RU2299762C2 - Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа - Google Patents

Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа Download PDF

Info

Publication number
RU2299762C2
RU2299762C2 RU2004105944/04A RU2004105944A RU2299762C2 RU 2299762 C2 RU2299762 C2 RU 2299762C2 RU 2004105944/04 A RU2004105944/04 A RU 2004105944/04A RU 2004105944 A RU2004105944 A RU 2004105944A RU 2299762 C2 RU2299762 C2 RU 2299762C2
Authority
RU
Russia
Prior art keywords
particles
particles according
outer circles
central
circles
Prior art date
Application number
RU2004105944/04A
Other languages
English (en)
Other versions
RU2004105944A (ru
Inventor
ХАССЕЛТ Бастиан Виллем ВАН (NL)
ХАССЕЛТ Бастиан Виллем ВАН
Каролус Маттиас Анна Мари МЕСТЕРС (NL)
Каролус Маттиас Анна Мария Местерс
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2004105944A publication Critical patent/RU2004105944A/ru
Application granted granted Critical
Publication of RU2299762C2 publication Critical patent/RU2299762C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Silicon Compounds (AREA)
  • Catching Or Destruction (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к формованным частицам, имеющим специальную форму. Они могут быть использованы для предотвращения или существенного уменьшения загрязнения слоев катализатора, работающих в потоках, содержащих загрязняющий материал, в результате чего уменьшается потеря напора в слое. Удлиненные формованные частицы для катализаторов и гранулометрических составов содержат три выступа, каждый из которых простирается от центрального участка, выровненного от центральной продольной оси частицы, и присоединен к нему, при этом поперечное сечение частицы занимает площадь, охваченную внешними границами шести кругов, окружающих центральный круг, за вычетом площади трех чередующихся наружных кругов. При этом каждый из шести наружных кругов имеет диаметр в интервале от 0,74 до 1,3 диаметра центрального круга и касается двух соседних наружных кругов, причем три чередующихся наружных круга находятся на равном расстоянии от центрального круга, имеют одинаковый диаметр и по существу касаются центрального круга. Защитный слой содержит указанные выше частицы. Способ уменьшения загрязнения или воздействия загрязняющего осаждения в слоях катализатора включает контактирование сырья, содержащего загрязняющий материал, с одним или несколькими слоями указанных частиц. Заявлены также способ превращения органического сырья, способ получения средних дистиллятов из синтез-газа и способ превращения углеводородов в присутствии указанных частиц. 6 н. и 9 з.п. ф-лы, 1 табл., 1 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к формованным частицам, имеющим специальную форму, причем эти частицы могут быть использованы в самых разнообразных процессах, каталитических и некаталитических. Они могут быть целесообразно использованы для предотвращения или существенного уменьшения загрязнения слоев катализатора, работающих в потоках, содержащих загрязняющий материал, в результате чего уменьшается потеря напора в слое. Кроме того, они могут применяться в процессе гидроочистки, например, в гидрообессеривании и гидрокрекинге, например, для получения средних дистиллятов из парафинового материала, полученного в синтезе Фишера-Тропша.
Уровень техники
В прошлом очень большое количество работ было посвящено разработке частиц, в частности каталитически активных частиц, для самых различных процессов. Значительные усилия также были направлены на выяснение преимуществ, а иногда и недостатков, при изменении формы частиц, отличающейся от традиционных форм, таких как гранулы, стержни, сферы и цилиндры для использования в каталитических, а также некаталитических процессах.
Примерами дополнительных, хорошо известных форм являются кольца, форма листа клевера, гантелеобразные и С-образные частицы. Значительные усилия были посвящены, так называемым "многолепестковым" формованным частицам. Многие промышленные катализаторы доступны в форме ТЛ (трехлепестковые) или ЧЛ (четырехлепестковые). Они служат в качестве альтернативы промышленной цилиндрической форме и часто обеспечивают преимущества вследствие присущего им повышенного значения отношения поверхность/объем, что приводит к большей доступности каталитических центров и таким образом к повышенной активности катализатора.
Пример исследования, посвященного влиянию различной формы частиц на каталитические характеристики, можно найти в статье I.Naka и A. de Bruijn (J. Japan Petrol. Inst., V.23, №4, 1980, pp.268-273), озаглавленной "Активность катализаторов с нецилиндрической формой при гидрообессеривании". В этой статье описаны опыты, в которых были испытаны нецилиндрические экструдаты (12 вес.% МоО3 и 4 вес.% СоО на гамма-оксиде алюминия), имеющие в поперечном сечении симметричный четырехлистник, несимметричный четырехлистник и трехлистник, а также цилиндрические экструдаты с номинальными диаметрами 0,8 мм (1/32 дюйма), 1,6 мм (1/16) и 2,1 мм (1/12); испытания активности катализаторов проводили в небольшой лабораторной установке. В этой статье сделан вывод, что активность при гидрообессеривании заметно коррелирует с отношением геометрического объема к поверхности частиц катализатора, но не зависит от формы катализатора.
