RU2292020C2 - Узел для измерения давления - Google Patents

Узел для измерения давления Download PDF

Info

Publication number
RU2292020C2
RU2292020C2 RU2005101079/28A RU2005101079A RU2292020C2 RU 2292020 C2 RU2292020 C2 RU 2292020C2 RU 2005101079/28 A RU2005101079/28 A RU 2005101079/28A RU 2005101079 A RU2005101079 A RU 2005101079A RU 2292020 C2 RU2292020 C2 RU 2292020C2
Authority
RU
Russia
Prior art keywords
pressure
measuring
housing
membrane
enamel
Prior art date
Application number
RU2005101079/28A
Other languages
English (en)
Other versions
RU2005101079A (ru
Inventor
Карл-Хайнц БАНХОЛЬЦЕР (DE)
Карл-Хайнц БАНХОЛЬЦЕР
Бернд РОССКОПФ (DE)
Бернд РОССКОПФ
Original Assignee
Эндресс+Хаузер Гмбх+Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эндресс+Хаузер Гмбх+Ко. Кг filed Critical Эндресс+Хаузер Гмбх+Ко. Кг
Publication of RU2005101079A publication Critical patent/RU2005101079A/ru
Application granted granted Critical
Publication of RU2292020C2 publication Critical patent/RU2292020C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Сущность: узел для измерения давления содержит заключенный в металлический корпус керамический датчик (2) давления. При этом поверхности корпуса (1), находящиеся во время измерения в контакте со средой, давление которой подлежит измерению, снабжены покрытием (27) из эмали или стеклообразного материала. Причем поверхностные покрытия не содержат ионов металлов. Технический результат изобретения заключается в возможности универсального применения. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к узлу для измерения давления.
В технике измерения давления применяют датчики абсолютного, относительного давления и разницы давлений. В датчиках абсолютного давления подлежащее измерению давление измеряется абсолютно, т.е. в качестве разницы давлений относительно вакуума. С помощью датчика относительного давления подлежащее измерению давление измеряется в виде разницы давлений относительно опорного давления, например, давления в месте расположения датчика. В большинстве применений это атмосферное давление в месте применения. Таким образом, в датчике абсолютного давления подлежащее измерению давление измеряется относительно неизменного опорного давления, давления вакуума, а в датчике относительного давления подлежащее измерению давление измеряется относительно изменяющегося опорного давления, например, окружающего давления. С помощью датчиков разницы давлений измеряется разница между первым и вторым давлением, воздействующим на датчик.
Независимо от вида подлежащего измерению давления, для всех измерений давления общим является то, что предусмотрен узел для измерения давления, в котором расположенный в корпусе датчик давления находится в контакте со средой, давление которой необходимо измерить. К корпусу могут быть присоединены средства передачи давления, зонды напорного давления или заслонки расхода, или же сам корпус может быть смонтирован непосредственно в месте измерения с помощью выполненного на нем технологического соединения.
В качестве ячейки для измерения давления особенно хорошо подходят керамические датчики давления. Керамические датчики давления имеют точность измерения, которая остается стабильной в течение очень длительного времени. Причиной этому является прочная ионная связь керамики, за счет которой материал является очень долговечным и по сравнению с другими материалами, например металлами, практически не подвергается старению.
Находящиеся в контакте со средой детали должны иметь в зависимости от среды высокую химическую стойкость. Кроме того, они должны предпочтительно годиться для применения при высоких температурах и должны иметь гладкую, легко очищаемую поверхность, которая по возможности не содержит ионов металлов.
В керамической ячейке для измерения давления эти требования выполняются. Керамика является очень прочным, выдерживающим очень высокие давления и температуры, химически очень устойчивым материалом.
Химическая стойкость остальных деталей реализуется в настоящее время часто тем, что для чувствительного элемента датчика давления применяются высококачественные металлы, например тантал, или же металлы, покрытые специальными высоко устойчивыми сплавами, например Hastelloy.
Хотя за счет этого обеспечивается химически высоко стойкая поверхность, однако не выполняется требование к отсутствию ионов металлов. Кроме того, высококачественные металлы и особенно сплавы являются очень дорогими по сравнению с простой сталью.
Отсутствие ионов металлов обеспечивается в настоящее время с помощью пластмассовых покрытий, например покрытий с фторотермопластами, такими как, например, политетрафторэтилен (PTFE). Хотя такие пластмассы не имеют ионов металлов, однако их можно применять лишь при относительно небольших температурах, например до 150°С. Кроме того, для этих пластмасс ограничен также диапазон допустимых давлений, поскольку эти пластмассы при слишком высоком давлении деформируются.
Задачей изобретения является создание узла для измерения давления, который выполнен с возможностью универсального применения.
Для достижения этой задачи узел для измерения давления содержит заключенный в металлический корпус керамический датчик давления, причем поверхности корпуса, контактирующие во время измерения со средой, давление которой измеряется, снабжены покрытием из эмали или стеклообразного материала.
Согласно первому варианту выполнения корпус выполнен с возможностью крепления в месте измерения фланцем, в который заключен датчик давления, и контактирующие в месте измерения со средой поверхности фланца снабжены покрытием из эмали или из стеклообразного материала.
