RU2248087C2 - Оптический усилитель и оптическая линия передачи - Google Patents

Оптический усилитель и оптическая линия передачи Download PDF

Info

Publication number
RU2248087C2
RU2248087C2 RU2001107835/09A RU2001107835A RU2248087C2 RU 2248087 C2 RU2248087 C2 RU 2248087C2 RU 2001107835/09 A RU2001107835/09 A RU 2001107835/09A RU 2001107835 A RU2001107835 A RU 2001107835A RU 2248087 C2 RU2248087 C2 RU 2248087C2
Authority
RU
Russia
Prior art keywords
control
amplifier
optical amplifier
control loop
soll
Prior art date
Application number
RU2001107835/09A
Other languages
English (en)
Other versions
RU2001107835A (ru
Inventor
Петер КРУММРИХ (DE)
Петер Круммрих
Клаус-Йорг ВАЙСКЕ (DE)
Клаус-Йорг ВАЙСКЕ
Мартин ШРАЙБЛЕНЕР (AT)
Мартин ШРАЙБЛЕНЕР
Вольфганг МАДЕР (AT)
Вольфганг МАДЕР
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2001107835A publication Critical patent/RU2001107835A/ru
Application granted granted Critical
Publication of RU2248087C2 publication Critical patent/RU2248087C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0797Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/077Monitoring an optical transmission system using a supervisory signal using a separate fibre

