RU2302945C2 - Способ и устройство для изготовления трехразмерного объекта (варианты) - Google Patents

Способ и устройство для изготовления трехразмерного объекта (варианты) Download PDF

Info

Publication number
RU2302945C2
RU2302945C2 RU2005122938/12A RU2005122938A RU2302945C2 RU 2302945 C2 RU2302945 C2 RU 2302945C2 RU 2005122938/12 A RU2005122938/12 A RU 2005122938/12A RU 2005122938 A RU2005122938 A RU 2005122938A RU 2302945 C2 RU2302945 C2 RU 2302945C2
Authority
RU
Russia
Prior art keywords
heating
selective
powder
layer
sintering
Prior art date
Application number
RU2005122938/12A
Other languages
English (en)
Other versions
RU2005122938A (ru
Inventor
Бехрок ХОШНЕВИС (US)
Бехрок ХОШНЕВИС
Original Assignee
Юниверсити Оф Саутерн Калифорния
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юниверсити Оф Саутерн Калифорния filed Critical Юниверсити Оф Саутерн Калифорния
Publication of RU2005122938A publication Critical patent/RU2005122938A/ru
Application granted granted Critical
Publication of RU2302945C2 publication Critical patent/RU2302945C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Powder Metallurgy (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к изготовлению трехразмерных объектов, а точнее к избирательному уменьшению отходов порошка при избирательном ингибировании спекания при изготовлении таких объектов. Техническим результатом заявленной группы изобретений является создание быстрее выполняемых и более дешевых системы и способа, чем обычные система и способ. Заявлен способ изготовления трехразмерного объекта, содержащий первую стадию создания слоя порошкового материала, который переходит в связанную форму при нагревании. Второй стадией способа является обеспечение избирательного сцепления зон слоя порошкового материала посредством избирательного нагревания частей зон. Избирательное сцепление зон слоя порошка включает спекание зон слоя порошкового материала, не подвергнутых воздействию ингибитора. Спекание проводится с использованием элемента для нагревания излучением, содержащего реечный нагревательный элемент, имеющий множество отдельных управляемых нагревательных элементов. Каждый нагревательный элемент содержит заслонку, имеющую возможность перемещения для предотвращения контакта тепла нагревательного элемента со слоем порошка. Третьей стадией способа является повторение создания слоя и обеспечения избирательного сцепления, пока сцепление не приведет к формированию желаемого трехразмерного объекта. Также заявлено два варианта устройства для избирательного нагревания при изготовлении трехразмерного объекта. Первый вариант устройства для избирательного нагревания, используемого при изготовлении трехразмерного объекта, содержит воздушный коллектор и нагревательный элемент, сообщающийся с воздушным коллектором. Второй вариант устройства для избирательного нагревани, используемого при изготовлении трехразмерного объекта, содержит элемент для нагревания излучением. 3 н. и 14 з.п. ф-лы, 12 ил.