Согласно второму варианту выполнения корпус имеет технологическое соединение, и контактирующие в месте измерения со средой поверхности технологического соединения снабжены покрытием из эмали или из стеклообразного материала.
Согласно третьему варианту выполнения датчик давления выполнен в виде ячейки для измерения разницы давлений, при этом корпус имеет два боковых фланца, между которыми расположен датчик давления, и контактирующие в месте измерения со средой поверхности боковых фланцев снабжены покрытием из эмали или из стеклообразного материала.
Согласно одному варианту выполнения корпус выполнен из стали или высококачественной стали.
Ниже приводится описание изобретения и других его преимуществ со ссылками на чертежи, на которых изображены три примера выполнения, при этом одинаковые элементы обозначены одинаковыми позициями:
фиг.1 - разрез узла для измерения давления согласно изобретению с обрамленным фланцем датчиком давления;
фиг.2 - разрез узла для измерения давления согласно изобретению с расположенным в корпусе с технологическим соединением датчиком давления; и
фиг.3 - разрез узла для измерения давления согласно изобретению с расположенным между двумя боковыми фланцами датчиком давления.
На фиг.1 показан разрез первого примера выполнения узла для измерения давления согласно изобретению.
Узел для измерения давления имеет металлический корпус 1, в который заключен керамический датчик давления 2.
Корпус выполнен, например, из стали или высококачественной стали, которые намного дешевле по сравнению с особыми материалами.
Керамический датчик 2 давления выполнен в показанном примере выполнения в виде ячейки для измерения абсолютного давления, состоящей из основного корпуса 3 и расположенной на основном корпусе 3 чувствительной к давлению мембраны 5. Основной корпус 3 выполнен из керамики, например, из оксида алюминия (Al2О3). Мембрана 5 может также быть выполнен из керамики или, например, из стекла или сапфира. Мембрана 5 и основной корпус 3 соединены друг с другом герметично относительно давления и газа на их кромке с образованием измерительной камеры 7 с помощью стыка 9. Мембрана 5 чувствительна к давлению, то есть действующее на нее давление р вызывает отклонение мембраны 5 из ее положения покоя.
Датчик 2 давления имеет преобразователь для преобразования зависящего от давления отклонения мембраны 5 в электрическую измерительную величину.
В показанном примере выполнения емкостного датчика 2 давления преобразователь содержит расположенный на внутренней стороне мембраны 5 электрод 11 и, по меньшей мере, один расположенный на противоположной, обращенной к мембране наружной стороне основного корпуса 3 противоположный электрод 13.
Емкость образованного электродом 11 и противоположным электродом 13 конденсатора определяется отклонением мембраны 5 и тем самым является мерой воздействующего на мембрану 5 давления.
Электрод 11 и противоположный электрод 13 подключены к измерительной схеме 15, которая преобразует емкость в зависящий от давления выходной сигнал и выдает его для дальнейшей оценки и/или обработки.
Вместо указанного емкостного преобразователя можно применять также преобразователи других типов. Примерами этому служат, например, расположенные на мембране с образованием моста Уитстона тензорезисторы или пьезоэлектрические элементы.
Кроме того, вместо ячейки для измерения абсолютного давления можно, естественно, использовать также ячейку для измерения относительного давления или ячейку для измерения разницы давлений. На фиг.2 показан пример для ячейки измерения относительного давления, а на фиг.3 - пример для ячейки измерения разницы давлений.
Корпус 1 содержит фланец, в который вставлен датчик 2 давления. Для этого фланец имеет по существу цилиндрическую выемку 17, на стороне конца которой имеется проходящий радиально внутрь выемки 17 буртик 19. Буртик 19 имеет на своей обращенной внутрь выемки 17 стороне проходящую кольцеобразно канавку 21 для размещения уплотнения 23. В качестве уплотнения 23 подходит, например, кольцо круглого сечения из эластомера. Могут быть также предусмотрены несколько уплотнений.
Датчик 2 давления прилегает наружной не чувствительной к давлению кромкой мембраны 5 к уплотнению 23. На противоположной буртику 19 стороне в выемку 17 ввинчено резьбовое кольцо 25, которое на противоположной мембране стороне прилегает к основному корпусу 3 и прижимает датчик 2 давления к уплотнению 23 и буртику 19.
Согласно изобретению все находящиеся во время измерения в контакте со средой, давление которой подлежит измерению, поверхности корпуса 1 снабжены покрытием 27 из эмали или стеклообразного материала.
В показанном на фиг.1 примере выполнения в соприкосновение со средой наряду с обращенной к месту измерения наружной поверхностью фланца приходят также поверхности буртика 19 и канавки 21, и поэтому они снабжены покрытием 27.
На фиг.2 показан в разрезе второй пример выполнения узла для измерения давления согласно изобретению.
В этом примере выполнения датчик 2 давления является керамической ячейкой для измерения относительного давления, которая встроена в металлический корпус 29.
Ячейка для измерения относительного давления отличается от показанной на фиг.1 ячейки для измерения абсолютного давления тем, что основной корпус 3 имеет сквозное отверстие 31, через которое во время работы воздействует опорное давление, относительно которого измеряется подлежащее измерению давление, на обращенную к основному корпусу сторону мембраны 5.
Корпус 29 является в основном цилиндрическим и имеет проходящую внутрь корпуса 29 опорную поверхность 33, к которой прилегает датчик 2 давления наружной, не чувствительной к давлению кромкой мембраны 5.
Между кромкой и опорной поверхностью расположено уплотнение 23, например кольцо круглого сечения из эластомера. В опорной поверхности 33 предпочтительно фрезерована канавка 21 для размещения уплотнения 23.