В опубликованном в 1987 г. документе ЕР А 220933 описано, что форма катализаторов трехлепесткового типа имеет значение, в частности в связи с показателем, известным как потеря напора. Из приведенных экспериментальных данных следует, что для асимметричных четырехлепестковых частиц потеря напора меньше, чем для наиболее близких симметричных четырехлепестковых частиц. Частицы с асимметричной формой описаны в документе ЕР А 220933 таким образом, что каждая пара выступов отделена канавкой, которая уже самих выступов, для того чтобы предотвратить вхождение в них выступов соседних частиц. В документе ЕР А 220933 указано, что эта форма частиц предотвращает их "упаковку" в слое и приводит к низкой общей насыпной плотности слоя катализатора.
Поскольку многие факты в этой области являются противоречивыми и проблема потери напора остается актуальной, особенно когда возрастает отношение поверхность/объем частиц за счет уменьшения их размера, еще существует значительная область поиска альтернативных форм (необязательно каталитически активных) частиц, которые могли бы ослабить или даже предотвратить такие проблемы. В настоящем изобретении было найдено, что частицы специфической "трехлепестковой" формы обеспечивают неочевидные и заметные преимущества по сравнению с традиционными "трехлепестковыми" частицами как в каталитических, так и в некаталитических процессах.
Подробное описание изобретения
Настоящее изобретение, следовательно, относится к удлиненным формованным частицам, содержащим три выступа, причем каждый выступ распространяется (от) и присоединяется в центральном положении, выровненном по центральной продольной оси частицы, причем сечение частицы по плоскости занимает площадь, окруженную внешними кромками шести наружных кругов, вокруг центрального круга за вычетом площади, занятой тремя чередующимися внешними кругами, в которой каждый из шести наружных кругов касается двух соседних наружных кругов и в которой три чередующихся внешних круга находятся на равном расстоянии от центрального круга, имеют одинаковый диаметр и могут быть соединены с центральным кругом.
Было установлено, что частицы согласно настоящему изобретению, имеющие повышенное значение отношения поверхности к объему, по сравнению с соответствующими трехлепестковыми частицами аналогичного размера, приводят к существенно меньшей потере напора, чем соответствующие традиционные трехлепестковые частицы. Более того, форма частиц согласно настоящему изобретению допускает некоторую степень "упаковки", которая в соответствии с рекомендациями документа ЕР А 220933 может отрицательно сказаться на потере напора.
Было установлено, что частицы, имеющие форму согласно изобретению, очень хороши в эксплуатации, когда они применяются в качестве гранулометрического состава для захвата загрязнений, в результате чего предотвращается увеличение потери напора в реакторе с неподвижным слоем. Кроме того, полагают, что катализаторы на основе частиц с формой согласно изобретению способны улучшать эксплуатационные характеристики процессов в реакторе с неподвижным слоем частиц, которые лимитируются массопереносом или диффузией, например, катализаторы гидрокрекинга, эксплуатируемые в гидрокрекинге парафиновых материалов, полученных из синтез-газа по способу Фишера-Тропша.
Частицы согласно изобретению являются удлиненными и имеют три выступа, причем каждый выступ проходит по всей длине частицы. Поперечное сечение частицы может быть описано как площадь, окруженная внешними кромками шести кругов, вокруг центрального круга за вычетом площади, занятой тремя чередующимися внешними кругами.
Каждый из шести наружных кругов касается двух соседних наружных кругов и не перекрывается с двумя соседними наружными кругами. Эти шесть наружных кругов можно рассматривать как два набора чередующихся внешних кругов, то есть, три чередующихся внешних круга 1, которые составляют часть поперечного сечения, и остальные три чередующихся внешних круга 2. Эти три чередующихся внешних круга 2 находятся на равном расстоянии от центрального круга 3, имеют одинаковый диаметр и могут касаться центрального круга. Расстояние до центрального круга и диаметр кругов 1, 2 могут быть различными для обоих наборов чередующихся внешних кругов.
Предпочтительные частицы согласно изобретению имеют поперечное сечение, в котором три чередующихся круга имеют диаметр в интервале от 0,74 до 1,3 диаметра центрального круга. Предпочтительно, все шесть внешних кругов имеют диаметр в этом интервале.
Более предпочтительными частицами согласно изобретению являются те, которые имеют поперечное сечение, в котором три чередующихся круга имеют такой же диаметр, что и диаметр центрального круга. Предпочтительно, все шесть внешних кругов имеют такой же диаметр, что и диаметр центрального круга.