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

Изобретение относится к регулируемым оптическим усилителям (РОУ) в оптических линиях передачи. Технический результат заключается в сохранении уровня приема при изменении количества каналов с мультиплексированием длин волн (МДВ). РОУ (V) для передачи сигналов с МДВ содержат соответственно первое регулирующее устройство (ОЕ1, ОЕ2, R1) для регулировки усиления и второе доминирующее регулирующее устройство (ОЕ2, R2, R1) с существенно более медленно действующей характеристикой регулирования для регулировки выходной мощности (РOUT), соответственно поданной задающей величине (psoll). В линии передачи, оснащенной такими усилителями, могут компенсироваться как быстрые изменения уровня, так и медленные изменения затухания в линии передачи. 2 н. и 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к регулируемым оптическим усилителям и к оптическим линиям передачи, в которых могут использоваться такие усилители.
В оптических сетях передачи данных для компенсации затухания в оптическом волокне используются оптические усилители. Стабильный режим работы в линиях передачи большой длины возможен, однако, лишь в том случае, если изменения параметров системы компенсируются с помощью регулирования. В используемых в настоящее время системах передачи с мультиплексированием длин волн регулируются суммарные значения выходной мощности усилителей. В одноканальных системах или в линиях передачи с постоянным числом каналов с использованием этого принципа регулирования относительно хорошо компенсируются медленные изменения параметров системы, например, обусловленные колебаниями температуры или старением.
Устройство для усиления оптических сигналов с мультиплексированием длин волн (МДВ) посредством оптического волокна (например, EDFA - волоконно-оптический усилитель на основе эрбия) описан в реферате к патентной заявке Японии JP-A-05063643. Усилитель имеет два фотоэлектрических элемента, которые измеряют оптическую мощность перед усилителем и после него. С использованием разности двух фотоэлектрических сигналов относительно постоянного опорного напряжения мощность источника накачки регулируется таким образом, что усиление усилителя настраивается на определенное значение.
Оптическая система передачи с улучшенным отношением сигнал/шум описана в патенте США US-A-5446812. Несколько усилителей в линии передачи включены друг за другом и селективно управляются статически или динамически с помощью блока управления таким образом, что получаемое отношение сигнал/шум (С/Ш) на выходе линии передачи становится максимальным.
В реферате к патентной заявке Японии JP-A-04293025 описана система передачи с включенными друг за другом усилителями. Как и в вышеупомянутом патенте США US-A-5446812, управляющий сигнал подается на все усилители для управления коэффициентом усиления. Согласно реферату к вышеуказанной патентной заявке Японии, для установки усиления в качестве опорного сигнала применяется изменяющийся пилот-сигнал.
Однако ни одна из вышеупомянутых трех систем не обеспечивает возможность поддержания постоянной мощности, приходящейся на канал, при различных количествах каналов.
Если, однако, количество каналов в процессе функционирования изменяется, то такое регулирование суммарной выходной мощности изменяет уровень отдельных каналов передачи с МДВ. Такого изменения уровня в принципе можно избежать, если определить количество действующих каналов и сообщить эти данные устройствам регулирования отдельных оптических усилителей. Устройства регулирования соответствующим образом согласуют номинальное значение для выходного уровня усилителя. Ввиду различных постоянных времени, такое согласование уровней обычно реализуется не без кратковременных колебаний, с которыми связаны значительные потери качества передачи.
Другая возможность решения состоит в регулировании отдельных усилителей для получения постоянного коэффициента усиления (см., например, "Electronic Letters", 26 March, 1991, Vol.27, No.7, pp.560-561 и "Electronic Letters", 29 June, 1994, Vol.30, No.12, pp.962-964). В таких схемах при изменении количества действующих каналов подавляют колебания уровней остальных каналов путем поддержания усиления постоянным. Однако в качестве принципа регулирования для линии передачи с множеством усилителей и этот принцип регулирования не подходит, так как медленные изменения параметров линии суммируются, и вследствие этого качество передачи ухудшается.
Задачей изобретения является создание усилителей, пригодных для оптических сетей передачи данных. Кроме того, линии передачи следует выполнять таким образом, чтобы и при изменении количества каналов уровень приема отдельных каналов с МДВ сохранялся постоянным.
Указанная задача решается с помощью регулируемого оптического усилителя согласно пункту 1 формулы изобретения. Вариант усилителя приведен в независимом пункте 3 формулы изобретения.
Линии передачи, оснащенные указанными усилителями, описаны в пунктах 6 и 7 формулы изобретения.
Предпочтительные варианты осуществления изобретения охарактеризованы в зависимых пунктах формулы изобретения.
Преимущество соответствующего изобретению оптического усилителя состоит в том, что регулировка усиления в первом контуре регулирования осуществляется с малой постоянной времени. Поэтому изменения в количестве действующих каналов с МДВ оказывают минимальное влияние на выходной уровень. Второй контур регулирования обеспечивает отработку медленных изменений. При изменении количества действующих каналов происходит соответствующее изменение номинального значения для второго контура регулирования с помощью включенного в линию передачи на стороне передачи локального или включенного на стороне приема терминалов (сетевых узлов), так что регулировка выходного уровня, если она вообще происходит, осуществляется лишь кратковременно и воспринимается лишь в минимальной степени. Если во втором контуре регулирования предусмотрено запоминающее устройство, то этот контур регулирования можно приводить в действие только в определенные моменты времени, чтобы изменить уровень приема, или во время изменения количества каналов деактивировать его.
В альтернативном решении регулировка выходной мощности производится либо совместно для всех усилителей линии передачи от приемного терминала, либо при соответствующем индивидуальном контроле выходного уровня отдельно через соответственно выполненный канал контроля.
При применении регулировки выходного уровня усилителям необходимо только еще получать информацию о количестве каналов МДВ или о соответствующем номинальном значении.
Линии передачи, оснащенные этими усилителями, могут также выравнивать медленные изменения усиления, обусловленные процессами старения.