Description

Настоящее изобретение в общем относится к изготовлению трехразмерных объектов, а точнее к избирательному уменьшению отходов порошка при избирательном ингибировании спекания при изготовлении таких объектов.
Трехразмерные объекты, например детали, являющиеся прототипами, могут быть изготовлены посредством использования конструкционной базы данных с помощью компьютера. Известны различные технологии для создания таких объектов, в частности, посредством использования процесса послойного добавления. В случае приемлемых с коммерческой точки зрения способов послойного изготовления используют различные формы материалов. Например, при стереолитографии используют фотополимерную смолу, которая избирательно затвердевает под действием лазерного луча, подающего ультрафиолетовое излучение в желаемые места на каждом тонком слое смолы. В случае способа осаждения плавлением используют пластиковую нить, принудительно пропускаемую через горячее сопло, которое обеспечивает осаждение материала для формирования каждого слоя. В случае изготовления слоистого объекта наслаивают нарезанные листы специальной бумаги для создания трехразмерных деталей. Двумя обычно используемыми способами являются стереоскопическая печать и избирательное лазерное спекание. В случае стереоскопической печати используют капли клейкого вещества, осаждаемые на каждый тонкий слой порошка для обеспечения сцепления частиц порошка в выбранных местах каждого слоя. В случае избирательного лазерного спекания обеспечивают избирательное сцепление материала в виде порошка, используя лазер. При избирательном лазерном спекании работа происходит посредством осаждения и нагревания сканирующим лазерным лучом, который обеспечивает сцепление материала в виде порошка в выбранных местах слоя порошка. Материал в виде порошка может включать полимер, керамику либо металл.
Однако выполнение способов избирательного сцепления слоя за слоем, таких как избирательное лазерное спекание и стереоскопическая печать, требует значительного времени и больших затрат. Например, те способы, в случае которых используют лазер, влекут за собой высокую стоимость лазера и низкую скорость сканирования вследствие относительно широкой площади поперечного сечения на слой при спекании по сравнению с размером луча. В случае других способов трудности возникают вследствие медленного процесса сканирования всего объема объекта слоя за слоем при спекании или ином процессе, предполагающем плавление. Кроме того, когда происходит спекание или нагревание выбранной зоны, необходимо выдерживание на поверхности порошка относительно равномерной температуры для предотвращения деформаций.
Известен способ изготовления трехразмерного объекта, содержащий следующие стадии: создание слоя порошкового материала, который переходит в связанную форму при нагревании; обеспечение избирательного сцепления зон слоя порошкового материала посредством избирательного нагревания частей зон; повторение создания слоя и обеспечения избирательного сцепления до формирования желаемого трехразмерного объекта (см., например, WO 0138061 от 31.05.2001).
Целью настоящего изобретения является создание быстрее выполняемых и более дешевых способа и устройства для изготовления трехразмерного объекта.
Согласно изобретению, создан способ изготовления трехразмерного объекта, содержащий следующие стадии:
создание слоя порошкового материала, который переходит в связанную форму при нагревании;
обеспечение избирательного сцепления зон слоя порошкового материала посредством избирательного нагревания частей зон, включающее спекание зон слоя порошкового материала, не подвергнутых воздействию ингибитора, посредством нагревания в выбранных местах с использованием элемента для нагревания излучением, содержащего реечный нагревательный элемент, имеющий множество отдельных управляемых нагревательных элементов, каждый из которых имеет заслонку, имеющую возможность перемещения для предотвращения контакта тепла нагревательного элемента со слоем порошка;
повторение создания слоя и обеспечения избирательного сцепления до формирования желаемого трехразмерного объекта.
Способ может дополнительно содержать выбор зон для помещения ингибитора сцепления согласно конструкции поперечного сечения трехразмерного объекта и избирательное осаждение ингибитора сцепления на выбранные зоны слоя порошкового материала перед обеспечением избирательного сцепления.
Осаждение ингибитора сцепления может включать осаждение ингибитора спекания. Осаждение ингибитора спекания может включать использование экструзионного сопла с мелким отверстием, которое может иметь головку струйного принтера.
В способе можно использовать компьютер для управления приведением в действие заслонки на основе изготовляемого объекта трехразмерной структуры.
В способе может использоваться реечный нагревательный элемент, который включает кварцевую нагревательную трубку.
Согласно изобретению, создано устройство для избирательного нагревания, используемое при изготовлении трехразмерного объекта, содержащее воздушный коллектор, нагревательный элемент, сообщающийся с воздушным коллектором, создающий нагретый воздух и выпускающий нагретый воздух через воздушный коллектор, исполнительный механизм, рычаг заслонки, содержащий первый конец, расположенный вблизи исполнительного механизма, дальний конец, заслонку, расположенную у дальнего конца рычага, при этом исполнительный механизм способен перемещать рычаг заслонки из первого положения во второе положение, таким образом перемещая заслонку у дальнего конца, которая сообщается с нагревательным элементом и воздухом, так что перемещение заслонки вызывает отклонение перемещения воздуха.
Воздушный коллектор может дополнительно содержать впускное отверстие.
Исполнительным механизмом может быть соленоид или магнитная катушка.
Рычаг заслонки может быть металлическим.
Согласно другому варианту выполнения, устройство для избирательного нагревания, используемое при изготовлении трехразмерного объекта, содержит элемент для нагревания излучением, исполнительный механизм, рычаг заслонки, содержащий первый конец, расположенный вблизи исполнительного механизма, дальний конец, заслонку, расположенную у дальнего конца рычага, при этом исполнительный механизм способен перемещать рычаг заслонки из первого положения во второе положение, таким образом перемещая заслонку у дальнего конца, которое вызывает отклонение тепла.
В устройстве исполнительным механизмом может быть соленоид или магнитная катушка.
Рычаг заслонки может быть металлическим.
Нагревательный элемент может быть выбран из группы, состоящей из электрической нити, газовой горелки и нагревателя посредством инфракрасного излучения.
Другие отличительные признаки, цели и преимущества изобретения будут очевидны из описания и прилагаемых чертежей, на которых показано следующее:
Фиг.1А-1С представляют способ избирательного ингибирования спекания.
Фиг.2 представляет прямоугольный элемент для избирательного нагревания с растровым сканирующим движением.
Фиг.3 представляет круглый элемент для избирательного нагревания с растровым сканирующим движением.
Фиг.4 представляет элемент для избирательного нагревания с характером движения, которое отслеживает часть профиля слоя (векторное сканирование).
Фиг.5А и 5В представляют элемент для избирательного нагревания устройства для точечного нагревания с заслонкой, приводимой в действие поворотным соленоидом.
Фиг.6А-6С представляют нагреватель в сборе, содержащий множество отдельных нагревательных элементов.
Фиг.7 более подробно представляет рычаг заслонки.
Фиг.8А и 8В представляют торцевые виды реечного нагревателя.
Фиг.9 представляет два вида элемента для избирательного нагревания горячим воздухом.
Фиг.10А и 10В представляют два вида элемента для избирательного нагревания горячим воздухом в выключенном положении (А) и во включенном положении (В).
Фиг.11А и 11В представляют виды с пространственным разделением и в сборе выполнения элемента для избирательного нагревания горячим воздухом для реечного нагревателя с множеством заслонок.
Фиг.12 представляет пример твердого трехразмерного объекта, изготовленного посредством использования способа избирательного ингибирования спекания.
На различных фигурах подобные элементы обозначены одинаковыми позициями.
На фиг.1 представлен способ 300 избирательного ингибирования спекания. Способ 300 включает использование тонкого равномерно распределенного слоя порошка 312. Жидкий ингибитор спекания может быть нанесен на поверхности порошка, которые попадают на границу поперечного сечения детали на слое.
После этого может быть использован элемент 342 для избирательного нагревания для обеспечения спекания порошка 312, который находится внутри поперечного сечения 324 детали, которая должна быть изготовлена. Поперечное сечение 324 может быть подвергнуто спеканию согласно трехразмерной модели прототипа, сконструированной с помощью компьютера. Энергия, добавляемая элементом 342 для избирательного нагревания, обеспечивает нагревание порошка 312 с получением стеклообразного состояния, при этом происходит коагуляция отдельных частиц с образованием твердого тела. Элемент для избирательного нагревания нагревает только ту зону, которая требует выполнения спекания при изготовлении. Элемент 342 для избирательного нагревания показан в виде реечного нагревателя, имеющего множество заслонок, которые открывают и закрывают, управляя таким образом воздействием тепловой энергии, используемой для избирательного нагревания желаемой зоны (фиг.5-12). К порошку направляют достаточную энергию, чтобы обеспечить его плавление с получением желаемого поперечного сечения детали. Для большей части порошков, подвергаемых такой обработке, включая восковые, пластиковые и металлические порошки, механизм плавления включает спекание, при котором поверхностное натяжение порошка, подвергнутого воздействию излучения, преодолевает его вязкость, так что частицы текут совместно друг с другом и происходит их сцепление. Температура, при которой происходит спекание, значительно ниже точки плавления или размягчения материала в виде порошка. Как только нагревательный элемент 342 просканировал все поперечное сечение 324, на верхнюю часть налагают другой слой порошка 312 и весь процесс повторяют. Дополнительный порошок подают из контейнера для хранения порошка и распределяют его посредством вальца 314.
В качестве компонента, обеспечивающего избирательное ингибирование процесса сцепления, ингибиторы сцепления могут быть нанесены на определенные зоны слоя порошка, находящиеся на границе профиля детали на этом слое (как определено поперечным сечением конструкции, создаваемой с помощью компьютера). Такие ингибиторы добавляют к границе изготавливаемой детали, чтобы создать область разделения. После нанесения ингибиторов сцепления весь слой только один раз может быть подвергнут воздействию нагревательного элемента, который служит для сцепления или спекания неингибированного порошка. Как описано далее, элемент для избирательного нагревания также служит для избирательного сцепления определенных зон слоя порошка. Таким образом, в описании предложены эффективные способ и система изготовления, которые позволяют снизить отходы порошка.