Наибольшее предпочтение отдается частицам, которые имеют поперечное сечение, в котором три чередующихся круга касаются центрального круга. Предпочтительно, все шесть внешних кругов касаются центрального круга.
На чертеже показана форма поперечного сечения наиболее предпочтительных частиц согласно изобретению. Площадь поперечного сечения частицы на чертеже ограничена сплошной линией 1. Из этого чертежа (изображающего форму поперечного сечения предпочтительных частиц) видно, что в комплекте из шести внешних кругов равного размера, выровненных вокруг центрального круга такого же размера, каждый внешний круг касается двух соседних наружных кругов и центрального круга, в то время как удаление трех чередующихся внешних кругов (пунктирная линия 2) обеспечивает остальную площадь поперечного сечения, составленную из четырех кругов (центральный круг и три оставшихся чередующихся внешних круга), вместе с шестью площадками 3, ограниченными включениями центрального круга и парами двух соседних внешних кругов (6 раз). Номинальный размер предпочтительных частиц показан как dnom на чертеже.
Огибающая кривая поперечного сечения частиц согласно изобретению представляет собой такую плавную линию, которая также может быть выражена в виде непрерывно дифференцируемой функции, описывающей огибающую поперечного сечения.
Можно понять, что небольшие отклонения от указанной выше формы считаются входящими в объем настоящего изобретения. Специалистам в этой области техники известно производство матричных дисков, для которых можно ожидать допустимые отклонения размеров при практическом получении таких матричных дисков.
Согласно изобретению возможно получение частиц, которые также содержат одно или несколько отверстий по длине частицы. Например, частицы могут содержать одно или несколько отверстий в области, представленной центральным цилиндром (центральный круг в поперечном сечении, приведенным на чертеже), и/или одним или несколькими отверстиями в одном или нескольких чередующихся цилиндрах (чередующиеся внешние круги в поперечном сечении, приведенном на чертеже). Наличие одного или нескольких отверстий приводит к увеличению отношения поверхность/объем, что, в принципе, обеспечивает большую доступность каталитически активных центров и, в любом случае, большую доступность поступающего сырья, которое может более эффективно перерабатываться как с точки зрения катализа, так и загрязняющего действия. Поскольку с уменьшением размера частиц становится затруднительным получение полых частиц, предпочтительно используют массивные частицы (которые все же содержат микропоры), когда для некоторых назначений желательно применять частицы меньшего размера.
Установлено, что порозность слоя частиц согласно изобретению существенно превышает 50% (порозность определяется как объемная доля пустого пространства, имеющегося в слое между частицами, то есть объем пор внутри частиц не входит в величину порозности). Частицы, которые используются в эксперименте, описанном в последующем, обладают порозностью, обычно превышающей 58%, что существенно выше, чем порозность сопоставляемых трехлепестковых частиц, которая составляет чуть выше 43%.
Частицы согласно изобретению могут быть описаны как частицы, имеющие отношение длины к диаметру (L/D), по меньшей мере, равное 2. Диаметр частицы определяется как расстояние между касательной, которая касается двух выступов, и линией, параллельной этой касательной и касающейся третьего выступа. Эта величина показана как dnom на чертеже. Предпочтительно, частицы согласно изобретению имеют величину L/D в интервале между 2 и 5. Например, частицы, используемые в описанном ниже эксперименте, имеют отношение L/D, равное приблизительно 2,5.
Подходящая длина частиц в соответствии с настоящим изобретением находится в интервале от 1 до 25 мм, преимущественно в интервале между 3 и 20 мм, в зависимости от типа предполагаемого применения. При использовании частиц для контроля загрязнения и в гидрообессеривании может быть удобным использовать частицы, которые имеют диаметр в интервале между 2 и 5 мм.
Формованные частицы могут быть получены из любого подходящего материала при условии, что его можно обрабатывать через матричные диски, придавая ему заданную форму. Предпочтение отдается пористым материалам, которые могут быть использованы в каталитических, а также некаталитических процессах. Примеры подходящих материалов включают в себя неорганические тугоплавкие оксиды, такие как оксид алюминия, диоксид кремния, алюмосиликат, оксид магния, диоксид титана, диоксид циркония и смеси из двух или более таких материалов. Выбор материала обычно зависит от предполагаемого применения. Кроме того, возможно использование синтетических или природных цеолитов, или их смесей, необязательно вместе с одним или несколькими тугоплавкими оксидами, указанными выше, в качестве материала (материалов), который может быть использован для образования формованных частиц согласно изобретению. Хорошие результаты могут быть получены с (каталитически активными) частицами на основе оксида алюминия, в частности с гамма-оксидом алюминия, и различными формами алюмосиликатов, однако также можно удовлетворительно использовать другие материалы.