Корпус 29 содержит технологическое соединение 35, которое служит для крепления узла для измерения давления в месте использования. Технологическое соединение 35 образовано находящимся перед мембраной 5 участком корпуса 29 с меньшим наружным диаметром, на конце которого, противоположном мембране, выполнена наружная резьба 37, с помощью которой узел для измерения давления крепится в не изображенном на фиг.2 месте измерения. Можно использовать также другие виды крепления, например с помощью фланцевого соединения.
Технологическое соединение 35 имеет центральное осевое сквозное отверстие 39, которое перед мембраной 5 расширяется в камеру 41. Камера 41 ограничена мембраной 5, технологическим соединением 35 и уплотнением 23.
Действующее в месте измерения давление р воздействует через отверстие 39 и камеру 41 на мембрану 5.
Технологическое соединение 35 может быть интегральной частью корпуса 29, однако оно может быть выполнено также в виде съемной детали. Последний вариант выполнения показан на фиг.2. Там технологическое соединение 35 имеет проходящий радиально наружу уступ 42, через который для крепления технологического соединения 35 ввинчиваются винты 44 в окружающий датчик давления цилиндрический участок корпуса 29.
В этом случае также все приходящие в контакт со средой поверхности корпуса 29 снабжены покрытием 27 из эмали или стеклообразного материала. Этими поверхностями являются наружная поверхность 43 технологического соединения 35, проходящая от отверстия 39 до наружной резьбы 37, боковая поверхность 45 отверстия 39, боковая поверхность 47 технологического соединения 35, которая ограничивает камеру 41, наружная поверхность 33 и верхняя поверхность канавки 21.
На фиг.3 показан разрез третьего примера выполнения узла для измерения согласно изобретению. При этом речь идет об узле для измерения разницы давлений с корпусом, который имеет два боковых фланца (49), и о керамической ячейке измерения разницы давления, заключенной между боковыми фланцами (49).
Керамическая ячейка измерения разницы давлений имеет основной корпус 51, на противоположных торцевых поверхностях которого расположена соответствующая чувствительная к давлению мембрана 5. Основной корпус 51 состоит из керамики, например из оксида алюминия (Al2О3). Мембраны 5 могут также состоять из керамики или, например, из стекла или сапфира. Мембраны 5 и основной корпус 51 соединены герметично относительно давления и газа друг с другом по кромке с образованием соответствующей измерительной камеры 7 с помощью стыка 9. Обе измерительные камеры 7 соединены друг с другом через проходящее через основной корпус 51 отверстие 53. Измерительные камеры 7 и отверстие 53 заполнены по возможности несжимаемой жидкостью, например силиконовым маслом. Мембраны 5 чувствительны к давлению, то есть воздействующее на них давление р вызывает отклонение мембраны 5 из ее положения покоя.
Датчик разницы давлений имеет преобразователь для преобразования зависящего от давления отклонения мембран 5 в электрические измерительные величины.
В показанном примере выполнения емкостного датчика разницы давлений каждый преобразователь содержит расположенный на внутренней стороне каждой мембраны 5 электрод 11 и, по меньшей мере, один расположенный на противоположной, обращенной к соответствующей мембране наружной стороне основного корпуса 51 противоположный электрод 13.
Емкости образованных электродами 11 и противоположными электродами конденсаторов определяются отклонением мембран 5 и тем самым являются мерой воздействующей на датчик разницы давлений.
Электроды 11 предпочтительно лежат через стыки 9 на массе, а противоположные электроды 13 через отверстия в основном корпусе 51 соединены с измерительной схемой 55, которая преобразует емкости в зависящий от разницы давлений выходной сигнал и выдает его для дальнейшей оценки и/или обработки.
Оба боковых фланца 49 являются по существу шайбами, которые обрамляют датчик давления так, что мембраны 5 обращены к соответствующей торцевой поверхности бокового фланца 49. Каждый боковой фланец 49 имеет сквозное отверстие 57, через которые одно из давлений, разница которых подлежит измерению, воздействует на одну из мембран 5. На своей обращенной к соответствующей мембране 5 стороне отверстия 57 входят в образованные выемками в боковых фланцах камеры 59. Камеры 59 на своей кромке обрамлены на торцевых поверхностях боковых фланцев 49 опорными поверхностями 61, к которым прилегают мембраны 5 наружной, не чувствительной к давлению кромкой через, по меньшей мере, одно уплотнение 23, например кольцо круглого сечения из эластомера. В этом случае предпочтительно также предусмотрены канавки 21 для размещения уплотнений 23.
Согласно изобретению в этом случае также контактирующие со средой в месте измерения поверхности, в данном случае боковые поверхности 63 отверстий 57, поверхности 65 камер 59, опорные поверхности 61 и поверхности канавок 21, снабжены покрытием 27 из эмали или из стеклообразного материала.
За счет покрытия 27 можно применять узлы для измерения давления согласно изобретению при высоких давлениях, высоких температурах и/или в соединении с химически сильно агрессивными средами. Поскольку стойкость узлов для измерения давления определяется стойкостью керамики и покрытия, то сам корпус может состоять из простого, дешевого металла.
Все находящиеся в контакте со средой поверхности не содержат ионов металлов, поскольку как керамические мембраны 5, так и покрытия 27 не содержат ионов металлов.
Кроме того, покрытия 27 обеспечивают гладкие поверхности, которые легко чистить и которые также могут выдерживать иногда возникающие во время процесса чистки высокие температуры и/или давления.