Соответственно избирательное ингибирование процесса спекания обеспечивает преимущества по сравнению с процессом избирательного сцепления (то есть избирательного лазерного спекания и стереоскопической печати), когда ингибиторы сцепления наносят на некоторые выбранные зоны слоя порошка. Например, склеивание (как при стереоскопической печати) или спекание (как при избирательном лазерном спекании) необходимо по всей площади поперечного сечения. Избирательное сцепление посредством способа струйной печати (стереоскопическая печать) или посредством сканирующего лазерного луча, охватывающее всю площадь поперечного сечения, требует значительных затрат времени. Напротив, способ избирательного ингибирования спекания согласно одному из аспектов предполагает избирательное нанесение ингибитора сцепления на границу поперечного сечения детали в каждом слое и посредством нагревательного устройства также обеспечивает возможность избирательного спекания зон. Следовательно, способ избирательного ингибирования спекания может быть выполнен значительно быстрее, чем способ избирательного сцепления. Кроме того, сопутствующее воздействие равномерного нагревания на увеличенные площади слоя порошка, что противоположно воздействию нагревательного элемента на последовательность небольших площадей, позволяет довести до минимума деформацию и уменьшить отходы порошка. Избирательное ингибирование процесса спекания обеспечивает возможность лучшего контроля размеров, снижения стоимости машины, а также уменьшения времени изготовления по сравнению со способами избирательного сцепления.
На фиг.2 представлен элемент для избирательного нагревания, используемый при растровом сканирующем спекании. В случае растрового сканирующего спекания используют растровое движение нагревательного элемента по спекаемой зоне. В этом варианте осуществления способа избирательного ингибирования спекания может быть использован небольшой нагревательный элемент, который может излучать тепло на зону, которая может быть (но может и не быть) больше, чем наименьший геометрический элемент профиля слоя. Нагревательный элемент может быть прикреплен к тому же самому приводному механизму, который перемещает печатную головку, связанную с осаждением ингибиторов спекания. После завершения нанесения печатным способом ингибитора для определенного профиля элемент для избирательного нагревания перемещают по желаемым зонам порошка с выполнением вблизи друг от друга растрового сканирования либо иным образом, так что общее время спекания будет доведено до минимума. На фиг.2 представлен один из таких видов сканирования для данного профиля детали. Согласно этой фигуре, используют нагреватель с прямоугольной излучающей поверхностью. Серая зона обозначает слой порошка, линия обозначает профиль слоя детали, где осажден ингибитор, прямоугольник представляет собой зону воздействия нагревателя, а темно-серая зона обозначает спеченный (связанный посредством тепла) участок порошка. На фиг.3 представлена такая же схема, но с использованием круглого точечного нагревателя.
Для тонких элементов деталей, например для тонких стенок, точечный нагреватель может быть перемещен над профилем слоя детали таким образом, что его центр всегда будет находиться над центром тонкого профиля. На фиг.4 представлена такая ситуация для создания полого куба. В этом случае толщина стенки может составлять, например, 2 мм, а радиус зоны излучения круглого нагревателя может составлять 4 мм. В обоих из этих случаев количество идущего в отходы порошка (порошка, спеченного в иных зонах, чем сама деталь) значительно уменьшается по сравнению со способом, при котором используют нагревательную излучающую пластину с маскировочной рамой или выполняющую прохождение полосу, излучающую тепло.
Нагреватель может быть подсоединен к задней стороне печатной головки, и, следовательно, его движение может быть обеспечено тем же самым механизмом, который перемещает печатную головку, например, в течение осаждения ингибитора спекания. Спекание может быть выполнено после завершения нанесения ингибитора на слой либо оно может быть выполнено параллельно, то есть когда ингибитор наносят печатным способом при выполнении растрового сканирования, при этом нагреватель обеспечивает спекание участков, по которым уже прошла печатная головка.
На фиг.5 представлен элемент для избирательного нагревания. Нагревательный элемент 550 может представлять собой электрическую нить, которая может быть выполнена в виде навитой по спирали ленты из нихрома (например, такого типа, которую используют в прикуривателе автомобиля), газовую горелку, инфракрасный нагреватель либо иные формы источника тепла. Например, нагревательный элемент может быть изготовлен из нихромовой проволочной спирали, навитой вокруг керамической трубки, либо может быть выполнен в виде кварцевого нагревателя, инфракрасной лампы или чего-то подобного. Нагревательный элемент 550 соединяют с втулкой 570, через которую проходит поворотный валик 525. Поворотный валик 525 имеет на одном конце соленоид 500, который при приведении его в действие поворачивает валик из первого положения, которое изображено на фиг.5А, во второе положение, которое изображено на фиг.5В, или наоборот. Валик у противоположного конца и вблизи от нагревательного элемента имеет заслонку 560, которая может закрывать и открывать нагревательный элемент 550 в течение выполнения операции соответственно, когда тепло необходимо либо когда в нем нет необходимости.
На фиг.6А и 6В показан реечный нагреватель 690. На фиг.6А и 6В представлены передняя часть и задняя часть реечного нагревателя с отдельными элементами дли избирательного нагревания. На фиг.6А и 6В показана опорная конструкция 680, имеющая переднюю и заднюю стороны. Опорная конструкция 680 содержит шарнирную часть 610, которая расположена с одной стороны опорной конструкции. Шарнирная часть 610 обеспечивает возможность перемещения рычага 620 заслонки между первым положением и вторым положением, как показано на фиг.6С. Рычаг 620 заслонки перемещается посредством приведения в действие соленоида 600. Рычаг заслонки может быть выполнен из любого материала и будет зависеть от конструкции соленоида. В одном из вариантов осуществления конструкции соленоид 600 представляет собой магнитную катушку, а заслонка представляет собой металлический объект, который может быть притянут к магнитной катушке, когда соленоид приведен в действие. Как вариант рычаг 620 заслонки включает уравновешивающую часть 630 для содействия перемещению рычага 620 заслонки между первым положением и вторым положением. Уравновешивающая часть 630 служит в качестве противовеса таким образом, что нижняя часть фиксатора всегда будет подвергаться толкающему воздействию в переднем направлении к нагревательному элементу 650, когда рычаг 620 заслонки свисает с шарнирной части 610. Все шарнирные части могут быть выполнены в виде одной металлической детали. Ряд деталей типа крюков, показанный на фиг.6 и 7, легко подходит для установки на машину.
На фиг.7 рычаг 620 заслонки показан более подробно.
При использовании реечный нагреватель 590 перемещают поверх слоя порошка, предназначенного для спекания. Когда реечный нагреватель 590 перемещают поверх зоны, предназначенной для спекания, приводят в действие соленоид 600, тем самым притягивая рычаг 620 заслонки и перемещая заслонку 620А, чтобы открыть нагревательный элемент 650 по отношению к подлежащей спеканию зоне порошка. Как упомянуто выше, нагревательный элемент 650 может быть изготовлен из нихромовой проволочной спирали, навитой вокруг керамической трубки, может представлять собой кварцевый нагреватель, инфракрасную лампу, газовую горелку либо какой-то иной возможный источник тепла. Обычно нагревательный элемент 650 будет установлен под нижним краем опорной конструкции 680 (например, из керамического материала), как показано на фиг.6.
Рычаг 620 также включает заслонку 620А, которая может закрывать или открывать нагревательный элемент 650, когда это необходимо в течение выполнения операции. Каждая заслонка 620А прикреплена к нижней части рычага 620 таким образом, что металлический фиксатор (фиг.7), изготовленный из железа, стали или какого-либо намагничиваемого материала, может быть притянут к магниту. Конструкцию фиксатора можно недорого изготовить из листового металла посредством штамповки. Ряд заслонок 620А в форме небольших панелей избирательно установлены между нагревательным элементом 650 и поверхностью порошка для предотвращения спекания зон, которые не должны быть подвергнуты спеканию. Заслонки 620А могут быть изготовлены из отражающего излучение листа с находящимся под ним слоем теплоизоляционного материала.
На фиг.8А и 8В более подробно показан торцевой вид реечного нагревателя 590. Здесь показаны соленоид 600, рычаг 620 заслонки, находящийся на шарнирной части 610 (в данном случае конструкция в виде крюка), заслонка 620А, уравновешивающая часть 630 и нагревательный элемент 650. На фиг.8В показано перемещение рычага 620 заслонки из первого положения во второе положение, при котором заслонка 620А открывает либо закрывает нагревательный элемент 650. Соленоид 600 может представлять собой ряд катушек, каждая из которых имеет железный сердечник, установленный на верхнем участке опоры 680 для того, чтобы по требованию создавать временное магнитное поле.
Чтобы обнажить участок с порошком под выбранным нагревательным элементом 590, соответствующий рычаг 620 заслонки наклоняют посредством приведения в действие соответствующего ему электромагнита или соленоида 600, который притягивает верхний участок рычага 620 заслонки, как показано на фиг.8В. При выполнении процесса избирательного ингибирования спекания после рассеяния слоя порошка и осаждения ингибитора происходит спекание. В данном случае нагревательный узел перемещают поверх слоя порошка. Компьютерное программное обеспечение определяет, какие зоны порошка необходимо подвергнуть нагреванию, основываясь на имеющейся в компьютерной системе конструкции, разработанной с помощью компьютера. Когда нагреватель проходит поверх слоя порошка, компьютер приводит в действие и освобождает рычаг заслонки посредством соленоида в местах, определенных программным обеспечением, и исходя из того предмета, который должен быть изготовлен. Кроме того, квалифицированному специалисту в этой отрасли будет понятно, что весь реечный нагреватель в сборе может быть приподнят (или наклонен) при рассеивании порошка, чтобы избежать загрязнения нагревателя в сборе материалом в виде порошка.
Также следует заметить, что дискретность этого маскировочного способа вдоль пути движения нагревателя может быть весьма высокой, поскольку каждый электромагнит может быть включен и выключен с относительно высокой частотой и, следовательно, может обеспечить обнажение небольшой зоны для нагревания. Дискретность спекания вдоль направления движения может быть весьма высокой, однако вдоль направления, перпендикулярного пути движения, дискретность будет зависеть от количества используемых маскировочных элементов. Например, в случае спеченного слоя порошка шириной 8" (приблизительно 20 см) при наличии полосы, содержащей 32 маскировочных элемента, будет обеспечена дискретность спекания 0,25" (6,35 мм) вдоль направления, перпендикулярного направлению движения.
Согласно другому аспекту, раскрыт нагревательный элемент, который обеспечивает нагретый воздух. В описанных до настоящего времени способах используют излучение для плавления, например, пластиковых частиц. Для излучения характерны определенные ограничения, заключающиеся в том, что для спекания используют только часть тепловой энергии, при этом большая часть энергии рассеивается путем конвекции (посредством нагретого воздуха, который течет и поднимается над нагревательным элементом), и в том, что излучаемое тепло получают только верхние поверхности тех верхних частиц порошка, которые открыты наружу, а остальные частицы слоя получают тепло только от этих верхних частиц посредством теплопроводности. Помимо того, что это приводит к относительно медленному спеканию (вследствие низкой теплопроводности порошка), эта проблема приводит к деформации слоя порошка, поскольку верхние частицы будут спечены более плотно, чем нижние частицы.