Принцип и пример реализации усилителя, а также линии передачи описаны ниже со ссылкой на чертежи, на которых представлено следующее:
фиг.1 - структурная схема соответствующего изобретению усилителя с регулировкой выходной мощности,
фиг.2 - структурная схема с волоконным усилителем,
фиг.3 - линия передачи с множеством усилителей.
Пример выполнения изобретения представлен на структурной схеме, показанной на фиг.1. Оптический усилитель V служит для усиления сигнала MS, мультиплексированного по длинам волн, передаваемого по оптическому волноводу LWL. На входной стороне предусмотрен первый измерительный элемент связи К1, который ответвляет часть сигнала. Ответвленный сигнал преобразуется первым оптоэлектронным преобразователем ОЕ1 в электрический измеренный сигнал рIN, соответствующий входному уровню (входной суммарной мощности), подаваемый на первый регулятор R1. Точно так же посредством второго измерительного элемента связи К2 и второго оптоэлектронного преобразователя ОЕ2 получают измеренный сигнал рOUT, соответствующий выходному уровню (мощности) РOUT, который также подается на первый регулятор. Полученные РOUT и РIN сравнивают между собой и в соответствии со сравнением регулируют усиление, в зависимости от установленного соотношения РOUT к pIN, например, в случае волоконного усилителя регулируется ток накачки IPUMP или в случае полупроводникового усилителя регулируется управляющий ток. Также могут использоваться и другие принципы регулирования усиления, которые описаны, например, в цитированных источниках.
Помимо показанного в упрощенном виде первого регулирующего устройства (контура регулирования К1, ОЕ1, К2, ОЕ2, R1, V), служащего для быстрой регулировки усиления, предусмотрено второе доминирующее устройство регулирования (контур регулирования К2, ОЕ2, R2, R1, V), которое регулирует выходную мощность (выходной уровень) РOUT путем сравнения соответствующего измеренного значения POUT с заданной величиной, т.е. с номинальным значением pSOLL. Медленные изменения затухания в линии передачи, обусловленные, например, температурным изменением или старением, компенсируются посредством этого второго контура регулирования. Выданная вторым регулятором R2 регулирующая величина GSOLL путем воздействия на первый контур регулирования определяет ток накачки и тем самым усиление оптического усилителя. При изменении количества каналов передачи усиление не должно изменяться. Регулирование уровня также не может подействовать мгновенно, что достигается за счет, как правило, намного большей постоянной времени второго контура регулирования по сравнению с постоянной времени первого контура регулирования.
На фиг.2 более детально представлена схема усилителя, включающая в себя волоконный усилитель VFA, усиление которого определяется током накачки IPUMP, вырабатываемым управляемым лазером накачки PL и ответвляемым посредством ответвителя накачки РК. Первый регулятор R1 может содержать звено затухания DG, которое подключено ко второму оптоэлектронному преобразователю ОЕ2, и первый компаратор СОМ1. Если второй контур регулирования не учитывается, то усиление может быть установлено с помощью звена затухания. Возможность регулирования выходной мощности путем изменения усиления могла бы быть обеспечена непосредственным изменением затухания, вносимого звеном затухания DG, с помощью задающей величины PSOLL.
В рассматриваемом примере осуществления во втором устройстве регулирования (во втором контуре регулирования К2, ОЕ2, COM2, MU, IN, COM1, PL, PK, VFA), как выше описано в принципе, осуществляется сравнение во втором компараторе COM2 между выходной мощностью и задающей величиной PSOLL. Результат этого сравнения изменяет посредством перемножителя MU входной сигнал первого компаратора COM1 и управляет таким образом током накачки и тем самым регулирует усиление волоконного усилителя VFA. От звена затухания можно отказаться, так как второй контур регулирования определяет усиление посредством перемножителя.
Как упомянуто выше, постоянная времени второго контура регулирования должна быть достаточно большой, чтобы в случае изменения количества каналов нейтрализовать его влияние путем соответствующего введенного извне изменения задающей величины. Этому также может способствовать накопительный элемент SH. Он может быть включен между интегратором и перемножителем. В качестве постоянной времени при высоких скоростях передачи данных в диапазоне Мбит/с для первого контура регулирования целесообразно выбрать величину в диапазоне от 1 мкс до 1 мс, а для второго устройства регулирования - в диапазоне от 0,1 с до нескольких секунд, минут и даже часов. Постоянная времени может также переключаться для различных рабочих состояний.
Так при вводе в действие выбирается малая постоянная времени, например 100 мкс, при изменении количества каналов - постоянная времени порядка 1 с и при изменении уровня, отслеживающего изменения в потребностях, - постоянная времени порядка нескольких минут.
Для второго регулятора представляется возможной интегральная характеристика или по меньшей мере интегральная составляющая, которая еще может быть дополнена временем запаздывания. При схемной реализации второй компаратор и интегратор могут быть объединены.
Усилительные схемы с соответствующими контурами регулирования могут, естественно, строиться самым различным образом.
На фиг.3 представлена линия передачи с несколькими оптическими усилителями VT, от VI до Vn. В передающем терминале Т1, содержащем передающее устройство TR с подключенным к нему мультиплексором длин волн WDM, вырабатывается сигнал MS с уплотнением по длинам волн, который затем усиливается в усилителе VT и вводится в линию передачи. Усилители установлены таким образом, что они выдают выходные уровни, соответствующие условиям конкретного участка линии передачи, которые сохраняются за счет второго контура регулирования и при медленном изменении свойств линии передачи.
Если количество каналов МДВ изменяется, то выходной уровень прежде всего в каждом канале продолжает поддерживаться постоянным с помощью первого контура регулирования. Ввиду большой постоянной времени и запаздывания, регулирование выходного уровня сначала не вводится в процесс регулирования. Так как одновременно посредством канала контроля ОСH от терминала к усилителям передается информация об изменении заданной величины, которая служит для выработки нового выходного уровня, то второй контур регулирования практически не оказывает влияния на процесс регулирования. В противоположность этому, снабжение каждого усилителя отдельным средством контроля количества каналов привело бы к большим затратам.
Необходимо также добавить, что посредством канала контроля значения выходной мощности можно также устанавливать индивидуально.