В случае, когда частицы, согласно изобретению, будут применяться в каталитических процессах, подходящее количество (количества) каталитически активного металла (металлов) и/или соединений металлов, которое должно находиться на частицах, которые в последующем будут служить носителем (в дополнение к их способности устранять загрязнения, в зависимости от обстоятельств). Специалистам в этой области техники известно, какой металл (металлы) следует применять для конкретной области использования, а также в каком количестве и каким образом вводить выбранные металлы и их соединения в рассматриваемые частицы.
Например, когда предусмотрено гидрообессеривание углеводородного сырья, то обычно формованные частицы согласно изобретению будут содержать один или более металлов VI группы и/или один или более неблагородных металлов VIII группы Периодической таблицы элементов, которые предпочтительно присутствуют в виде оксидов и/или сульфидов. Когда в тексте этого описания используется выражение "гидрообессеривание", оно также включает в себя гидродеазотирование и гидрирование, поскольку обычно эти процессы гидроочистки протекают одновременно.
Обычно условия гидрообессеривания включают в себя температуру в интервале между 150 и 400°С, парциальное давление водорода до 80 бар (8 МПа) и скорость подачи жидкого сырья в интервале между 1 и 20 станд. литров сырья/литр (катализатора) в час. Отношение водород/углеводородное сырье целесообразно находится в интервале от 100 до 2000 станд. л/л.
Частицы согласно изобретению можно выгодно использовать для защиты работающего слоя. Защитные слои обычно используются для предохранения других каталитических слоев, расположенных после защитного слоя, от нежелательного воздействия, вызванного потоком сырья, которое будет перерабатываться в таких каталитических слоях.
Загрязнение представляет собой одну из наиболее распространенных проблем при переработке сырья, проходящего через один или несколько слоев катализатора. Наблюдаемое загрязнение может быть вызвано примесями в сырье, которые либо уже присутствовали в сырье, либо могут образоваться в ходе процесса. Примерами примесей, присутствующих в сырье, подлежащем переработке, являются, например, частицы, содержащие металлы, и/или частицы глины или соли, которые не были удалены, или были удалены в недостаточной степени до переработки в соответствующем слое (слоях) катализатора. Примерами примесей, образующихся в процессе переработки, являются, например, фрагменты каталитически активных частиц, которые были удалены из слоя (слоев) катализатора, которые в режиме рециркуляции проходят через такой слой (слои) катализатора, или частицы кокса, образовавшиеся при воздействии жестких технологических условий на сырье.
Защитные слои обычно располагаются выше (по потоку) слоя (слоев), используемых в каталитическом процессе. Для поглощения примесей можно использовать один или несколько защитных слоев, в результате чего замедляется развитие потери напора, что обеспечивает более длительный период непрерывной работы рассматриваемого процесса. Кроме того, возможна замена части или всех частиц, образующих защитный слой, каталитически активными материалами, в результате чего сочетаются защитные и реакционные свойства слоя. Кроме того, возможно введение каталитически активного материала другой природы, чем использующийся в способе материал, который предусмотрен в частицах защитного слоя. Например, материалы, активные в гидроочистке, могут присутствовать в (и/или на) частицах, образующих защитный слой (слои), назначением которого является предохранение одного или нескольких слоев катализатора, используемых в гидрокрекинге и расположенных ниже защитного слоя. Тип и количество каталитически активных материалов, присутствующих в таких защитных слоях, хорошо известны из уровня техники, и специалисты в этой области техники знают, как их использовать.
Конкретные области применения для частиц согласно изобретению представляют собой гранулометрические слои для защиты реакторов с неподвижным слоем частиц, подверженных интенсивному загрязнению (обусловленному сырьем), которое может происходить при гидрогенизационном превращении, в частности в процессах гидродеметаллизации, гидрообессеривания тяжелых остатков и при переработке материалов после термического крекинга, и для защиты реакторов с неподвижным слоем частиц от осаждения пыли в глубине слоя катализатора, например, в установках, перерабатывающих синтетическое сырье.
Было установлено, что в слоях, содержащих частицы согласно изобретению, (при случайной упаковке) имеется гораздо больше пустот, чем в слоях, содержащих соответствующие традиционные трехлепестковые частицы, при упаковке с использованием хорошо известной технологии "загрузки из носка". Порозность, полученная при использовании традиционных трехлепестковых частиц, доходит приблизительно до 45%, тогда как при использовании частиц согласно изобретению достигается порозность, по меньшей мере, равная 55%, поэтому такие частицы являются привлекательными для областей применения с малой потерей напора, например, для условий противотока в системе газ/жидкость.