Подход, который позволяет снять упомянутые выше проблемы, заключается в спекании посредством нагретого воздуха. Если скорость потока невелика, то горячий воздух не будет сдувать частицы порошка. Например, когда частицы на верхней части слоя порошка входят в контакт с горячим воздухом, они плавятся и соединяются друг с другом, создавая при этом пористое покрытие, которое удерживает какой-либо свободный порошок, находящийся под этим покрытием, препятствуя его сдуванию.
На фиг.9 представлен элемент 900 для избирательного нагревания горячим воздухом. Воздушный рукав 910 обеспечивает подачу холодного воздуха с низкой скоростью к воздушной камере 920, которая стабилизирует поступающий турбулентный поток воздуха. Воздух направляют к электрическому нагревательному элементу 930. В течение выполнения операции соленоид 940 может быть приведен в действие для перемещения рычага 950 заслонки, установленного на шарнирной части 955 (в данном случае конструкция в виде крюка) между первым положением и вторым положением. Перемещение рычага 950 приводит к перемещению заслонки 950А, прикрепленной к рычагу 950. Уравновешивающая часть 960 способствует толкающему воздействию на рычаг 950 и заслонку 950А для установки их в положение, которое блокирует нагревательный элемент 970 для предотвращения его воздействия на поверхность порошка. Рычаг 950 заслонки приводят в действие посредством использования соленоида 940, например, создающего магнитное поле, используя катушку и железный сердечник, и когда соленоид приводят в действие, он притягивает верхний конец рычага заслонки.
На фиг.10А и 10В показано, что в зависимости от положения рычага 950 заслонки горячий воздух может быть направлен вниз на поверхность порошка (фиг.10В) либо вбок и вверх от поверхности порошка (фиг.10А). В случае такой компоновки происходит постоянное течение воздуха, и, следовательно, нагревательный элемент сохраняет устойчивую температуру.
На фиг.11А и 11В представлены виды с пространственным разделением и в сборе варианта осуществления нагревателя горячим воздухом применительно к реечному нагревателю с множеством заслонок. Показана воздушная камера 920, которая в варианте конструкции с реечным воздушным коллектором включает одну воздушную камеру или множество независимых воздушных камер, которые стабилизируют поступающий турбулентный поток воздуха. После этого воздух направляют к электрическим нагревательным элементам 930. Также показаны соленоид 940, рычаг 950 заслонки, установленный на шарнирной части 955 (в данном случае конструкция в виде крюка), заслонка 950А, уравновешивающая часть 960 и нагревательный элемент 930.
На фиг.1 представлен вариант осуществления способа 300 избирательного ингибирования спекания. Способ 300 включает укладывание тонкого слоя порошка, осаждение ингибитора спекания и спекание слоя порошка посредством нагревания, используя элемент для избирательного нагревания.
При выполнении способа 300 избирательного ингибирования спекания тонкий слой 312 порошка укладывают посредством использования валка 314. Валок 314 очищает горизонтальную поверхность несколько выше предыдущего слоя и переносит материал в виде порошка вперед. Это очищающее действие выполняют путем вращения, при этом передняя поверхность валка совершает движение вверх. Такой подход позволяет создать тонкие и имеющие равномерную плотность слои 312 из порошка.
Осаждение ингибитора спекания предполагает использование экструзионного сопла с мелким отверстием 322, например печатной головки струйного принтера. Сопло 322 используют для осаждения ингибитора спекания, который препятствует спеканию под действием тепла выбранных зон слоя порошка на граничных поверхностях детали. Показан типичный профиль 324 осаждения печатным способом ингибитора спекания. Ниже подробно обсуждено осаждение различных типов ингибиторов спекания.
В представленном варианте осуществления изобретения способ спекания предполагает использование элемента 342 для избирательного нагревания (здесь показан в виде реечного нагревателя) для спекания тех зон 344 слоя порошка, которые не были подвергнуты воздействию ингибитора. Нагревательный элемент 342 сканирует по определенным зонам слоя порошка для избирательного спекания этих зон. В одном из вариантов осуществления изобретения элемент для избирательного нагревания выполняет растровое сканирование по поверхности порошка и излучает тепло только в той зоне, где желательно выполнить спекание. Согласно еще одному аспекту, как обсуждено ниже, элемент для избирательного нагревания включает множество отдельных нагревательных элементов, каждый из которых может быть избирательно включен или выключен для излучения тепла в желаемом месте. При этом согласно одному из аспектов элемент для избирательного нагревания содержит полосу, состоящую из множества отдельных нагревательных элементов. Полоса перемещается по порошку таким образом, что спекание происходит только в выбранных зонах посредством включения и выключения одного или нескольких отдельных нагревательных элементов.
Как показано на фиг.12, после того как все слои 1300 спечены, может быть извлечена готовая деталь 1302. Не подвергнутый спеканию порошок может быть использован повторно, а избыточный материал 1304, который был подвергнут спеканию, может быть раздроблен и повторно использован в виде порошка при выполнении рабочего цикла.
Как было обсуждено выше, может быть использовано несколько различных вариантов выполнения механизмов осаждения ингибиторов спекания. В некоторых вариантах теплоизоляцию может обеспечить ингибитор спекания для предотвращения достижения порошком температуры, необходимой для сцепления. В других вариантах помеху для поверхности частиц создает ингибитор, занимающий промежуточные полости матрицы из порошка. Ингибитор может создавать дополнительную помеху для поверхности частиц, чтобы обеспечить механическое препятствие сцеплению. Ингибитор, который создает механическую помеху, может представлять собой раствор, который может покидать твердые кристаллические частицы (например, соленая вода) после испарения. Рост кристаллических частиц приводит к отталкиванию частиц основного порошка друг от друга, тем самым предотвращая спекание.
Как упомянуто выше, при выполнении способа избирательного ингибирования спекания используют элементы для избирательного нагревания. При этом альтернативой использованию маскировочных пластин является использование совершающей перемещения нагревательной полосы или излучающей панели, которую изготавливают из относительно небольшого количества (малая дискретность) дискретных нагревательных элементов, каждый из которых может быть приведен в действие независимым образом, так что может быть подвергнута спеканию выбранная зона слоя порошка. Еще один вариант включает в себя использование точечного нагревателя, который достаточно велик для сканирования желаемых зон каждого слоя с относительно высокой скоростью, но достаточно мал для доведения до минимума чрезмерного спекания порошка.
Альтернативой спеканию каждого последовательного слоя является объемное спекание, при котором после нанесения ингибитора на каждый слой выполняют частичное спекание, и как только все слои будут обработаны ингибиторной жидкостью, весь объем порошка, находящийся в конструкционной емкости, перемещают в печь для спекания. После спекания деталь может быть отделена от нежелательных спеченных участков. Для удерживания объема свободного порошка при перемещении к печи периферия каждого слоя может быть подвергнута спеканию посредством линейного нагревателя неизменной формы (квадратного или круглого), либо посредством нагревателя отдельных точек (точечного нагревателя), который спекает тонкий слой по периферии каждого слоя, используя профиль, который находится как можно ближе к профилю слоя. Основные преимущества варианта объемного спекания заключаются в простоте машины, поскольку нет необходимости в нагревательном элементе и в контроле температуры окружающей среды, и в том, что оно приводит к минимальной деформации детали вследствие спекания сразу всей детали.
Имеется ряд преимуществ описанного здесь способа избирательного ингибирования спекания. Например, устройство, разработанное на основе выполнения такого способа, будет менее дорогостоящим, чем установка для избирательного лазерного спекания, поскольку лазерный генератор высокой мощности для выполнения избирательного лазерного спекания будет заменен недорогим нагревательным элементом и, кроме того, в случае способа избирательного ингибирования спекания нет необходимости в некоторых из элементов для контроля окружающей среды, которые используют при избирательном лазерном спекании. Далее способ избирательного ингибирования спекания протекает быстрее, поскольку весь слой может быть быстро и избирательно спечен. Точность выполнения размеров и качество поверхности изготовленных деталей по всей вероятности будут такими же высокими, как и в случае стереоскопической печати и избирательного лазерного спекания. Поскольку способ избирательного ингибирования спекания обеспечивает воздействие печатным способом только на граничные зоны детали, он требует применения меньшего количества ингибиторной жидкости для предотвращения спекания, чем то количество связующей жидкости, которое требуется для выполнения склеивания при стереоскопической печати, поэтому происходит относительно небольшое распространение жидкости через порошок. Кроме того, струйные принтеры с высокой дискретностью (например, 3000 точек на дюйм или выше; толщина линии по грубой оценке составляет 8 мкм), если их используют для мелких частиц порошка (например, 1-5 мкм), при выполнении избирательного ингибирования спекания могут обеспечить получение более мелких деталей, чем те, которые в настоящее время могут быть получены посредством избирательного лазерного спекания и стереоскопической печати. Детали, создаваемые в настоящее время посредством избирательного ингибирования спекания, уже сопоставимы по качеству поверхности с теми деталями, которые создают посредством избирательного лазерного спекания, и, вероятно, должны превосходить те детали, которые создают посредством стереоскопической печати. Кроме того, избирательное ингибирование спекания обеспечивает возможность выполнения многоцветных частей, когда осаждены ингибиторные агенты разных расцветок (как в случае цветных струйных принтеров), и если выполняют последующую обработку готовой детали для обеспечения постоянной связи цветовых пигментов с поверхностями детали.
Преимущество способа избирательного ингибирования спекания по сравнению со способом избирательного лазерного спекания заключается в том, что устройство, разработанное на основе избирательного ингибирования спекания, может быть менее дорогостоящим, чем эквивалентная установка для избирательного лазерного спекания, поскольку лазерный генератор высокой мощности заменен недорогим элементом для избирательного нагревания, обеспечивающим нагревание излучением или нагретым воздухом.
Описан ряд вариантов осуществления изобретения. Тем не менее, будет понятно, что без отклонения от существа и объема изобретения могут быть выполнены различные модификации. Соответственно в объеме следующих далее пунктов формулы изобретения заключены и другие варианты осуществления изобретения.