Claims (8)

1. Регулируемый оптический усилитель (V, V1,...) для передачи сигналов с мультиплексированием по длинам волн с первым контуром (V, OE1, OE2, R1) регулирования, у которого измеряют входной уровень (РIN) и выходной уровень (РOUT), сравнивают их между собой и в соответствии со сравнением регулируют усиление, отличающийся тем, что предусмотрен доминирующий второй контур (V, OE1, OE2, R2, R1) регулирования с существенно более медленнодействующей характеристикой регулирования, у которого выходной уровень (РOUT) сравнивают с подаваемой задающей величиной (PSOLL) и полученный из этого сравнения регулирующий сигнал (GSOLL) через умножитель (MU) воздействует на первый контур (V, OE1, OE2, R1) регулирования и определяет выходной уровень (РOUT).
2. Регулируемый оптический усилитель (V, V1,...) по п.1, отличающийся тем, что первый контур регулирования образован, в основном, оптическим усилителем (PL, PK, VFA), подключенным к его входу первым оптоэлектронным преобразователем (ОЕ1), который выдает соответствующий входному уровню (РIN) измеренный сигнал (РIN), подключенным к выходу усилителя вторым оптоэлектронным преобразователем (ОЕ2), который выдает соответствующий выходному уровню (РOUT) измеренный сигнал (РOUT), и первым компаратором (СОМ1), к которому через умножитель (MU) от первого оптоэлектронного преобразователя (ОЕ1) и от второго оптоэлектронного преобразователя (ОЕ2) подают измеренные сигналы (РIN, РOUT), и выходной сигнал которого управляет усилением, при этом второй контур регулирования образован, в основном, оптическим усилителем (PL, PK, VFA), подключенным к его выходу вторым оптоэлектронным преобразователем (ОЕ2), вторым компаратором (COM2), к которому подают выходной сигнал второго оптоэлектронного преобразователя (ОЕ2) и задающую величину (PSOLL), а его выходной сигнал подают через интегрельный регулятор (IN), и он в качестве регулируемой величины (GSOLL) через умножитель (MU) воздействует на первый контур регулирования и определяет выходной уровень (РOUT) усилителя.
3. Регулируемый оптический усилитель (V, VV,...) по п.1 или 2, отличающийся тем, что указанный усилитель выполнен в виде волоконного усилителя (PL, PK, VFA), при этом с помощью контуров регулирования осуществляют управление током накачки (Ipump).
4. Регулируемый оптический усилитель (V,VV) по п.1 или 2, отличающийся тем, что второй контур регулирования (ОЕ1, ОЕ2, R2, R1, RE, DAW, MU, COM1, PL, VFA) имеет интегральный компонент или содержит интегральный регулятор.
5. Регулируемый оптический усилитель (V, V1...) по п.1 или 2, отличающийся тем, что второй контур регулирования (ОЕ1, ОЕ2, R2, R1, RE, DAW, MU, COM1, PL, VFA) имеет компонент с запаздыванием.
6. Регулируемый оптический усилитель (V, V1...) по п.1 или 2, отличающийся тем, что постоянная времени второго контура регулирования (ОЕ1, ОЕ2, R2, R1, RE, DAW, IN, MU, COM1, PL, VFA) имеет возможность переключения.
7. Линия передачи с несколькими включенными цепочкой усилителями (V, VV1,...) по одному из предыдущих пунктов, отличающаяся тем, что на усилители (V, VV1,...) в качестве задающей величины подается задающая величина (PSOLL), определяющая соответственно требуемый выходной уровень (РOUT).
8. Линия передачи по п.7, отличающаяся тем, что в качестве задающей величины передается цифровое заданное значение (PSOLL), содержащее совокупность активных мультиплексированных по длинам волн сигналов.
RU2001107835/09A 1998-08-26 1999-03-30 Оптический усилитель и оптическая линия передачи RU2248087C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19838788A DE19838788A1 (de) 1998-08-26 1998-08-26 Geregelter optischer Verstärker
DE19838788.1 1998-08-26

Publications (2)

Publication Number Publication Date
RU2001107835A RU2001107835A (ru) 2003-03-10
RU2248087C2 true RU2248087C2 (ru) 2005-03-10

Family

ID=7878782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001107835/09A RU2248087C2 (ru) 1998-08-26 1999-03-30 Оптический усилитель и оптическая линия передачи