Кроме того, частицы согласно изобретению целесообразно применяются в способе получения средних дистиллятов из синтез-газа, в котором тяжелый парафиновый материал, полученный из монооксида углерода и водорода, в условиях процесса гидрокрекинга образует средние дистилляты в присутствии частиц согласно изобретению, содержащих катализатор, и которые также содержат один или несколько металлов и/или соединений металлов, обладающих желаемой каталитической активностью.
Изобретение будет дополнительно проиллюстрировано с помощью следующих не ограничивающих примеров.
Пример 1
Были проведены два модельных эксперимента, в которых исследовали потерю напора в условиях загрязнения каталитических частиц, приготовленных из традиционных трехлепестковых (в последующем называются ТЛ) частиц и частиц, имеющих форму, которая показана на чертеже (в последующем называются специальные трехлепестковые - СТЛ), в которых поперечное сечение занимает область внутри семи кругов одинакового размера (центральный круг соединяется с шестью наружными кругами одинакового размера и с тремя чередующимися внешними кругами, образующими часть поперечного сечения) за вычетом трех оставшихся внешних кругов. Частицы ТЛ получаются из гамма-оксида алюминия, имеют номинальный диаметр, равный 2,5 мм, и отношение L/D, равное приблизительно 2,5. Случайно упакованный слой ТЛ частиц имеет порозность 43%. Этот слой не содержит дополнительного каталитического материала. Частицы СТЛ имеют номинальный диаметр, равный 2,8 мм, отношение L/D приблизительно 2,5 и состоят из материала, который обычно используется для катализаторов DN 200 (промышленно доступны от фирмы Criterion Catalyst Company, США). Случайно упакованный слой СТЛ частиц имеет порозность 58,3%. Оба типа частиц были получены путем экструзии с использованием подходящих матричных дисков.
Загрязняющий материал, использованный в этих двух экспериментах, состоял из смеси измельченного диоксида кремния и катализатора крекинга в ожиженном слое (КОС). Состав загрязняющего материала приведен ниже в таблице.
Таблица
Размер, нм Весовая доля, % Тип материала
1,4-1,7 0,58 Диоксид кремния
1,18-1,4 0,71 Диоксид кремния
0,6-1,18 6,60 Диоксид кремния
0,355-0,6 4,51 Диоксид кремния
0,212-0,355 4,85 Диоксид кремния
0,125-0,212 7,01 Диоксид кремния
<0,125 75,74 Катализатор КОС
Эксперименты были проведены в единственной колонне, содержащей испытуемый материал. Колонна работала в условиях противотока газа (воздух) и жидкости (вода) при температуре окружающей среды и нормальном давлении. Приведенная скорость газа и жидкости составляла соответственно 100 мм/с и 4 мм/с. До каждого опыта слой тщательно смачивали чистой водой.
Опыт начинался путем переключения потока жидкости - чистой воды - на суспензию, содержащую 2,94 кг/м3 загрязняющего материала. Эта концентрация на несколько порядков величины превышает концентрацию, ожидаемую при обычных условиях работы, для того чтобы можно было оценить потери напора за относительно короткий промежуток времени. Установлено, что время пробега для частиц ТЛ (до достижения потери напора 0,5 бар/м (около 50 кПа/м)) составляет 1460 с, тогда как при использовании СТЛ частиц можно получить время пробега не менее чем 2260 с, то есть увеличение времени составляет 55% по сравнению с частицами традиционной формы.
Пример 2
Были проведены два эксперимента, для того чтобы определить пределы захлебывания слоя в двух случаях: при использовании традиционных ТЛ и частиц, имеющих форму согласно изобретению (в этом случае, как показано на чертеже). Частицы, использованные в этих экспериментах, имеют форму и состав такие же, как и частицы, описанные в примере 1. Случайно упакованный слой ТЛ частиц имеет порозность 40%, а случайно упакованный слой СТЛ частиц имеет порозность 55%.
Эксперименты были проведены в единственной колонне, работающей в противотоке с н-октаном и азотом при температуре окружающей среды и абсолютном давлении 2 бар (0,2 МПа). Приняты меры по обеспечению равномерного распределения газа и жидкости. В ходе опытов поток газа возрастал при постоянной скорости потока жидкости и измерялась потеря напора по длине колонны. Момент захлебывания определяется как точка, в которой зависимость потери напора от скорости потока газа резко изменяется по порядку величины: от порядка между единицей и двумя до существенно более высокого порядка.
В опыте, проведенном с ТЛ, скорость газа, при которой начинается захлебывание, определяется при абсолютном давлении 2 бар (0,2 МПа) и приведенной скорости потока жидкости 3 мм/с. Частицы СТЛ испытывают в условиях, при которых на ТЛ начинается захлебывание при абсолютном давлении 0,2 МПа и приведенной скорости потока жидкости 3 мм/с. В этих условиях скорость потока может быть сильно увеличена, до 3,4 раз, прежде чем на СТЛ начнется захлебывание. Следовательно, СТЛ позволяет существенно замедлить достижение условий захлебывания.