Claims (5)

1. Узел для измерения давления, содержащий заключенный в металлический корпус (1, 29) керамический датчик (2) давления, причем поверхности корпуса (1, 29), находящиеся во время измерения в контакте со средой, давление которой измеряется, снабжены покрытием (27) из эмали или стеклообразного материала, причем поверхностные покрытия не содержат ионов металлов.
2. Узел для измерения давления по п.1, характеризующийся тем, что корпус (1) содержит фланец, выполненный с возможностью крепления в месте измерения, в который встроена ячейка (2) измерения давления, и контактирующие в месте измерения со средой поверхности фланца снабжены покрытием (27) из эмали или стеклообразного материала.
3. Узел для измерения давления по п.1, характеризующийся тем, что корпус (29) имеет технологическое соединение (35) и контактирующие в месте измерения со средой поверхности (43, 45, 47) технологического соединения (35) снабжены покрытием (27) из эмали или стеклообразного материала.
4. Узел для измерения давления по п.1, характеризующийся тем, что датчик давления выполнен в виде ячейки измерения разницы давлений, при этом корпус имеет два боковых фланца (49), между которыми установлен датчик давления, контактирующие в месте измерения со средой поверхности (61, 63, 65) боковых фланцев (49) снабжены покрытием (27) из эмали или стеклообразного материала.
5. Узел для измерения давления по любому из пп.1-4, характеризующийся тем, что корпус (1, 29) выполнен из стали или высококачественной стали.
RU2005101079/28A 2002-06-19 2003-06-16 Узел для измерения давления RU2292020C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10227479A DE10227479A1 (de) 2002-06-19 2002-06-19 Druckmeßgerät
DE10227479.7 2002-06-19