Claims (17)

1. Способ изготовления трехразмерного объекта, содержащий следующие стадии: создание слоя порошкового материала, который переходит в связанную форму при нагревании, обеспечение избирательного сцепления зон слоя порошкового материала посредством избирательного нагревания частей зон, включающее спекание зон слоя порошкового материала, не подвергнутых воздействию ингибитора, посредством нагревания в выбранных местах с использованием элемента для нагревания излучением, содержащего реечный нагревательный элемент, имеющий множество отдельных управляемых нагревательных элементов, каждый из которых имеет заслонку, имеющую возможность перемещения для предотвращения контакта тепла нагревательного элемента со слоем порошка, повторение создания слоя и обеспечения избирательного сцепления до формирования желаемого трехразмерного объекта.
2. Способ по п.1, дополнительно содержащий выбор зон для помещения ингибитора сцепления согласно конструкции поперечного сечения трехразмерного объекта и избирательное осаждение ингибитора сцепления на выбранные зоны слоя порошкового материала перед обеспечением избирательного сцепления.
3. Способ по п.2, в котором осаждение ингибитора сцепления включает осаждение ингибитора спекания.
4. Способ по п.3, в котором осаждение ингибитора спекания включает использование экструзионного сопла с мелким отверстием.
5. Способ по п.4, в котором экструзионное сопло имеет головку струйного принтера.
6. Способ по п.1, в котором используют компьютер для управления приведением в действие заслонки на основе изготовляемого объекта трехразмерной структуры.
7. Способ по п.1, в котором реечный нагревательный элемент включает кварцевую нагревательную трубку.
8. Устройство для избирательного нагревания, используемое при изготовлении трехразмерного объекта, содержащее воздушный коллектор, нагревательный элемент, сообщающийся с воздушным коллектором, создающий нагретый воздух и выпускающий нагретый воздух через воздушный коллектор, исполнительный механизм, рычаг заслонки, содержащий первый конец, расположенный вблизи исполнительного механизма, дальний конец, заслонку, расположенную у дальнего конца рычага, при этом исполнительный механизм способен перемещать рычаг заслонки из первого положения во второе положение, таким образом перемещая заслонку у дальнего конца, которая сообщается с нагревательным элементом и воздухом, так что перемещение заслонки вызывает отклонение перемещения воздуха.
9. Устройство по п.8, в котором воздушный коллектор дополнительно содержит впускное отверстие.
10. Устройство по п.8, в котором исполнительным механизмом является соленоид.
11. Устройство по п.8, в котором исполнительным механизмом является магнитная катушка.
12. Устройство по п.9, в котором рычаг заслонки является металлическим.
13. Устройство для избирательного нагревания, используемое при изготовлении трехразмерного объекта, содержащее элемент для нагревания излучением, исполнительный механизм, рычаг заслонки, содержащий первый конец, расположенный вблизи исполнительного механизма, дальний конец, заслонку, расположенную у дальнего конца рычага, при этом исполнительный механизм способен перемещать рычаг заслонки из первого положения во второе положение, таким образом перемещая заслонку у дальнего конца, которое вызывает отклонение тепла.
14. Устройство по п.13, в котором исполнительным механизмом является соленоид.
15. Устройство для избирательного нагревания по п.13, в котором исполнительным механизмом является магнитная катушка.
16. Устройство для избирательного нагревания по п.15, в котором рычаг заслонки является металлическим.
17. Устройство для избирательного нагревания по п.13, в котором нагревательный элемент выбран из группы, состоящей из электрической нити, газовой горелки и нагревателя посредством инфракрасного излучения.
RU2005122938/12A 2002-12-20 2003-12-19 Способ и устройство для изготовления трехразмерного объекта (варианты) RU2302945C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43593602P 2002-12-20 2002-12-20
US60/435,936 2002-12-20