Claims (15)

1. Удлиненные формованные частицы для катализаторов и гранулометрических составов, содержащие три выступа, каждый из которых простирается от центрального участка, выровненного по центральной продольной оси частицы, и присоединен к нему, при этом поперечное сечение частицы занимает площадь, охваченную внешними границами шести кругов, окружающих центральный круг, за вычетом площади трех чередующихся наружных кругов, отличающиеся тем, что каждый из шести наружных кругов имеет диаметр в интервале от 0,74 до 1,3 диаметра центрального круга и касается двух соседних наружных кругов, причем три чередующихся наружных круга находятся на равном расстоянии от центрального круга, имеют одинаковый диаметр и, по существу, касаются центрального круга.
2. Частицы по п.1, отличающиеся тем, что три чередующихся наружных круга имеют такой же диаметр, что и центральный круг.
3. Частицы по п.2, отличающиеся тем, что три чередующихся наружных круга касаются центрального круга.
4. Частицы по п.3, отличающиеся тем, что они имеют отношение длина/диаметр равное, по меньшей мере, 2.
5. Частицы по п.4, отличающиеся тем, что имеют отношение длина/диаметр в интервале между 2 и 5.
6. Частицы по п.1, отличающиеся тем, что имеют длину в интервале между 1 и 25 мм.
7. Частицы по п.1, отличающиеся тем, что они образованы из оксида алюминия, диоксида кремния, алюмосиликата, оксида магния, диоксида титана, диоксида циркония, синтетических или природных цеолитов, или смесей из двух или более указанных материалов.
8. Частицы по п.7, отличающиеся тем, что они содержат один или несколько металлов и/или соединений металлов, имеющих каталитическую активность.
9. Частицы по п.8, отличающиеся тем, что они содержат один или несколько металлов и/или соединений металлов, имеющих активность при гидроочистке, в частности активность при гидрообессеривании.
10. Защитный слой, содержащий частицы по одному или нескольким из предшествующих пунктов.
11. Способ уменьшения загрязнения или воздействия загрязняющего осаждения в слоях катализатора, характеризующийся тем, что он включает контактирование сырья, содержащего загрязняющий материал, с одним или несколькими слоями частиц по любому одному из пп.1-9, или защитный слой по п.10.
12. Способ превращения органического сырья, характеризующийся тем, что он включает контактирование этого сырья с катализатором, содержащим частицы по п.8 или 9.
13. Способ по п.12, характеризующийся тем, что превращение органического сырья включает в себя гидрообессеривание углеводородного сырья.
14. Способ получения средних дистиллятов из синтез-газа, в котором тяжелый парафиновый материал, полученный из монооксида углерода и водорода, в условиях процесса гидрокрекинга образует средние дистилляты в присутствии катализатора, содержащего частицы по любому одному из пп.1-7, и который содержит один или несколько металлов и/или соединений металлов, обладающих активностью при гидрокрекинге.
15. Способ превращения углеводородов, который осуществляют в условиях противотока в системе газ/жидкость в присутствии частиц по любому одному из пп.1-9.
RU2004105944/04A 2001-08-01 2002-07-30 Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа RU2299762C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01202922.9 2001-08-01
EP01202922 2001-08-01