Publications (2)

Publication Number Publication Date
RU2005101079A RU2005101079A (ru) 2005-08-10
RU2292020C2 true RU2292020C2 (ru) 2007-01-20

Family

ID=29719276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005101079/28A RU2292020C2 (ru) 2002-06-19 2003-06-16 Узел для измерения давления

Country Status (7)

Country Link
US (1) US20060053893A1 (ru)
EP (1) EP1514087A1 (ru)
CN (1) CN100350231C (ru)
AU (1) AU2003242709A1 (ru)
DE (1) DE10227479A1 (ru)
RU (1) RU2292020C2 (ru)
WO (1) WO2004001359A1 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907023B2 (en) 2000-08-14 2005-06-14 Vesuvius, Inc. Communique system with dynamic bandwidth allocation in cellular communication networks
DE102004019389A1 (de) * 2004-04-19 2005-11-03 Endress + Hauser Gmbh + Co. Kg Druckaufnehmer mit austauschbarem Prozessanschluss
DE102004031582A1 (de) 2004-06-29 2006-02-09 Endress + Hauser Gmbh + Co. Kg Duckaufnehmer
CN100485336C (zh) 2004-09-29 2009-05-06 罗斯蒙德公司 具有改进的过程适配器的压力变送器
DE102005028395A1 (de) * 2005-06-20 2006-12-28 Vega Grieshaber Kg Füllstands- oder Drucksensor mit antiadhäsiver Schicht
WO2008058406A1 (de) * 2006-11-13 2008-05-22 Inficon Gmbh Vakuummembranmesszelle und verfahren zur herstellung einer derartigen messzelle
DE102008043175A1 (de) 2008-10-24 2010-04-29 Endress + Hauser Gmbh + Co. Kg Relativdrucksensor
US8704538B2 (en) * 2010-07-01 2014-04-22 Mks Instruments, Inc. Capacitance sensors
DE102010043043A1 (de) * 2010-10-28 2012-05-03 Endress + Hauser Gmbh + Co. Kg Druckmesswandler
DE102011004722A1 (de) 2011-02-25 2012-08-30 Endress + Hauser Gmbh + Co. Kg Keramische Druckmesszelle
EP2574895B1 (de) 2011-09-28 2016-08-31 VEGA Grieshaber KG Messanordnung für die Prozessmesstechnik mit einem Universal-Prozessanschluss
DE102011084612A1 (de) * 2011-10-17 2013-04-18 Endress + Hauser Gmbh + Co. Kg Keramische Druckmesszelle mit kapazitivem Wandler
US20150096804A1 (en) * 2013-10-04 2015-04-09 Ultra Analytical Group, LLC Apparatus, System and Method for Measuring the Properties of a Corrosive Liquid
US20150096369A1 (en) * 2013-10-04 2015-04-09 Ultra Analytical Group, LLC Apparatus, System and Method for Measuring the Properties of a Corrosive Liquid
DE102013114407A1 (de) * 2013-12-18 2015-06-18 Endress + Hauser Gmbh + Co. Kg Drucksensor
DE102014104831A1 (de) * 2014-04-04 2015-10-08 Endress + Hauser Gmbh + Co. Kg Differenzdrucksensor
JP2017003511A (ja) * 2015-06-15 2017-01-05 富士電機株式会社 センサ装置およびその製造方法
DE102015122220A1 (de) 2015-12-18 2017-06-22 Endress + Hauser Gmbh + Co. Kg Keramische Druckmesszelle mit mindestens einem Temperaturmesswandler und Druckmessaufnehmer mit einer solchen Druckmesszelle
DE102017124308A1 (de) 2017-10-18 2019-04-18 Endress+Hauser SE+Co. KG Austauschbare Prozessdichtung für einen Druckmessaufnehmer
DE102018114300A1 (de) 2018-06-14 2019-12-19 Endress+Hauser SE+Co. KG Druckmesseinrichtung und Verfahren zu deren Herstellung
CN110265543B (zh) * 2019-06-17 2022-08-02 中北大学 差动电容式陶瓷耐高温压敏芯片
US11692895B2 (en) 2021-03-30 2023-07-04 Rosemount Aerospace Inc. Differential pressure sensor
DE102021133184A1 (de) 2021-12-15 2023-06-15 Endress+Hauser SE+Co. KG Druckmessaufnehmer und Differenzdruckmessaufnehmer
DE102022119143A1 (de) 2022-07-29 2024-02-01 Endress+Hauser Flowtec Ag Edelstahlprodukt, Feldgerät und Verfahren zur Herstellung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859575A (en) * 1974-02-11 1975-01-07 Lee Shih Ying Variable capacitance sensor
US4507973A (en) * 1983-08-31 1985-04-02 Borg-Warner Corporation Housing for capacitive pressure sensor
DE3528520A1 (de) * 1985-08-08 1987-02-19 Bosch Gmbh Robert Druckmessdose
DE3912217A1 (de) * 1989-04-13 1990-10-18 Endress Hauser Gmbh Co Drucksensor
US5134887A (en) * 1989-09-22 1992-08-04 Bell Robert L Pressure sensors
KR0163443B1 (ko) * 1991-07-04 1999-03-30 나까오 다께시 압력측정장치
JPH05157649A (ja) * 1991-12-02 1993-06-25 Yoshito Takehana 高耐蝕性圧力センサ
EP0548470B2 (de) * 1991-12-24 1999-12-08 Landis & Gyr Technology Innovation AG Drucksensor mit einer Membran aus Halbleitermaterial
DE4231120C2 (de) * 1992-09-17 2002-01-24 Mannesmann Vdo Ag Drucksensor
DE59306394D1 (de) * 1993-01-20 1997-06-12 Wika Alexander Wiegand Gmbh Druckmittler
JPH0843229A (ja) * 1994-08-02 1996-02-16 Yamatake Honeywell Co Ltd 圧力測定装置
DK0723143T3 (da) * 1995-01-12 1999-03-01 Endress Hauser Gmbh Co Indretning til måling af tryk eller differenstryk
US5889211A (en) * 1995-04-03 1999-03-30 Motorola, Inc. Media compatible microsensor structure and methods of manufacturing and using the same
US6140144A (en) * 1996-08-08 2000-10-31 Integrated Sensing Systems, Inc. Method for packaging microsensors
DE19816941A1 (de) * 1998-04-16 1999-10-21 Viessmann Werke Kg Temperatursensor und Verfahren zu seiner Herstellung
US6363790B1 (en) * 1998-10-23 2002-04-02 Endress + Hauser Gmbh + Co. Pressure sensor
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation

