬催化氧化去除氨氮的方法

Also Published As

Publication number Publication date
JPH0838904A (ja) 1996-02-13

Similar Documents

Publication Publication Date Title
KR100351211B1 (ko) 크롬계플루오르화촉매,그촉매의제조방법및그촉매를사용한플루오르화방법
US10189757B2 (en) Chromia based fluorination catalyst
JP5133500B2 (ja) コバルト置換酸化クロム組成物、それらの製造、および触媒および触媒前駆物質としてのそれらの使用
EP0629440B1 (en) Fluorination catalyst and fluorination process
EP0968161B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
EP1551551B1 (en) Nickel-substituted and mixed nickel-and-cobalt-substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
KR20070004529A (ko) 아연을 함유하는 산화 크롬 조성물, 그의 제법, 및 촉매 및촉매 선구물질로서의 그의 용도
JPH05220400A (ja) クロム含有弗素化触媒、クロム含有弗素化触媒の活性の増大方法及び弗素化炭化水素の製造方法
EP2417086B1 (en) Process for preparing 3,3,3-trifluoropropene
WO2004018396A1 (en) Process for the preparation of 1,1,1,2,2-pentafluoroethane
JP2996598B2 (ja) クロム系フッ素化触媒、その製法及びフッ素化方法
JP3558385B2 (ja) クロム系フッ素化触媒、及びフッ素化方法
JP3582798B2 (ja) フッ素化触媒およびフッ素化方法
JP3374426B2 (ja) 1,1,1,2−テトラフルオロエタンの製造方法
JPH06211707A (ja) ジフルオロメタンの製造方法
JPH06298682A (ja) 1,1,1,2−テトラフルオロエタンの製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

EXPY Cancellation because of completion of term