Publications (2)

Publication Number Publication Date
RU2004105944A RU2004105944A (ru) 2005-07-10
RU2299762C2 true RU2299762C2 (ru) 2007-05-27

Family

ID=8180739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004105944/04A RU2299762C2 (ru) 2001-08-01 2002-07-30 Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа

Country Status (16)

Country Link
US (1) US7198845B2 (ru)
EP (1) EP1412085B1 (ru)
JP (1) JP4469601B2 (ru)
KR (1) KR100887905B1 (ru)
CN (1) CN100496739C (ru)
AT (1) ATE283113T1 (ru)
AU (1) AU2002331370B2 (ru)
BR (1) BR0211583A (ru)
CA (1) CA2455998C (ru)
DE (1) DE60202078T2 (ru)
DK (1) DK1412085T3 (ru)
MX (1) MXPA04000887A (ru)
NO (1) NO20040884L (ru)
RU (1) RU2299762C2 (ru)
WO (1) WO2003013725A1 (ru)
ZA (1) ZA200400409B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488443C2 (ru) * 2008-09-12 2013-07-27 Джонсон Мэтти Плс Формованные гетерогенные катализаторы
RU2488444C2 (ru) * 2008-09-12 2013-07-27 Джонсон Мэтти Плс Формованные гетерогенные катализаторы
RU2621730C2 (ru) * 2010-12-29 2017-06-07 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Пористое керамическое тело, содержащий его катализатор и его применение

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY139580A (en) 2002-06-07 2009-10-30 Shell Int Research Shaped catalyst particles for hydrocarbon synthesis
JP2006505391A (ja) * 2002-11-04 2006-02-16 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 長い造形粒子、その触媒又は支持体としての使用法
US7722832B2 (en) 2003-03-25 2010-05-25 Crystaphase International, Inc. Separation method and assembly for process streams in component separation units
US7265189B2 (en) * 2003-03-25 2007-09-04 Crystaphase Products, Inc. Filtration, flow distribution and catalytic method for process streams
US7150823B2 (en) 2003-07-02 2006-12-19 Chevron U.S.A. Inc. Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream
US8022108B2 (en) 2003-07-02 2011-09-20 Chevron U.S.A. Inc. Acid treatment of a fischer-tropsch derived hydrocarbon stream
US7332073B2 (en) 2004-03-31 2008-02-19 Chevron U.S.A. Inc. Process for removing contaminants from Fischer-Tropsch feed streams
AU2008206983B2 (en) 2007-01-18 2010-06-24 Shell Internationale Research Maatschappij B.V. Catalyst, catalyst precursor, catalyst carrier, preparation and use of thereof in Fischer-Tropsch synthesis
GB0816709D0 (en) 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneneous catalysts
WO2010084112A1 (en) * 2009-01-20 2010-07-29 Shell Internationale Research Maatschappij B.V. Process for the hydro-demetallization of hydrocarbon feedstocks
US8980194B2 (en) 2009-12-28 2015-03-17 Shell Oil Company Stacked catalyst bed for Fischer-Tropsch
US20120144887A1 (en) 2010-12-13 2012-06-14 Accelergy Corporation Integrated Coal To Liquids Process And System With Co2 Mitigation Using Algal Biomass
US20120319322A1 (en) 2010-12-20 2012-12-20 Shell Oil Company Particle extrusion
US8835516B2 (en) 2010-12-20 2014-09-16 Shell Oil Company Fischer Tropsch process using improved extrudates
MY165436A (en) 2011-06-28 2018-03-22 Shell Int Research Stacked catalyst bed for fischer-tropsch
WO2013000962A1 (en) 2011-06-28 2013-01-03 Shell Internationale Research Maatschappij B.V. Stacked catalyst bed for fischer-tropsch
US9234139B2 (en) 2011-11-01 2016-01-12 Accelergy Corporation Diesel fuel production process employing direct and indirect coal liquefaction
CN102909086A (zh) * 2012-10-13 2013-02-06 安徽工程大学 一种合成氨催化剂颗粒
CN102921476A (zh) * 2012-10-15 2013-02-13 安徽工程大学 一种甲醇催化剂颗粒
CN107847913A (zh) 2015-07-22 2018-03-27 巴斯夫公司 用于乙酸乙烯酯单体产生制备的高几何表面积催化剂
US10744426B2 (en) 2015-12-31 2020-08-18 Crystaphase Products, Inc. Structured elements and methods of use
US10054140B2 (en) 2016-02-12 2018-08-21 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
TWI736610B (zh) 2016-04-25 2021-08-21 荷蘭商蜆殼國際研究所 用以降低沈降物產率之沸騰床工藝操作方法
WO2021127644A1 (en) 2019-12-20 2021-06-24 Crystaphase Products, Inc. Resaturation of gas into a liquid feedstream
EP4210865A1 (en) 2020-09-09 2023-07-19 Crystaphase Products Inc. Process vessel entry zones