Publications (2)

Publication Number Publication Date
RU2005122938A RU2005122938A (ru) 2006-01-20
RU2302945C2 true RU2302945C2 (ru) 2007-07-20

Family

ID=32682303

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005122938/12A RU2302945C2 (ru) 2002-12-20 2003-12-19 Способ и устройство для изготовления трехразмерного объекта (варианты)

Country Status (11)

Country Link
US (2) US7291242B2 (ru)
EP (1) EP1583652B1 (ru)
JP (1) JP4220967B2 (ru)
KR (1) KR100702934B1 (ru)
CN (2) CN100336655C (ru)
AT (1) ATE497874T1 (ru)
AU (1) AU2003301196A1 (ru)
CA (1) CA2511001A1 (ru)
DE (1) DE60336017D1 (ru)
RU (1) RU2302945C2 (ru)
WO (1) WO2004058487A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468920C2 (ru) * 2010-12-16 2012-12-10 Государственное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ послойного изготовления армированных объемных изделий
WO2018080501A1 (en) * 2016-10-27 2018-05-03 Hewlett-Packard Development Company, Lp Generating additive manufacturing instructions
RU2723431C2 (ru) * 2016-12-20 2020-06-11 Дженерал Электрик Компани Разрушаемая поддерживающая структура для аддитивного производства
RU2777118C2 (ru) * 2017-06-13 2022-08-01 Аионис Д.О.О. Устройство и метод аддитивного производства трехмерных объектов