Country Status (11)

Country Link
US (2) US6452722B1 (ru)
EP (1) EP1110309B1 (ru)
JP (1) JP2002524902A (ru)
CN (1) CN1158756C (ru)
AU (1) AU764692B2 (ru)
BR (1) BR9913217A (ru)
CA (1) CA2342101C (ru)
DE (2) DE19838788A1 (ru)
ES (1) ES2205819T3 (ru)
RU (1) RU2248087C2 (ru)
WO (1) WO2000013313A1 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588435B2 (ja) * 2000-02-28 2004-11-10 富士通株式会社 光増幅装置、複合光増幅装置および光通信システム
DE10040446A1 (de) * 2000-08-18 2002-03-07 Siemens Ag Kaskadierbare optische Verstärkeranordnung
US6603597B2 (en) * 2001-06-08 2003-08-05 Photon-X, Inc. Dual mode programmable optical logarithmic amplifier driver
US7119949B1 (en) 2001-07-30 2006-10-10 Tellabs Operations, Inc. System and method for measuring an amount of error associated with an optical amplifier
US6765714B1 (en) * 2001-07-30 2004-07-20 Tellabs Operations, Inc. System and method for measuring an amount of error associated with an optical amplifier
DE10144948B4 (de) * 2001-09-12 2007-10-31 Siemens Ag Verfahren zur Regelung einer Pumpeinrichtung bei optischer Verstärkung eines übertragenen Wellenlängen-Multiplex(-WDM)-Signals
US7061668B2 (en) 2002-03-21 2006-06-13 Siemens Communications Inc. Fast optical amplifier control circuit
JP3914236B2 (ja) 2003-01-30 2007-05-16 富士通株式会社 光増幅器
US7027210B2 (en) * 2003-05-29 2006-04-11 Fujitsu Limited Method and system for determining gain for an optical signal
JP2006286918A (ja) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 光増幅装置
US7627254B2 (en) * 2005-06-30 2009-12-01 Infinera Corporation Automated optical link power control
US10387377B2 (en) * 2017-05-19 2019-08-20 Takashi Suzuki Computerized methods of data compression and analysis

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940194B2 (ja) * 1991-03-22 1999-08-25 日本電気株式会社 光直接増幅方式
JP2616293B2 (ja) * 1991-08-29 1997-06-04 日本電気株式会社 光ファイバ増幅器
GB2272590B (en) * 1992-11-17 1996-06-19 Northern Telecom Ltd Optical communications system
DE4240029A1 (de) 1992-11-28 1994-06-01 Bosch Gmbh Robert Verfahren zum Übertragen von optischen Signalen
JP3306693B2 (ja) * 1995-01-19 2002-07-24 富士通株式会社 光増幅装置,光波長多重通信システム,光端局装置及び光中継装置
US5563731A (en) * 1995-02-22 1996-10-08 Nec Corporation Monitor control signal receiving apparatus for optical fiber amplifier
US6195480B1 (en) * 1997-08-06 2001-02-27 Hitachi, Ltd. Optical transmission device and optical transmission system employing the same
DE19532485A1 (de) * 1995-09-02 1997-03-06 Bosch Gmbh Robert Einrichtung mit optischem Faserverstärker
JP3363003B2 (ja) * 1995-10-03 2003-01-07 株式会社日立製作所 光増幅装置及び光増幅装置を用いた光伝送システム
US5696615A (en) * 1995-11-13 1997-12-09 Ciena Corporation Wavelength division multiplexed optical communication systems employing uniform gain optical amplifiers
JP2910667B2 (ja) * 1996-04-09 1999-06-23 日本電気株式会社 線形中継光増幅伝送装置
FR2747483B1 (fr) * 1996-04-15 1998-05-15 Alsthom Cge Alcatel Amplificateur optique a gain variable et a bande passante constante, et systeme de compensation automatique des variations des pertes dans une liaison optique, comportant un tel amplificateur
US6025947A (en) * 1996-05-02 2000-02-15 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
JPH09321701A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd 光通信システム及び光増幅器
JP2904131B2 (ja) * 1996-07-04 1999-06-14 日本電気株式会社 波長多重光増幅装置と波長多重光伝送装置
JP2991131B2 (ja) * 1996-10-07 1999-12-20 日本電気株式会社 信号光チャネル数計数器とこれを用いた光増幅装置
JPH10190107A (ja) * 1996-10-29 1998-07-21 Kyocera Corp 光ファイバ増幅器
WO1998028826A1 (de) * 1996-12-20 1998-07-02 Siemens Aktiengesellschaft Optischer faserverstärker für wellenlängen-multiplexbetrieb
JPH10229386A (ja) * 1997-02-17 1998-08-25 Nec Corp 光ファイバアンプとこれを用いた光通信システム
JP3757018B2 (ja) * 1997-03-12 2006-03-22 株式会社日立コミュニケーションテクノロジー 光増幅装置および光増幅装置の制御方法ならびに光増幅装置を用いた光伝送システム
JPH11121848A (ja) * 1997-10-16 1999-04-30 Fujitsu Ltd 光増幅器及び該光増幅器を備えた光伝送システム
JPH11122192A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 光増幅器及び該光増幅器を備えた光通信システム
DE69838127T2 (de) * 1998-01-27 2008-05-15 Lucent Technologies Inc. Verfahren und Vorrichtung zur Steuerung der optischen Verstärkung in einer optischen Wellenlängenmultiplexübertragung
SE522622C2 (sv) * 1998-04-01 2004-02-24 Ericsson Telefon Ab L M Optisk fiberförstärkare med styrd förstärkning
US6166850A (en) * 1998-11-04 2000-12-26 Nortel Networks Limited Optical amplifier gain control
US6163399A (en) * 1998-12-08 2000-12-19 Nortel Networks Limited Method and apparatus for suppressing transients in optical amplifiers
US6215584B1 (en) * 1999-05-10 2001-04-10 Jds Uniphase Inc. Input independent tilt free actively gain flattened broadband amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КРИВИЦКИЙ Б.Х. и др. Системы автоматической регулировки усиления, Москва, Радио и связь, 1982. *