Also Published As

Publication number Publication date
CN100350231C (zh) 2007-11-21
AU2003242709A1 (en) 2004-01-06
RU2005101079A (ru) 2005-08-10
WO2004001359A1 (de) 2003-12-31
US20060053893A1 (en) 2006-03-16
DE10227479A1 (de) 2004-01-08
EP1514087A1 (de) 2005-03-16
CN1662799A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
RU2292020C2 (ru) Узел для измерения давления
US5665920A (en) Device with exchangeable sealing element for measuring pressure or differential pressure
US5712428A (en) Pressure sensor with a solid to minimize temperature-related measurement error
CA2325903C (en) Pressure sensor
CA2183500C (en) Pressure sensor
US5665921A (en) Gas tight pressure sensor sealed with flexible metallic adaptor and having ceramic sensor element
US6877380B2 (en) Diaphragm for bonded element sensor
US11022513B2 (en) Pressure measuring device
US4301492A (en) Pressure-sensing transducer
RU2740125C1 (ru) Узел датчика давления
TWI719664B (zh) 壓力感測器
EP2075563A2 (en) High temperature capacitive static/dynamic pressure sensors
JP3325879B2 (ja) 相対圧センサ
US8739632B2 (en) Pressure sensor structure and associated method of making a pressure sensor
US6516670B2 (en) Pressure sensor
US20160290508A1 (en) Sealing Ring and Pressure Measuring Transducer having at least one such Sealing Ring
JPS5855833A (ja) 差圧測定装置
JP2021124411A (ja) 圧力センサ
JPH08233670A (ja) 半導体圧力センサ
WO2005040748A1 (en) Diaphragm for bonded element sensor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090617