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016656B4 (de) * 2007-04-05 2018-10-11 Eos Gmbh Electro Optical Systems PAEK-Pulver, insbesondere zur Verwendung in einem Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objektes, sowie Verfahren zu dessen Herstellung
DE102007024469B4 (de) 2007-05-25 2009-04-23 Eos Gmbh Electro Optical Systems Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US7854885B2 (en) 2007-10-19 2010-12-21 Materials Solutions Method of making an article
GB2453774B (en) * 2007-10-19 2013-02-20 Materials Solutions A method of making an article
US9895842B2 (en) 2008-05-20 2018-02-20 Eos Gmbh Electro Optical Systems Selective sintering of structurally modified polymers
US8545209B2 (en) * 2009-03-31 2013-10-01 Microjet Technology Co., Ltd. Three-dimensional object forming apparatus and method for forming three-dimensional object
GB0917936D0 (en) * 2009-10-13 2009-11-25 3D Printer Aps Three-dimensional printer
CN102049809B (zh) * 2009-10-29 2014-06-25 广东欧文莱陶瓷有限公司 一种人造石英石板材的制备工艺
JP5584019B2 (ja) * 2010-06-09 2014-09-03 パナソニック株式会社 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
JP5653657B2 (ja) 2010-06-09 2015-01-14 パナソニック株式会社 三次元形状造形物の製造方法、得られる三次元形状造形物および成形品の製造方法
EP2458434A1 (en) * 2010-11-30 2012-05-30 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Additive manufacturing system, shutter, and method of building a product.
WO2012085914A1 (en) * 2010-12-21 2012-06-28 Objet Ltd. Method and system for reuse of materials in additive manufacturing systems
DE102011079812A1 (de) * 2011-07-26 2013-01-31 Evonik Röhm Gmbh Polymerpulver zur Herstellung dreidimensionaler Objekte
ES2533351T3 (es) * 2011-09-22 2015-04-09 MTU Aero Engines AG Calentamiento de inducción multi-frecuente de componentes creados de manera generativa
US8879957B2 (en) 2011-09-23 2014-11-04 Stratasys, Inc. Electrophotography-based additive manufacturing system with reciprocating operation
US9904223B2 (en) 2011-09-23 2018-02-27 Stratasys, Inc. Layer transfusion with transfixing for additive manufacturing
US8488994B2 (en) 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US20130186558A1 (en) 2011-09-23 2013-07-25 Stratasys, Inc. Layer transfusion with heat capacitor belt for additive manufacturing
US9403725B2 (en) 2013-03-12 2016-08-02 University Of Southern California Inserting inhibitor to create part boundary isolation during 3D printing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9144940B2 (en) 2013-07-17 2015-09-29 Stratasys, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
DE102013109162A1 (de) 2013-08-23 2015-02-26 Fit Fruth Innovative Technologien Gmbh Vorrichtung zum Herstellen dreidimensionaler Objekte
TW201522017A (zh) * 2013-12-13 2015-06-16 三緯國際立體列印科技股份有限公司 立體列印裝置
JP6353547B2 (ja) 2014-01-16 2018-07-04 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元物体の生成
WO2015108543A1 (en) 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing method
EP3094669B1 (en) 2014-01-16 2022-11-23 Hewlett-Packard Development Company, L.P. Polymeric powder composition for three-dimensional (3d) printing
US20170203513A1 (en) 2014-01-16 2017-07-20 Hewlett-Packard Development Company, L.P. Generating a three-dimensional object
HUE046415T2 (hu) 2014-01-16 2020-03-30 Hewlett Packard Development Co Háromdimenziós tárgy elõállítása
US10889059B2 (en) 2014-01-16 2021-01-12 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US10011071B2 (en) 2014-03-18 2018-07-03 Evolve Additive Solutions, Inc. Additive manufacturing using density feedback control
US10144175B2 (en) 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
US9868255B2 (en) 2014-03-18 2018-01-16 Stratasys, Inc. Electrophotography-based additive manufacturing with pre-sintering
US9770869B2 (en) 2014-03-18 2017-09-26 Stratasys, Inc. Additive manufacturing with virtual planarization control
US9643357B2 (en) 2014-03-18 2017-05-09 Stratasys, Inc. Electrophotography-based additive manufacturing with powder density detection and utilization
JP5911905B2 (ja) * 2014-03-31 2016-04-27 株式会社東芝 積層造形物の製造方法
US9688027B2 (en) 2014-04-01 2017-06-27 Stratasys, Inc. Electrophotography-based additive manufacturing with overlay control
US9919479B2 (en) 2014-04-01 2018-03-20 Stratasys, Inc. Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
US20150314532A1 (en) * 2014-05-01 2015-11-05 BlueBox 3D, LLC Increased inter-layer bonding in 3d printing
WO2015170330A1 (en) * 2014-05-08 2015-11-12 Stratasys Ltd. Method and apparatus for 3d printing by selective sintering
US20170203363A1 (en) * 2014-07-09 2017-07-20 Applied Materials ,Inc. Layerwise heating, linewise heating, plasma heating and multiple feed materials in additive manufacturing
DE102015004570A1 (de) * 2014-08-05 2016-02-11 Miranda Fateri Additive Manufacturing Verfahren und Vorrichtung zur Durchführung des Additive Manufacturing Verfahrens
CN104552962A (zh) * 2014-09-01 2015-04-29 长春瑶光科技有限公司 一种3d打印机底板及其加热方法
US10543672B2 (en) 2014-09-02 2020-01-28 Hewlett-Packard Development Company, L.P. Additive manufacturing for an overhang
US10766246B2 (en) 2014-12-15 2020-09-08 Hewlett-Packard Development Company, L.P. Additive manufacturing
US11117322B2 (en) * 2015-01-14 2021-09-14 Hewlett-Packard Development Company, L.P. Additive manufacturing
US10166718B2 (en) * 2015-06-12 2019-01-01 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
US10279598B2 (en) 2015-07-23 2019-05-07 Koninklijke Philips N.V. Laser printing system
WO2017019063A1 (en) * 2015-07-29 2017-02-02 Hewlett-Packard Development Company, L.P. Variable shutters on an energy source
WO2017023285A1 (en) * 2015-07-31 2017-02-09 Hewlett-Packard Development Company, L.P. Photonic fusing
DE102015118162A1 (de) * 2015-10-23 2017-04-27 Fit Ag Vorrichtung zum Herstellen dreidimensionaler Objekte
CN105390265B (zh) * 2015-12-03 2017-05-24 安徽大地熊新材料股份有限公司 一种提高稀土铁硼永磁材料性能的方法
US10384435B2 (en) 2016-01-04 2019-08-20 Caterpillar Inc. 3D printing
EP3442727B1 (en) 2016-04-11 2021-03-17 Stratasys Ltd. Method and apparatus for additive manufacturing with powder material
US10350682B2 (en) * 2016-04-14 2019-07-16 Desktop Metal, Inc. Sinterable article with removable support structures
CN105921744B (zh) * 2016-05-03 2018-05-11 广东智维立体成型科技有限公司 一种金属打印抑制剂
CN109070464A (zh) * 2016-05-12 2018-12-21 惠普发展公司,有限责任合伙企业 3d打印定义过程
WO2018001491A1 (en) * 2016-06-30 2018-01-04 Hewlett-Packard Development Company L.P. Heating element structure
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
WO2018106733A1 (en) 2016-12-06 2018-06-14 Markforged, Inc. Additive manufacturing with heat-flexed material feeding
US10338742B2 (en) 2017-03-02 2019-07-02 Microsoft Technology Licensing, Llc Detection method for a digitizer
CN110494236B (zh) 2017-03-20 2022-07-26 斯特拉塔西斯公司 使用粉末的材料增材制造的方法及系统
US20180305266A1 (en) 2017-04-24 2018-10-25 Desktop Metal, Inc. Additive fabrication with infiltratable structures
US20190193159A1 (en) 2017-04-24 2019-06-27 Desktop Metal, Inc. Additive fabrication with metallic materials
US11117324B2 (en) 2017-10-20 2021-09-14 Formlabs, Inc. Techniques for integrated preheating and coating of powder material in additive fabrication and related systems and methods
US10766190B2 (en) 2017-11-28 2020-09-08 General Electric Company Additive manufacturing apparatus and related process
EP3501796A1 (de) * 2017-12-21 2019-06-26 Technische Universität München Vorrichtung und verfahren zum schichtweisen pulverbasierten herstellen eines erzeugnisses
US10906249B2 (en) 2018-01-05 2021-02-02 Desktop Metal, Inc. Method for reducing layer shifting and smearing during 3D printing
US20210331243A1 (en) * 2018-02-28 2021-10-28 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2019204258A1 (en) * 2018-04-17 2019-10-24 Carbon, Inc. Temperature regulated stereolithography apparatus with infrared heating
SI25656A (sl) 2018-06-01 2019-12-31 Jože Abram Mešalno brizgalna glava za tridimenzionalni tiskalnik za tiskanje sten zgradb in metoda tiskanja
WO2019241117A1 (en) 2018-06-11 2019-12-19 Desktop Metal, Inc. Multi-layer sintering object support structure
US20190375014A1 (en) 2018-06-11 2019-12-12 Desktop Metal, Inc. Shrinking interface layers
WO2020006237A1 (en) 2018-06-28 2020-01-02 Desktop Metal, Inc. Managing debind of structures
US20210129430A1 (en) * 2018-10-17 2021-05-06 Hewlett-Packard Development Company, L.P. Additive manufacturing
JP6874029B2 (ja) * 2019-02-12 2021-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 付加製造
CN116438050A (zh) * 2020-10-20 2023-07-14 通用电气公司 用于增材制造系统的打印和重涂组件及其使用方法
CN115255382A (zh) * 2022-07-25 2022-11-01 钟伟 一种3d打印随形烧结支撑方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733709A (en) * 1971-05-06 1973-05-22 Sun Chemical Corp Reflector and cooling means therefor
JPS5428783B2 (ru) * 1974-02-14 1979-09-19
US3860894A (en) * 1974-05-17 1975-01-14 Wico Corp Solenoid
DE2849266C2 (de) * 1978-11-14 1982-02-04 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Elektrischer Heizkörper für gasförmige Medien
GB8522015D0 (en) * 1985-09-04 1985-10-09 Smiths Industries Plc Warm-air hand drying installations
US5518680A (en) * 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
RU2109768C1 (ru) 1994-09-12 1998-04-27 Научно-Коммерческое Предприятие "Полимерпласт" Способ получения пористого материала
US6270335B2 (en) * 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5868148A (en) * 1998-06-09 1999-02-09 Conair Corporation Hair styler
AU4301501A (en) * 1999-10-26 2001-06-04 University Of Southern California Process of making a three-dimensional object
JP2001334583A (ja) * 2000-05-25 2001-12-04 Minolta Co Ltd 三次元造形装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468920C2 (ru) * 2010-12-16 2012-12-10 Государственное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ послойного изготовления армированных объемных изделий
WO2018080501A1 (en) * 2016-10-27 2018-05-03 Hewlett-Packard Development Company, Lp Generating additive manufacturing instructions
US11225025B2 (en) 2016-10-27 2022-01-18 Hewlett-Packard Development Company, L.P. Generating additive manufacturing instructions
RU2723431C2 (ru) * 2016-12-20 2020-06-11 Дженерал Электрик Компани Разрушаемая поддерживающая структура для аддитивного производства
RU2777118C2 (ru) * 2017-06-13 2022-08-01 Аионис Д.О.О. Устройство и метод аддитивного производства трехмерных объектов