Also Published As

Publication number Publication date
CA2342101C (en) 2008-05-20
ES2205819T3 (es) 2004-05-01
EP1110309B1 (de) 2003-08-06
DE19838788A1 (de) 2000-03-09
AU3925999A (en) 2000-03-21
DE59906534D1 (de) 2003-09-11
CA2342101A1 (en) 2000-03-09
BR9913217A (pt) 2001-05-22
CN1315076A (zh) 2001-09-26
JP2002524902A (ja) 2002-08-06
US6452722B1 (en) 2002-09-17
US20020015221A1 (en) 2002-02-07
AU764692B2 (en) 2003-08-28
CN1158756C (zh) 2004-07-21
EP1110309A1 (de) 2001-06-27
WO2000013313A1 (de) 2000-03-09

Similar Documents

Publication Publication Date Title
US6934479B2 (en) Wavelength division multiplexing optical communication system and wavelength division multiplexing optical communication method
US6185022B1 (en) Optical transmission system and transmitting terminal station
US5986800A (en) Optical amplification apparatus
US6400475B1 (en) Optical transmission system and optical communications device
US6449074B1 (en) Optical transmission device and optical communication system
US7254340B2 (en) Apparatus and method for tracking optical wavelength in WDM passive optical network using loop-back light source
US7161734B2 (en) Method and apparatus for controlling power transients in an optical communication system
RU2248087C2 (ru) Оптический усилитель и оптическая линия передачи
JPH09211507A (ja) 光等化増幅器および光等化増幅方法
US7400835B2 (en) WDM system having chromatic dispersion precompensation
JP2001186107A (ja) レベル調整方法並びにその方法を利用する波長多重伝送装置及びシステム
US6633430B1 (en) Booster amplifier with spectral control for optical communications systems
US7020092B1 (en) Method for channel adjustment of transmission signal power in a wavelength division multiplexing transmission system
EP1025659B1 (en) Optical amplifier control
RU2001107835A (ru) Оптический усилитель и оптическая линия передачи
CA2433486C (en) Using gain tilt for local compensation of unwanted power gradients
US6668137B1 (en) Feed forward optical power control
US8064771B2 (en) Active control loop for power control of optical channel groups
CA2482803C (en) Systems and methods for compensating for signal transients
US20030133713A1 (en) Method and system for multi-level power management in an optical network
US6646792B2 (en) Light amplifier and light transmission system using the same
JP4091149B2 (ja) 光素子電力制御システム
KR100305757B1 (ko) 파장분할다중화시스템용이득평탄유지형광증폭기
KR100727636B1 (ko) 자동 이득 조절 광증폭 시스템
CN100583715C (zh) 光分插复用设备的线路衰耗自适应与通路均衡自动调整的方法

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20101019

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20150413

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160331