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764565A (en) * 1970-03-09 1973-10-09 Standard Oil Co Catalyst for hydrocracking a resid hydrocarbon
GB1446175A (en) * 1973-09-25 1976-08-18 American Cyanamid Co Shaped catalyst particles and hydrotreating processes employing the same
US4628001A (en) * 1984-06-20 1986-12-09 Teijin Limited Pitch-based carbon or graphite fiber and process for preparation thereof
NZ217874A (en) 1985-10-25 1989-01-27 Mobil Oil Corp Quadrulobe catalysts
US4777103A (en) * 1985-10-30 1988-10-11 Fujitsu Limited Electrophotographic multi-layered photosensitive member having a top protective layer of hydrogenated amorphous silicon carbide and method for fabricating the same
JPS6415485A (en) * 1987-07-07 1989-01-19 Fuji Heavy Ind Ltd Root's blower
EP0464633B1 (en) 1990-07-03 1994-01-19 Kuraray Co., Ltd. Catalyst and process for producing unsaturated ester
ES2125902T3 (es) * 1991-07-08 1999-03-16 Huntsman Spec Chem Corp Procedimiento de alta productividad para la produccion de anhidrido maleico.
IT1274033B (it) 1994-04-05 1997-07-14 Montecatini Tecnologie Srl Catalizzatore in granuli per la sintesi di 1-2 dicloroetano e preprocedimento di ossiclorurazione a letto fisso dell'etilene che utilizza tale catalizzatore.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488443C2 (ru) * 2008-09-12 2013-07-27 Джонсон Мэтти Плс Формованные гетерогенные катализаторы
RU2488444C2 (ru) * 2008-09-12 2013-07-27 Джонсон Мэтти Плс Формованные гетерогенные катализаторы
RU2621730C2 (ru) * 2010-12-29 2017-06-07 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Пористое керамическое тело, содержащий его катализатор и его применение

Also Published As

Publication number Publication date
MXPA04000887A (es) 2004-05-21
KR20040019100A (ko) 2004-03-04
RU2004105944A (ru) 2005-07-10
EP1412085A1 (en) 2004-04-28
CN1547508A (zh) 2004-11-17
BR0211583A (pt) 2004-07-13
KR100887905B1 (ko) 2009-03-12
DE60202078T2 (de) 2005-12-01
US20040185244A1 (en) 2004-09-23
WO2003013725A1 (en) 2003-02-20
CA2455998A1 (en) 2003-02-20
DE60202078D1 (de) 2004-12-30
JP2004537406A (ja) 2004-12-16
AU2002331370B2 (en) 2006-12-21
US7198845B2 (en) 2007-04-03
ZA200400409B (en) 2004-10-20
CA2455998C (en) 2011-01-25
CN100496739C (zh) 2009-06-10
ATE283113T1 (de) 2004-12-15
NO20040884L (no) 2004-02-27
EP1412085B1 (en) 2004-11-24
JP4469601B2 (ja) 2010-05-26
DK1412085T3 (da) 2005-04-11

Similar Documents

Publication Publication Date Title
RU2299762C2 (ru) Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа
US4775460A (en) Hydrocracking process with feed pretreatment
AU2002331370A1 (en) Shaped trilobal particles
JPS6011586A (ja) 接触水素化分解法
JPS63119852A (ja) 等級化触媒系および該触媒系を使用した炭化水素供給原料からの水素化脱金属方法
US5393409A (en) Hydrocracking process using a controlled porosity catalyst
JP2004530746A (ja) 水素添加処理法および触媒
RU2288253C2 (ru) Способ гидрогенизационного превращения углеводородного сырья
JP2006291182A (ja) 制限されたマクロ孔含有量を有するシリカ−アルミナをベースとする吸着剤を用いる、再循環させられたフラクションからの多芳香族化合物の吸着を包含する、再循環を伴う水素化分解法
JP2006291182A5 (ru)
JP2001500561A (ja) 水素添加転化法
CA1085758A (en) Process for upgrading solids-containing liquid hydrocarbon oils
JPH01115993A (ja) 炭化水素供給原料の水添熱分解方法
JPH03243693A (ja) 汚染物に敏感な触媒が使用可能な汚染炭化水素転換システムの浄化
JPS5824352A (ja) 結晶質シリカゼオライト含有触媒及びそれを使用する炭化水素の水素化処理
US3718579A (en) Process for charging catalyst
US20140323788A1 (en) Process for modifying an apparatus and for removing one or more contaminants
CA1195278A (en) Layered residua treatment catalyst process and temperature profile
US4006077A (en) Demetallization of asphaltene-containing petroleum hydrocarbons
JP5259047B2 (ja) 向流ガス/液体接触処理方法
US4025417A (en) Hydroprocessing catalytic cracking feed stocks
RU2173696C2 (ru) Способ гидроконверсии
JP2007270067A (ja) ワックスの水素化分解方法及び燃料基材の製造方法
JPS5821891B2 (ja) ノルマルパラフインノ セイゾウホウ
CA3206668A1 (en) Hydrocracking operation with reduced accumulation of heavy polynuclear aromatics

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20081209

QB4A Licence on use of patent

Effective date: 20090722

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20081209

Effective date: 20121129