Also Published As

Publication number Publication date
DE60336017D1 (de) 2011-03-24
ATE497874T1 (de) 2011-02-15
US7291242B2 (en) 2007-11-06
CN100336655C (zh) 2007-09-12
RU2005122938A (ru) 2006-01-20
WO2004058487A1 (en) 2004-07-15
EP1583652B1 (en) 2011-02-09
KR20050085854A (ko) 2005-08-29
CN1741895A (zh) 2006-03-01
CA2511001A1 (en) 2004-07-15
KR100702934B1 (ko) 2007-04-06
US20040173945A1 (en) 2004-09-09
JP2006511365A (ja) 2006-04-06
US8047251B2 (en) 2011-11-01
US20080111271A1 (en) 2008-05-15
EP1583652A1 (en) 2005-10-12
AU2003301196A1 (en) 2004-07-22
JP4220967B2 (ja) 2009-02-04
CN1982039A (zh) 2007-06-20

Similar Documents

Publication Publication Date Title
RU2302945C2 (ru) Способ и устройство для изготовления трехразмерного объекта (варианты)
US9604411B2 (en) Multi-material three dimensional printer
US7820241B2 (en) Device and method for applying layers of a powder material onto a surface
US6589471B1 (en) Selective inhibition of bonding of power particles for layered fabrication of 3-D objects
KR102223986B1 (ko) 축조 재료 입자 적층
US11117194B2 (en) Additive manufacturing having energy beam and lamp array
EP3784496B1 (en) Laser-based droplet array jetting of high viscous materials
CN106660123A (zh) 使用光束的增材制造方法和系统
TW201726367A (zh) 三維列印之材料及配方
US9308691B2 (en) Device and method for producing a three dimensional object
KR20220105651A (ko) 열 관리를 위한 열 소스를 갖는 분말 베드 융합 리코터들
CN113275592B (zh) 增材制造零件中的受控纤维定向
JP2023546042A (ja) オブジェクト形成方法および付加製造システム
CN110325345A (zh) 增材制造
EP3911496A1 (en) Roller control for a 3d printer
WO2019147287A2 (en) Additive manufacturing temperature control

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081220